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INTEGER BY CERTAIN QUADRATIC FORMS
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ERNEST X. W. XIA (Zhenjiang)

Abstract. For natural numbers a,b and positive integer n, let R(a,b;n) denote the
number of representations of n in the form

a b

Z(ﬂff + @iy + i) + QZ(U? + uv; + v3).

i—1 j=1

Lomadze discovered a formula for R(6,0;n). Explicit formulas for R(1,5;n), R(2,4;n),
R(3,3;n), R(4,2;n) and R(5,1;n) are determined in this paper by using the (p;k)-
parametrization of theta functions due to Alaca, Alaca and Williams.

1. Introduction. Let N, Ny, Z and C denote the sets of positive in-
tegers, nonnegative integers, integers and complex numbers, respectively.
Throughout this paper, ¢ € C is taken to satisfy |¢| < 1. For i,n € N, let

(1.1) oi(n) =Y d’,
d|n

where d runs through the positive divisors of n. If n is not a positive integer,
set ;(n) = 0. As usual, we write o(n) for o1(n). For a,b € Ny and n € N,
let R(a,b;n) denote the number of representations of n in the form

a

b
Z(:cf +zyi +yP) + 2 Z(u? + ujv; + v5).
i=1 j=1

In 1989, Lomadze [L] proved that for n € N,

252 6804
18
+ & E (921 — 9na? + n?).

4
(z1,22,23,24)EZL
I%+I11‘2 +x% +z§+x3x4+xi =n
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Recently, Xia and Yao [YX] found that for n € N,
252 6804 216

(1.3) R(6,0;n) = —o05(n) — ——o05(n/3) +

13 13 73 b,

where b(n) is defined by
(1.4) > bn)g" =qJ(1-q)°(1 - ¢*)°.
n=1 i=1

Equating the two expressions for R(6,0;n) in (1.2)) and (1.3), we see that
forn € N,

(1.5) b(n) = — > (927 — 9na? +n?).
(w1,22,03,04)EZ4
z%+x1x2+x3+x§+x3x4+xﬁzn

The formula ([1.3)) was first proved by Chan and Cooper [CC]. Furthermore,
they established a general formula for R(2a,0;n) for any positive integer a.
The aim of this paper is to propose explicit formulas for R(1,5;n),
R(2,4;n), R(3,3;n), R(4,2;n) and R(5,1;n). The main results can be stated
as follows.
THEOREM 1.1. Forn € N, we have
6 132 162 3564

(16)  R(L5n) = Dos(n) — 122 o5(n/2) + “os(n/3) — 22 05(n/6)
36 288 648
+ 7b(n) — 7b(n/2) + 7c(n),
(1L7)  R(2,4:n) = %0—5@) + %05(71/2) - %05(1@/3) - 6%05(71/6)
+ 1) + 22ob(n/2),
(18) R(3.3:m) = wos(n) — 1 o5(n/2) + =os(n/3) — > o5(n/6)
20b(n) — S b(n/2) + ()
(1.9) R(4,2n) = %05(71) + %05(71/2) - %05(71/3) - 51—2405(n/6)
252 2304
+ ﬁb(n) + ?b(nﬂ),
(1.10) R(5,1;n) = 6—7605(71) - g%(n/z) + 17%05(71/3) _ %05(71/6)

144 1152 2592
+ 7b(n) — Tb(n/2) + Tc(n),
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where b(n) is defined by (1.4) and c(n) is defined by

o0

(1.11) > eln H (1=¢")(1=¢")(1—¢"")>(1—¢"").

n=1

From ) and (| -, we can obtain the following corollary.
COROLLARY 1.2. For n € Ny,
(1.12) 3R(1,5;2n+ 1) = R(3,3;2n + 1).

2. The (p, k)-parametrization of Eisenstein series. The objective
of this section is to recall the (p, k)-parametrization of Eisenstein series due
to Alaca, Alaca and Williams [AAW1, [AAW?2] [AW].

In his second notebook [R], Ramanujan gave the definitions of the Eisen-
stein series; one of them is

oo nSqn
(2.1) N(g):=1-504) i~
n=1
It is easy to see that
o0
(2.2) N(g) =1-504) o5(n)q".

Alaca, Alaca and Williams [AAW1] defined
v*(q) — ¥*(@)

(2:3) p=pla) = 5 5
and

(24) b= ko) = 20
where ¢(q) is defined by

(2.5) p(q) = ZZQ"Q

Alaca and Williams [AW] derived representations of N(g) in terms of p
and k. Equation (3.73) in [AW] is

(2.6)  N(q) = (1 — 246p — 5532p> — 38614p> — 135369p*
— 276084p° — 348024p° — 276084p" — 135369p°
— 38614p° — 5532p'Y — 246p't + p'?)kS.

Applying the duplication and triplication principles successively to (2.6)),
Alaca, Alaca and Williams [AAW?2] obtained representations of N(g?),
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N(g?) and N(q°) in terms of p and k. Equations (3.23), (3.24) and (3.26) in
[AAW?2] are

4059
(2.7)  N(¢*) = ( + 6p — 114p? — 625p° — Tp4 — 4302p° — 5556p°

_ 4032y 40259 o

625 9 114]910 + 6p11 _|_p12> kG,
(2.8)  N(¢*) = (1+6p+12p* — 58p> — 297p* — 396p° — 264p°
—396p” — 297p% — 58p° + 12p'% + 6p!! + p'2)kS,

: 27
(2.9) N(¢° = (1 + 6p + 12p* + 5p° — ?]74 —18p® — 12p°
a7 27 g 9 10 11 12\ 1.6
18p 5 P +5p” +12p" +6p " +p° )k°,
respectively. Alaca, Alaca and Williams [AAW3] also derived the represen-
tations of ¢/ [0 —¢), q 1/12 [12,(1—¢%), q 1/8 [T52,(1 = ¢*) and

gt [T, (1 - q%) in terms of p and k. Equations (2.10), (2.11), (2.12) and
(2.14) in [AAW3] are

(2.10)
q1/24 H(l _ qn> _ 2—1/6p1/24(1 —p)1/2(1 +p)1/6(1 + 2p)1/8(2 +p)1/8k1/2,

n=1

(2.11)

q1/12 H(l_q2n> _ 2—1/3p1/12(1 _p)1/4(1+p)1/12(1_|_2p)1/4(2 —I—p)l/lkl/Q,

(2. 12)

1/8 H 72 1/6 1/8(1 p)1/6(1+p)1/2(1+2p)1/24(2+p)1/24k‘1/2

(2.13)

q1/4 H(l o q6n) _ 2—1/3p1/4(1 _p)1/12(1 +p)1/4<1+2p)1/12(2 +p)1/12k1/2,

respectively. Jonathan and Peter Borwein [BB] introduced three 2-dimen-
sional theta functions; one of them is

(2.14) alg)= > ¢TI gec, g <1

(i,5)€z?
Alaca, Alaca and Williams [AAWT] found representations of a(q) and a(q?)
in terms of p and k:

(2.15) a(q) = (1 +4p+ p*)k
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and

(2.16) a(¢®) = (1 +p+p)k.

3. Some identities involving a(q) and Eisenstein series. In this
section, we establish five identities involving a(gq) and Eisenstein series, which
are used to prove Theorem

THEOREM 3.1. We have

(3.1)
1 11 9 99
°(¢*) = ——=N(q) + —N(¢*) — —N N
a(q)a’(¢) = =z N(@) + 55, N(a ) Tog V(g )+98 (¢°)
36 — 7 288 n, 048 .
+ - Zb Zb ¢ Zc(n)q ,
n=0 n=0
(3.2)
1 10 9 90
2(¢)a*(¢*) = ——=N(q) — —=N —N N
a*(g)a’(q") = — 1 =N(a) — 52 N (g )+182 (q )+91 (¢°)
144 & 1008
R ” b
g 2 Z
(3.3)
1 2 27 54
3 30,2y _© & 2y _ 2L (B 22 N (8
a*(¢)a’(q°) = — 1N (@) + ;g N (¢) 196 (@) + ;N (@)
108 . 864 on 1944 "
+7Zb )q ——Zb — c(n)q",
n=0 n=0
(3.4)
5 8 45 e
Y@)a*(¢?) = ——=N(q) — —=N(¢*) + —N(¢®) + —=N(q
252 . 2304
13 20 Z"
(3.5)
11 8 99 72
> Y= ———N(q)+ —=N(¢*) — —N(¢*) + —=N(q
Ll 1152 2592
Zb q" 5 Zb ¢ + 579 ZC(n)qn,
n=0

where b(n) and c(n) are defined by (1.4) and (1.11)), respectively.
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Proof. We just prove (3.1]). The rest can be proved similarly. By (|1.4),

(L.11)) and (2.10)—(2.13), we see that

[o.¢] . 1
(3.6) Z b(n)q" = Zp(l —p)*(1+p)*(1+2p)(2 + )k,
(3.7) Zb P*(1=p)*(1+p)*(1+2p)*(2+ p)?k°,

= 1
(3.8) > clm)a" = p* (1= p)’(1+p)*(1+2)(2 +p)K°.
Combining (2.6)—(2.9)) and (3.6)—(3.8]), we deduce that

11 9 99 36 —

3.9 ——N —N(@®) = —N() + =N+ = " b(n)g"

288 648

Zb "+ ZC(”)qn = (L+4p+p”)(1+p+p*)°kS.
n=0

On the other hand, in view of ([2.15)) and (2.16)), it is easy to check that
(3.10) a(q)a®(¢®) = (1+4p+p2)(1 +p+p%)°K".

Identity . ) follows from (3.9 and ( - .

4. Proof of Theorem In this section, we present a proof of The-
orem by employing Theorem We deduce ([1.6) from (3.1]). The rest

can be proved similarly.
By the definition of R(a,b;n) and (2.14)), it is easy to see that the gen-
erating function of R(l 5;n) is

(4.1) ZR15n = a(q)a®(¢?) — 1.
By applying (2.2} and , we find that
1 9 99
4.2 1,5;n)¢" = ——=N(q —N ——N N
42 3 RIS =~ N(@) + NG — NG + N )

§Zb(n) 288219 "+ Z n)q" — 1

- 588(1_504205 ) 294( 042"5 )
- o6 (1 — 504 Z o “) + 58 (1 _ 504;1 a5(n)q6")



SUMS OF CERTAIN QUADRATIC FORMS 145

+ ? S bt — 2 Z b(n Z
n=0

7

6 ~— 132 162 3564
== Z o5(n)g" — —= Y o5(n)¢*"+ Z o5(n)g*" — ==Y o5(n)g™
n=1

n=1 n=1

+ ? Z b(n)q" — 288 Z b(n)g*™ 6§8 Z c(n)q".
n=0

n=0

Equating the coefficients of q" on both sides of (4.2]), we obtain (1.6)). =
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