
COLLOQU IUM MATHEMAT ICUM
VOL. 135 2014 NO. 1

ON ISOMETRIES OF THE SYMMETRIC SPACE P1(3,R)

BY

GAŠPER ZADNIK (Ljubljana)

Abstract. We classify the isometries in the non-identity component of the whole
isometry group of the symmetric space of positive 3 × 3 matrices of determinant 1: we
determine the translation lengths, minimal spaces and fixed points at infinity.

1. Introduction. Let M be a simply connected complete Riemannian
manifold of non-positive sectional curvature. For any given point x ∈ M ,
there is a well-defined map Sx : M → M sending γ(t) to γ(−t) for each
geodesic γ with γ(0) = x. If the symmetries Sx are Riemannian isometries,
the manifold M is called symmetric. If, in addition, M is not isometric to
a Riemannian direct product with a Euclidean factor, M is said to be of
non-compact type. A fundamental example is the space P1(n,R) of positive
definite n × n matrices of determinant 1 equipped with the Riemannian
metric 〈X,Y 〉P = Tr(XP−1Y P−1). (The tangent space at P ∈ P1(n,R)
can be readily identified with the space of symmetric matrices X with
Tr(XP−1) = Tr(

√
P−1X

√
P−1) = 0.) In fact if M is any symmetric man-

ifold of non-compact type, there exists a diffeomorphism onto a totally
geodesic submanifold of some P1(n,R). The pull-back metric on M obtained
by means of the embedding coincides with the original metric on M up to
a constant multiple on each irreducible de Rham factor. See Eberlein [3] for
a more detailed account of symmetric manifolds.

An important aspect in the study of a Riemannian manifold is the in-
vestigation of its isometries as well as the group of all isometries. In this
paper we address the problem of classification of the Riemannian isometries
of P1(n,R). Our vantage point, however, is that of CAT(0) geometry, as it
affords greater flexibility and lucidity by neglecting the differentiable struc-
ture wherever possible. If M is a simply connected Riemannian manifold of
non-positive sectional curvature, then it is a CAT(0) space when equipped
with its Riemannian distance as metric. Our basic reference for CAT(0)
geometry is Bridson and Haefliger [1].
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The displacement function of an isometry α of M is the assignment
dα(x) = d(x, α(x)). If dα attains its minimum on M , the isometry α is called
semi-simple, in which case it makes sense to define the minimal space of α,
Min(α), as the set of all points where the minimum is attained. When the
minimal space is actually the set of fixed points Fix(α), we call the isometry
α elliptic. If α is semi-simple but not elliptic, it is called hyperbolic. If dα
does not attain a minimum, α is called parabolic. In any case we can define
the translation length of α as |α| = infx∈X dα(x).

The concept of a fixed point can be extended to include also non-elliptic
isometries by considering the boundary at infinity of M . The points at in-
finity correspond to equivalence classes of geodesic rays in M where two
rays are equivalent if they remain within a fixed distance for all times. The
boundary at infinity is denoted by ∂M . Since an isometry acts on the set
of geodesics, it induces a bijection α on ∂M . By introducing a metric on
∂M we can talk about its geometry and consequently about the geometry
of Fix∞(α), the fixed point set of α on ∂M .

The classification of all isometries of P1(n,R) is by no means trivial.
Recently, Fujiwara, Nagano, and Shioya [5] classified the isometries and
their fixed point sets for the connected component of the identity in the
full group of isometries of P1(3,R). To some extent that achievement was
an application of their more general investigation of parabolic isometries
of CAT(0) spaces. Here we classify the isometries of P1(3,R) in the con-
nected component of the inversion σ(P ) = P−1. In particular, we note that
there are parabolic isometries in that component and we determine their
fixed point set at infinity, thereby solving a problem posed by Fujiwara (see
[4, Problem 4.1]). To do that, we prove a couple of general results of inde-
pendent interest concerning the isometries of CAT(0) spaces.

To every matrix g ∈ SL(n,R) we can associate the Riemannian isometry
g : P1(n,R) → P1(n,R) sending each P to gPgT . The resulting representa-
tion SL(n,R)→ Iso(P1(n,R)) induces an isomorphism of PSL(n,R) and the
identity component of Iso(P1(n,R)). (See [1, Chapter II, §10] as well as [3,
§2.13] for details.) By that isomorphism, we view PSL(n,R) as a subgroup
of Iso(P1(n,R)). Similarly, we associate to every element g ∈ SL(n,R) the
Riemannian isometry g̃ : P1(n,R) → P1(n,R) sending each P to gP−1gT .
This results in a diffeomorphism of PSL(n,R) and the component of inver-
sion in Iso(P1(n,R)) which we denote by PSL(n,R)σ. Note that for odd n
we can identify SL(n,R) = PSL(n,R).

The isometry group Iso(P1(n,R)) has exactly two components for each
n > 2. To see this, recall that the outer automorphism group Out(PSL(n,R))
has order 2 and consider the natural morphism

Iso(P1(n,R))→ Out(PSL(n,R)).
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The kernel can be expressed as the product

PSL(n,R) · ZIso(P1(n,R))(PSL(n,R)).

However, if α is an element of the centralizer ZIso(P1(n,R))(PSL(n,R)), then
the displacement function dα is constant on the orbits of the action of
PSL(n,R) on P1(n,R). Since the action in question is transitive (see [1,
Lemma II.10.52]), dα is in fact constant. If that constant were positive,
then P1(n,R) would be isometric to a non-trivial product by [1, Theo-
rem II.6.8(4)]. However, P1(n,R) is irreducible (see [1, Proposition II.10.53]),
and hence dα is constantly zero, which means that α is the identity. Thus
the index [Iso(P1(n,R)) : PSL(n,R)] equals two.

We are in a position to start determining the geometric objects Min(g)
(the minimal space) and Fix∞(g) (the fixed point set at infinity) associated
to any isometry g of P1(n,R).

1.1. Organization and outline. The paper is organized as follows. We
begin with some preliminaries in Section 2. In Section 3 we explore the in-
terplay between an isometry and its powers in the context of CAT(0) spaces.
This enables us to reduce the classification of the non-identity component of
Iso(P1(3,R)) to the classification of the identity component. We specialize to
the symmetric space P1(n,R) in Section 4. We apply the results of Section 3
and perform some calculations to determine all the possibilities for mini-
mal spaces of isometries in PSL(3,R)σ. Our effort culminates in the main
result, Theorem 4.5, in which we fully classify the isometries in the com-
ponent PSL(3,R)σ of Iso(P1(3,R)) and their fixed points at infinity viewed
as subspaces of the boundary at infinity of P1(3,R) equipped with the Tits
metric. In (4a) in the proof of Theorem 4.5, we also express the fixed point
set of a certain isometry from the identity component of Iso(P1(3,R)), which
is missed in [5, §6.3]. In the final section we develop a method for decom-
posing any isometry from the identity component of Iso(P1(n,R)) into the
product of three commuting isometries: hyperbolic, elliptic, and non-ballistic
(i.e., of zero translation length) parabolic. This decomposition enables us to
calculate the translation length of any isometry.

We refer the reader to [1] for general theory of isometries of CAT(0)
spaces, and to [2] for structure theory of isometry groups.

2. Preliminaries. Here we recall the concept of boundary at infinity of
a CAT(0) space X with metric d, and then concentrate on the case where
X = P1(n,R). This section is a brief summary of [1, Chapter II, §8–10].
A geodesic ray in X is an isometric embedding r : [0,∞)→ X or, by abuse
of language, the image of such an embedding. Similarly, by geodesic line
we mean either an isometric embedding R → X or its image. We call two
rays r and s equivalent if the function t 7→ d(r(t), s(t)) is bounded. The
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convexity of CAT(0) metric d allows us to define the boundary at infinity
for any CAT(0) space X as the set of equivalence classes of geodesic rays.
We denote the set of equivalence classes of rays in X by ∂X. From now on,
let X be a proper CAT(0) space. Then for every point ξ ∈ ∂X and every
point x ∈ X there exists a geodesic ray r : [0,∞) → X with r(0) = x such
that r belongs to the equivalence class ξ. (See [1, Chapter II, §8].)

Given an isometry α of a CAT(0) space X, the action of α on X respects
the equivalence relation on geodesic rays, described above. Hence the natural
action of α on ∂X can be defined (see [1, Corollary II.8.9]).

Recall that the space S0(n,R) of symmetric n × n matrices with zero
trace, viewed as the tangent space to P1(n,R) at the identity I, is equipped

with the norm ‖X‖2 =
√

Tr(X2). Any geodesic line (ray, resp.) through I in
P1(n,R) is parametrized as t 7→ exp(tX) for t ∈ R (t ∈ [0,∞), resp.) for some
X ∈ S0(n,R) with ‖X‖2 = 1. This is a special case of [1, Corollary II.10.42].

Note that for X 6= X ′, rays t 7→ exp(tX) and t 7→ exp(tX ′) are not
equivalent. On the other hand, there is some X ∈ S0(n,R) for each ξ in
∂P1(n,R) such that t 7→ exp(tX) belongs to the equivalence class ξ. Hence
we can identify ∂P1(n,R) with the unit sphere in S0(n,R), denoted by S.
There we introduce a simplicial structure. A simplex of dimension m, for
m = 0, 1, . . . , n − 2, is determined by the following data: an ordered or-
thonormal basis (e1, . . . , en) (or, equivalently, a matrix O ∈ O(n) whose
columns are e1, . . . , en) and a subset {i1, . . . , im+1} of {1, . . . , n− 1} of car-
dinality m + 1. That simplex consists of all matrices X ∈ S such that
OXOT = diag(λ1, . . . , λn), i.e. the diagonal matrix with entries λ1, . . . , λn
on the diagonal, where

λ1 = · · · = λii ≥ λi1+1 = · · · = λi2 ≥ · · ·
≥ λim+1 = · · · = λim+1 ≥ λim+1+1 = · · · = λn.

We will use the notation ∂TP1(n,R) when referring to the boundary at
infinity equipped with this simplicial structure. Note that for two different
orthogonal matrices we may get the same m-simplex.

We metrize each 1-simplex in ∂TP1(n,R) so that it is isometric to the
interval [0, π/3]. Furthermore, higher dimensional simplices are metrized as
spherical simplices with all edge lengths equal to π/3. The whole simplicial
complex is then equipped with the natural length (shortest path) metric.
This is exactly the Tits metric on the boundary at infinity of P1(n,R) (see
[1, Chapter II, §9] for a definition of the Tits metric on the boundary at
infinity of a general CAT(0) space and [1, Chapter II, p. 337] for a discus-
sion in the case of P1(n,R)). For our purposes it suffices to view the Tits
boundary ∂TP1(n,R) just as a spherical simplicial complex.

Each simplex of dimension n − 2 is called a chamber . We fix a basis
O ∈ SO(n). The union of all simplices consisting of matrices X such that
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OXOT is diagonal is called an apartment . It is isometric (in the Tits metric)
to the unit sphere Sn−2 ⊆ Rn−1. Furthermore, such an apartment corre-
sponds to the boundary at infinity of an (n−1)-dimensional flat in P1(n,R)
consisting of all matrices that are diagonal in the basis O. Recall that an
m-dimensional flat in a CAT(0) space X is a subspace isometric to the
Euclidean space Rm.

3. Some properties of CAT(0)-space isometries. The following
theorem and its consequence, Corollary 3.3, are the key tools for classifying
isometries from the non-identity component of Iso(P1(n,R)). Indeed, some
power of any group element in a group of isometries with finitely many
connected components lies in the identity component. In case n = 3, we
have a complete characterization of the identity component of Iso(P1(3,R))
by [5, §6.3].

Recall that for an isometry α of a CAT(0) space X, the minimal space
of α, denoted Min(α), is the set of points that are translated of the minimal
distance |α| = inf{d(x, α(x)) | x ∈ X}. In the case of an elliptic isometry α,
its minimal space is also denoted by Fix(α). We denote by Fix∞(α) the set
of fixed points of the induced α-action on ∂X.

Theorem 3.1. Let (X, d) be a proper CAT(0) space. An isometry α of
X has the same type (elliptic, hyperbolic or parabolic) as its powers and the
translation lengths relate as |αn| = n|α|. Moreover, Fix∞(α) ⊆ Fix∞(αn)
and in the semi-simple case Min(α) ⊆ Min(αn).

Proof. Let n ∈ N. Recall that

• if α is elliptic, then so is αn, since Fix(α) ⊆ Fix(αn);
• if αn is elliptic, then α itself is elliptic, because for x ∈ Fix(αn) the

orbit of x under α is finite, hence its circumcenter is a fixed point for α
(see [1, Proposition II.2.7]);
• if α is hyperbolic, so is αn, since it acts as translation by n|α| on

Min(α);
• if αn is hyperbolic, then α is hyperbolic (see [1, Theorem II.6.8]).

Consequently, αn is parabolic if and only if α is parabolic, and the first
statement of the theorem follows. For the second part let us first observe
that the limit

lim
n→∞

1

n
d(x, αnx)

exists and is independent of x (see [1, Exercise II.6.6(1)]). The existence
follows from the fact that for a fixed x the function f(n) = d(x, αnx) is sub-
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additive. It is well known that for such functions the limit limn→∞ f(n)/n
exists. To show independence of x take another point y. The triangle in-
equality yields

d(x, αnx)− d(x, y)− d(αnx, αny) ≤ d(y, αny)

≤ d(x, αnx) + d(x, y) + d(αnx, αny).

Note that d(x, y) = d(αnx, αny). Hence dividing by n and taking the
limit we obtain:

lim
n→∞

1

n
d(x, αnx) = lim

n→∞

1

n
d(y, αny).

The evaluation of this limit is also a part of the cited exercise, but only
for the semi-simple case where the proof is easier because one can take
x ∈ Min(α). Here we give a proof for the general case. The triangle inequality
implies

(♦) d(x, αnx) ≤ d(x, αx) + d(αx, α2x) + · · ·+ d(αn−1x, αnx).

Choose an arbitrary ε > 0. Let x be such that d(x, αx) ≤ |α|+ ε. It follows

from (♦) that 1
nd(x, αnx) ≤ |α| + ε, hence limn→∞

1
nd(x, αnx) ≤ |α|. For

the reverse inequality, let x′ and x′′ = αx′ be the midpoints of the geodesic
segments [x, αx] and [αx, α2x]. It follows (by the convexity of the metric d
on X) that d(x, α2x) ≥ 2d(x′, x′′) = 2d(x′, αx′). Applying this inductively
we note that for each n there exists a point x̃n ∈ X such that

d(x, α2nx) ≥ 2nd(x̃n, αx̃n).

Consequently, 2−nd(x, α2nx) ≥ |α| for each n. The asserted inequality fol-
lows by taking the limit.

To conclude the proof, note that

|αn| = lim
m→∞

1

m
d(x, (αn)mx) = n lim

m→∞

1

nm
d(x, αnmx) = n|α|.

If ξ ∈ Fix∞(α), then obviously ξ is already contained in Fix∞(αn).
In the hyperbolic case, every axis of α is also an axis for αn, because αn

acts on it as translation by n|α|. In the elliptic case, if αx = x then also
αnx = x.

Example 3.2. The inclusions in the statement of the theorem can be
strict, as shown by the following examples.

For the semi-simple case let β be a rotation of order n ≥ 2 on the
Euclidean space R3, and let τ be a translation in the direction of the axis
of β. Then α = τβ is a semi-simple isometry (elliptic if τ is trivial and
a hyperbolic glide-rotation if τ is non-trivial). On the one hand, the only
fixed points at infinity of α are the ends of the axis of β. On the other hand,
αn = τn is a translation, hence it fixes the whole of ∂R3.
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For the parabolic case, let X = R×H2 and let α act as reflection across
the origin on R and as an arbitrary parabolic isometry τ on H2 (for instance
τ(x, y) = (x+ 1, y) in the upper halfplane model). Then Fix∞(α) is a point,
but Fix∞(α2) = S0 ∗ Fix∞(τ) ≈ [0, π].

Theorem 3.1 yields the following corollary:

Corollary 3.3. Let g̃ ∈ PSL(n,R)σ. Then g̃ 2 = gg−T ∈ PSL(n,R),
hence the isometry g̃ has the same type as the isometry gg−T ∈ PSL(n,R)
and |g̃| = 1

2 |gg
−T |.

Proof. A trivial computation shows that in Iso(P1(n,R)), we have
(g̃)2 = gg−T . Hence Theorem 3.1 applies.

This means that the isometry g̃ ∈ PSL(n,R)σ is semi-simple if and only
if the matrix gg−T is diagonalizable over C (see [1, Proposition II.10.61]),
and is elliptic if and only if gg−T is conjugate (in SL(n,R)) to an orthogonal
matrix.

By using the classification of isometries in the identity component of
Iso(P1(n,R)) in [1, Chapter II, §10], Corollary 3.3 can be used to determine
the type of any isometry g̃ ∈ PSL(n,R)σ.

The next lemma shows a nice relation between the fixed point set of an
elliptic isometry α of a complete CAT(0) space and the fixed point set of
the induced action of α at infinity (see also [7, Lemma 10]). We are going
to apply it in the proof of Theorem 4.5 below.

Lemma 3.4. Let α be a semi-simple isometry of a complete CAT(0) space
X and let F = Min(α). Then Fix∞(α) = ∂F .

Proof. Let us denote F∞ := Fix∞(α). Because of convexity of F the
inclusion ∂F ⊆ F∞ is obvious. For the reverse inclusion, take an element ξ
in F∞. For an arbitrary x ∈ F let c : ([0,∞), 0,∞)→ (X,x, ξ) be the unique
geodesic ray with initial point x in the class of geodesic rays representing ξ.
As ξ ∈ F∞, the geodesic ray α ◦ c is asymptotic to c, which means that
f(t) = d(α(c(t)), c(t)) is a bounded function of t. As the metric of a CAT(0)
space is convex, f itself is convex and therefore decreasing. On the other
hand, f(t) ≥ d(α(c(0)), c(0)) = |α|, hence t 7→ f(t) is constant. This means
that the image of c lies entirely in F , hence ξ ∈ ∂F .

4. The non-identity component of Iso(P1(3,R)). In this section, we
dive into PSL(n,R)σ to explore the machinery needed for our main result,
Theorem 4.5.

4.1. Jordan forms. Recall that the geometric properties of an isometry
of a given CAT(0) space X behave nicely under conjugation. In particular,
for given α, β ∈ Iso(X), the isometries α and βαβ−1 have the same type
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(elliptic, hyperbolic or parabolic) and their translation lengths are the same.
Furthermore, Min(βαβ−1) = βMin(α). The following result about conjuga-
tion in PSL(n,R)σ will be of use for us.

Lemma 4.1. Isometries g̃, h̃ ∈ PSL(n,R)σ are conjugate if there exists
A ∈ SL(n,R) such that g = AhAT .

Proof. Let g = AhAT . For P ∈ P1(n,R), we have

g̃.P = gP−1gT = (AhAT )P−1(AhTAT ) = A.(h̃.(A−1.P )).

To analyze the non-identity component of the isometry group
Iso(P1(3,R)), it is enough to classify all the isometries of the form gg−T ∈
SL(3,R) by Corollary 3.3. Following the classification of isometries in
SL(3,R) from [5, §6.3], we have to determine the real Jordan form of gg−T for

Table 1

Possible real Jordan Solutions gx Conjugacy relations

form A for matrix of g = AgT among solutions

in SL(3,R)

(1)

 1 0 0

0 −1 1

0 0 −1


 1/(4x2) 0 0

0 x 2x

0 −2x 0

 ,

x 6= 0

gx = Ax,ygyA
T
x,y

if sgn(x) = sgn(y)

(2)

 1 1 0

0 1 1

0 0 1


 x 0 1

1 −1 0

1 0 0

 ,

x ∈ R

gx = Bx,ygyB
T
x,y

for any x, y

(3)

 a b 0

−b a 0

0 0 1

 ,

a2 + b2 = 1, b 6= 0

 x xb
1+a

0
−xb
1+a

x 0

0 0 1+a
2x2

 ,

x 6= 0

gx = Cx,ygyC
T
x,y

if sgn(x) = sgn(y)

(3′)

 1 0 0

0 1 0

0 0 1

 g is any

symmetric

matrix

g and g′ are conjugate

iff either both are

positive or both have two

negative eigenvalues

(4)

 1 0 0

0 1/a 0

0 0 a

 ,

a /∈ {0, 1}

 −a/x
2 0 0

0 0 x/a

0 x 0

 ,

x 6= 0

gx = Ax,ygyA
T
x,y

if sgn(x) = sgn(y)

(5) all the rest no solutions
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each g ∈ SL(3,R). Observe that conjugation of gg−T by A ∈ SL(n,R) cor-
responds to conjugating the isometry g̃ by A. Since conjugation in SL(3,R)
does not change the isometry type and the translation length of gg−T , we
can restrict ourselves to solving the equation g = AgT for all possible real
Jordan matrices A that correspond to the isometries in SL(3,R). We can
solve that equation as a homogeneous system of linear equations and then
scale to land at g ∈ SL(3,R). By some lengthy but straightforward linear
algebra, we get four families of solutions which we list below. The conjugacy
relation between different solutions in each family is deduced by Lemma 4.1
and is given in the last column of Table 1. We employ the following notation:

Ax,y = diag
(
y/x,

√
x/y,

√
x/y

)
, Bx,y =

 1 1 (x− y)/2

0 1 1

0 0 1

 ,
Cx,y = diag

(√
x/y,

√
x/y, y/x

)
.

4.2. Minimal spaces. As Example 3.2 shows, there is no straightfor-
ward way to determine the minimal space of g̃, given Min(gg−T ) = Min(g̃ 2).
Hence we have to calculate Min(g̃) by hand. To this end, we first retrieve
some information about semi-simple isometries in Iso(P1(n,R))σ for gen-
eral n. We use that information to determine all possible shapes of minimal
spaces of semi-simple isometries in SL(3,R)σ.

Assume first that g̃ is hyperbolic. Without loss of generality we can take
I ∈ Min(g̃) (otherwise we can conjugate g̃ by (

√
R)−1 for R ∈ Min(g̃)).

Let X ∈ S0(n,R) with ‖X‖2 = 1 be such that g̃ acts as a translation
on exp(RX). We can as well assume that X (or equivalently, exp(X)) is
diagonal since otherwise we can conjugate g̃ by an orthogonal matrix O for
which the O-conjugate of X is diagonal. For an arbitrary t ∈ R and t0 := |g̃|
this means

g̃.exp(tX) = g exp(−tX)gT = exp((t+ t0)X).

Acting by exp(−t0X/2) ∈ PSL(n,R) on this equality gives

(♥) exp(−t0X/2)g exp(−tX)gT exp(−t0X/2) = exp(tX),

which implies exp(−t0X/2)g=O ∈O(n) (it fixes I), hence g= exp(t0X/2)O
is a polar decomposition for g. Inserting t − t0 in place of t in the equa-
tion (♥) gives g exp(t0X/2) = O′ ∈ O(n), and hence g = O′ exp(−t0X/2)
is another polar decomposition for g. A simple application of the above
equalities yields O = O′:

O exp(−t0X/2)OT = exp(t0X/2) = O′ exp(−t0X/2)OT ,

where the last equality comes from both polar decompositions.
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From this we can derive additional information in case n = 3.

Lemma 4.2. The minimal space Min(g̃) of a hyperbolic isometry g̃ ∈
SL(3,R)σ is isometric to R.

Proof. As explained above, we may assume that I ∈ Min(g̃) and X =
diag(λ1, λ2, λ3) ∈ S0(3,R) with λ1 ≥ λ2 ≥ λ3 6= 0 is such that g̃ acts as
a translation on exp(RX). Suppose also that P = exp(Y ) ∈ Min(g̃) where
Y ∈ S0(3,R) is linearly independent of X. As exp(Y ) ∈ Min(g̃), there is a
geodesic parallel to c : t 7→ exp(tX) through exp(Y ). We borrow the notation
of [1, Proposition II.10.67]: let F (b) denote the union of geodesics, parallel
to b. With this notation it means that exp(Y ) ∈ F (c), hence exp(Y ) com-
mutes with exp(X) (by the same proposition), and this implies [X,Y ] = 0,
i.e. X and Y are diagonalizable in some common basis.

As above, we show that g = exp(t0X/2)O is a polar decomposition for g,
where t0 = |g̃|. Regarding O, we have O exp(−tX)OT = exp(tX) or, equiva-
lently, OXOT = −X. Hence the spectrum of X must satisfy σ(X) = −σ(X).
Because X is non-zero, the only possibility is that σ(X) = {λ, 0,−λ} for pos-
itive λ and that O is just a “permutation” of the basis, swapping Lin{e1}
and Lin{e3}, and leaving Lin{e2} invariant. From [X,Y ] = 0 we get also
[OY OT , X] = 0, hence X and OY OT are diagonalizable in a common basis.
But X has three different eigenvalues, hence it is diagonalizable in only one
basis, which means that the three matrices X, Y and OY OT are diagonal-
izable in that basis. Hence, Y is a diagonal matrix. The convexity of Min(g̃)
implies that exp(tY ) ∈ Min(g̃) for all 0 ≤ t ≤ 1, and we can calculate

t0 = d(exp(tY ), g exp(−tY )gT )

= d
(
I, exp(−tY/2) exp(t0X/2)O exp(−tY )OT exp(t0X/2) exp(−tY/2)

)
= d
(
I, exp(−tY/2 + t0X/2− tOY OT + t0X/2− tY/2)

)
= d(I, exp(t0X − tY − tOY OT )) = ‖t0X − tY − tOY OT ‖2.

Because Y is supposed to be linearly independent of X and the length of
the vector t0X − tY − tOY OT is independent of t, we have OY OT = −Y .
If we write Y = diag(µ1, µ2, µ3), the last equality means 0 6= µ1 = −µ3 and
µ2 = 0. Hence Y is linearly dependent on X, a contradiction.

We proceed to the elliptic case where again we start with general n. If
g̃ is elliptic, then it fixes some P ∈ P1(n,R). This means that P = gP−1gT ,
which we rewrite as

I =
√
P−1 g

√
P−1(

√
P−1 g

√
P−1)T .

Therefore g̃ is conjugate to h̃, where h =
√
P−1 g

√
P−1 =

√
P−1g(

√
P−1)T

∈ SO(n). Conversely, if g ∈ SO(n), then g̃.I = I, and obviously g̃ is elliptic.
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Suppose now that for g ∈ SO(n), the isometry g̃ fixes some P = exp(X)
6= I. As in the proof of Lemma 4.2, the property gXgT = −X implies that
the spectrum of X is symmetric about 0 and that exp(RX) ⊆ Fix(g̃). If
X has n different eigenvalues, then g acts as an involution on the set of n
different eigenspaces of X. Hence, g̃ has order either 2 or 4 (since g2 may be
minus the identity on each eigenspace for non-zero eigenvalue). Hence for
n = 3 we have the following lemma:

Lemma 4.3. The fixed point set of an elliptic isometry from SL(3,R)σ
is either a single point or a hyperbolic plane.

Proof. Let g̃ be an elliptic isometry. Without loss of generality suppose
I ∈ Fix(g̃), hence g ∈ SO(3). If there is a non-zero X with exp(X) ∈ Fix(g̃),
we have gXgT = −X. In particular, the spectrum of X equals {λ, 0,−λ} for
some non-zero λ, and g swaps the eigenspaces corresponding to the non-zero
eigenvalues and preserves the eigenspace of the eigenvalue 0. After another
conjugation, we may assume that X = diag(λ, 0,−λ), and hence

g =

 0 0 ±1

0 1 0

∓1 0 0

 or g =

 0 0 1

0 −1 0

1 0 0

 .
A computation shows that in each case, there is another linearly independent
Y ∈ S0(3,R) such that gY gT = −Y . Then for any linear combination S =
tX+sY , we have exp(S) ∈ Fix(g̃). Furthermore, Y and X do not commute,
and hence Fix(g̃) is not a flat. But it still has constant curvature since it
is homogeneous: exp(−(tX + sY )/2) conjugates g̃ to itself by Lemma 4.1,
hence it preserves Fix(g̃), but it also moves exp(tX+sY ) to I. We conclude
that Fix(g̃) is a scaled hyperbolic plane.

4.3. Boundary at infinity. Recall from Section 2 that ∂TP1(n,R) is
a simplicial complex.

Lemma 4.4. The inversion σ acts as a simplicial map on ∂TP1(n,R).

Proof. Let ξ ∈ ∂TP1(n,R) be the class represented by a geodesic ray
[t 7→ exp(tX)]t>0 for X ∈ S0(n,R). Then σ.ξ is represented by the geodesic
ray [t 7→ exp(−tX)]t>0. This means that σ maps the simplex determined by
the ordered orthonormal basis (e1, . . . , en) and {i1, . . . , im+1}⊆ {1, . . . , n−1}
to the simplex determined by (en, . . . , e1) and {n− im+1, . . . , n− i1}.

If we take an apartment A ≈ Sn−2, which is the boundary of a flat
containing I, then σ acts as a reflection across the center of Sn−2.

We know (see e.g. [1, Proposition II.10.75]) that for an isometry α in
PSL(n,R), the set Fix∞(α) is a simplicial subcomplex of ∂TP1(n,R), but
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for α in PSL(n,R)σ that is generally not true: see Theorem 4.5 below for
SL(3,R)σ.

The tools developed above together with [5, Theorem 6.1] make the
classification of isometries in SL(3,R)σ quite easy. In the next theorem, we
use ci, i = 1, . . . , 6, for the chambers consisting of equivalence classes of rays
t 7→ exp(tX) for diagonal matrices X = diag(λ1, λ2, λ3) ∈ S0(3,R). More
accurately,

c1 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ1 ≥ λ2 ≥ λ3},
c2 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ2 ≥ λ1 ≥ λ3},
c3 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ2 ≥ λ3 ≥ λ1},
c4 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ3 ≥ λ2 ≥ λ1},
c5 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ3 ≥ λ1 ≥ λ2},
c6 := {equiv. cl. of t 7→ exp(t · diag(λ1, λ2, λ3)) | λ1 ≥ λ3 ≥ λ2}.

Furthermore, let vi denote the common vertex of ci and ci−1 (indices mod-
ulo 6) such that the simplex [vi, vi+1], i.e. the simplex spanned on vi and vi+1,
equals ci. Let Ci denote the barycenter of the simplex ci.

4.4. Classification

Theorem 4.5. Let g̃ ∈ SL(3,R)σ and let gg−T have a (real) Jordan
form as in the table above. Then

(1) g̃ is parabolic, Fix∞(g̃) = C2 and |g̃| = 0;
(2) g̃ is parabolic, Fix∞(g̃) = C1 and |g̃| = 0;
(3) g̃ is elliptic, Fix(g̃) is a single point and Fix∞(g̃) = ∅;
(3′) g̃ is elliptic, and

(a) if g is positive, then Fix(g̃) is a single point g and Fix∞(g̃) = ∅;
(b) if g is not positive, then Fix(g̃) is a hyperbolic plane and Fix∞(g̃)

is its boundary;

(4) g̃ is semi-simple, and

(a) if a = −1, then g̃ is elliptic, Fix(g̃) is a hyperbolic plane and
Fix∞(g̃) is its boundary;

(b) if a 6= −1, then g̃ is hyperbolic, |g̃| =
√

2 |log |a| |, Fix(g̃) is a
single axis and Fix∞(g̃) consists of its ends.

Proof. (1) By [5, Theorem 6.1], |gg−T | = 0 and Fix∞(gg−T ) = c1∪c2∪c3,
hence by Theorem 3.1 and Corollary 3.3, |g̃| = 0 and Fix∞(g̃) ⊆ c1∪ c2∪ c3.
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For arbitrary x ∈ R \ {0} we calculate

d
(
g̃x.exp(diag(−t, 2t,−t)), exp(diag(t, t,−2t))

)
= d
(

exp(diag(−t/2,−t/2, t)).gx.exp(diag(t,−2t, t)), I
)

= d


 1/(16x4) 0 0

0 x2(e−3t + 4) −2x2e−3t/2

0 −2x2e−3t/2 4x2

 , I


which is bounded when t → ∞. This means that g̃.v3 = v2 (geodesic
ray exp(diag(−t, 2t,−t))t>0 represents v3 and exp(diag(t, t,−2t))t>0 repre-
sents v2 in ∂TP1(3,R)). Similarly we get g̃.v2 = v3. Because Fix∞(g̃) is
connected and non-empty (see [5, §1]), the only fixed point of g̃ at infinity
is the barycenter C2 of [v2, v3] = c2.

(2) As in (1), from |gg−T | = 0 we get |g̃| = 0, from Fix∞(gg−T ) = c1 we
get Fix∞(g̃) ⊆ c1, and for arbitrary x ∈ R we calculate that g̃x.v1 = v2 and
g̃x.v2 = v1, hence the only fixed point of g̃ at infinity is the barycenter C1

of c1.

(3) The matrix gg−T is orthogonal and

Fix(gg−T ) = {exp(diag(t, t,−2t)) | t ∈ R}.
Since for any x 6= 0, Fix(g̃x) ⊆ {exp(diag(t, t,−2t)) | t ∈ R} by Theorem 3.1,
Lemma 4.3 shows that the fixed point set of g̃x is a single point that can
be calculated using the conjugacy relation from the table above and the
fact that gx is orthogonal exactly when x = ±

√
(1 + a)/2, in which case g̃x

fixes {I}. By Lemma 3.4, Fix∞(g̃) = ∅.
(3′a) Note that g̃ is conjugate to Ĩ because I =

√
g−1g(

√
g−1)T . Inver-

sion on P1(3,R) acts as a reflection around I on any line t→ exp(tX), hence

Fix(Ĩ) = {I} and Fix∞(Ĩ) = ∂{I} = ∅. Conjugating again to get g̃ back
yields Fix(g̃) = {g}.

(3′b) Since the matrix g is symmetric, not positive, and has determi-
nant 1, it has exactly two negative eigenvalues, and thus by Lemma 4.1 the

isometry g̃ is conjugate to g̃′, where g′ =

[
0 0 1

0 −1 0

1 0 0

]
. Observe that g̃′ fixes

two geodesic lines through I, namely

exp(diag(t, 0,−t))t∈R and exp

t
 0 1 0

1 0 1

0 1 0



t∈R

(because g′Xg′T = −X for both possibilities above), and by Lemma 4.3
Fix(g̃′), and hence Fix(g̃), is isometric to a hyperbolic plane. By Lemma 3.4,
Fix∞(g̃′) = ∂ Fix(g̃′).
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(4a) The isometry gg−T = diag(1,−1,−1) has a large (3-dimensional)
fixed point set, parametrized as

Ps,t,u :=

 e−2u 0 0

0 eues cosh t eu sinh t

0 eu sinh t eue−s cosh t

 , s, t, u ∈ R.

For arbitrary x 6= 0, the solution of the equation gxP
−1
s,t,ug

T
x = Ps,t,u is u =

log |x|. Hence the fixed point set for g̃x is a hyperbolic plane by Lemma 4.3,
and Fix∞(g̃) is its boundary.

(4b) The isometry gg−T , and hence g̃, is hyperbolic,

|g̃| = 1

2
|gg−T | = 1

2
2
√

(log |a|)2 +
(
log 1

|a|
)2

=
√

2 |log |a| |.

Since for x = ±
√
|a| we have g̃x.I = gxg

T
x = diag(1, 1/|a|, |a|) and

d(diag(1, 1/|a|, |a|), I) =
√

2|log |a| | = |g̃x|,

we know that I ∈ Min(g̃x). Hence g̃x acts as a translation on the geo-
desic line through I and g̃x.I = diag(1, 1/|a|, |a|), i.e. on the geodesic

exp(diag(0,−t, t)). The axis of g̃x for x 6= ±
√
|a| can be expressed using

the conjugacy relation among different solutions gx from the table above.
By Lemma 4.2, this single axis forms the whole minimal space. For the
fixed point set of g̃x at infinity we again use Lemma 3.4, which says that
Fix∞(g̃x) = ∂Min(g̃x), hence the ends of the axis of g̃x are the only fixed
points at infinity of g̃x.

Remark 4.6. The interested reader can verify that in each case where
the fixed point set of an elliptic isometry g̃ ∈ SL(3,R)σ is isometric to a
hyperbolic plane, the set Fix∞(g̃) consists of barycenters of certain cham-
bers.

5. On translation lengths of isometries from Iso(P1(n,R)). In
this section we introduce a decomposition of an isometry of P1(n,R) from
PSL(n,R) into three commuting isometries, one (if non-trivial) hyperbolic,
one elliptic, and the third one (if non-trivial) parabolic with zero translation
length. This result gives us a formula to calculate the translation length of
any isometry of P1(n,R) for any n ∈ N.

In every expression of the form
∑

λ∈σ(X) . . . below, eigenvalues λ from

the spectrum σ(X) are counted with multiplicities.

Theorem 5.1. Let g ∈ PSL(n,R) be an isometry of P1(n,R). Then g is
conjugate to a product HUJ , where all the factors commute, H is a positive
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diagonal matrix, U is an orthogonal matrix (and hence both are semi-simple
isometries), and J is an upper triangular matrix with 1s on the diagonal.
Furthermore, g is semi-simple exactly when J = I and the translation length
of g equals to the translation length of H and can be expressed as

|g| = 2

√ ∑
λ∈σ(g)

(log |λ|)2.

Proof. Every matrix g ∈ SL(n,R) can be conjugate by another matrix
in SL(n,R) to take on a modified real Jordan form, namely a matrix of block
diagonal form

diag(D,DO, J1, . . . , Jb, J
O
1 , . . . , J

O
a ),

where the blocks are as follows:

First, D is a pure diagonal matrix diag(λ1, . . . , λd). Next, DO has 2× 2
blocks on the diagonal, which are µiOi, i = 1, . . . , c, for some µi ∈ (0,∞)
and some Oi ∈ O(2). Each Ji is a non-trivial modified Jordan block of di-
mension mi for real eigenvalues νi, i = 1, . . . , b, which means that it has
νi on the diagonal and also on the first upper superdiagonal (instead of 1s
as in the classical Jordan form). Finally, JOi is a modified Jordan block of
dimension 2ki pertaining to complex eigenvalues, i.e. JOi is a block of the
form 

κiUi κiUi 0 . . . 0 0

0 κiUi κiUi . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . κiUi κiUi

0 0 0 . . . 0 κiUi


,

where Ui ∈ O(2) and κi is the absolute value of the corresponding complex
eigenvalue.

We will now express g as a product of commuting matrices H, U and J ,
and then use the formula

|g| = lim
r→∞

1

r
d(gr.I, I) = lim

r→∞

1

r

√
Tr(log(grgrT )2).

The factors H,U, J are as follows. First, the diagonal matrix

H = diag
(
|λ1|, . . . , |λd|, µ1, µ1, . . . , µc, µc,
|ν1|, . . . , |ν1|︸ ︷︷ ︸

m1 times

, . . . , |νb|, . . . , |νb|︸ ︷︷ ︸
mb times

, κ1, . . . , κ1︸ ︷︷ ︸
2k1 times

, . . . , κa, . . . , κa︸ ︷︷ ︸
2ka times

)
.
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Next, the orthogonal matrix

U = diag
(

sgn(λ1), . . . , sgn(λd), O1, . . . , Oc,

sgn(ν1), . . . , sgn(ν1)︸ ︷︷ ︸
m1 times

, . . . , sgn(νb), . . . , sgn(νb)︸ ︷︷ ︸
mb times

,

U1, . . . , U1︸ ︷︷ ︸
k1 times

, . . . , Ua, . . . , Ua︸ ︷︷ ︸
ka times

)
,

and finally a Jordan form matrix J with only 1s on the diagonal,

J = diag(1, . . . , 1︸ ︷︷ ︸
d+2c times

,Km1 , . . . ,Kmb
, Lk1 , . . . , Lka),

where Ki is an i × i Jordan block with 1s on the diagonal and on the
first upper superdiagonal, and Li is a Jordan block with I2s on the di-
agonal and on the first upper superdiagonal, hence a block of dimension
2i× 2i.

Note that g is diagonalizable over C (and hence a semi-simple isometry
by [1, Proposition II.10.61]) exactly when there are no non-trivial (i.e. non-
identity) blocks among Ki and no non-trivial blocks among Li. Therefore g
is a semi-simple isometry exactly when J = I.

Let us now compute the translation length of UJ . Because U and J
commute, it follows that (UJ)r(UJ)rT = JrU rU rTJrT = JrJrT , and we
get

|UJ | = lim
r→∞

1

r
d((UJ)r(UJ)rT , I) = lim

r→∞

1

r
d(JrJrT , I) = |J |.

Take the geodesic ray γ(t) := exp(tdiag(u1, . . . , un)), where u1 > · · · > un,
and calculate

|J | ≤ lim
t→∞

d(J.γ(t), γ(t)) = lim
t→∞

d(γ(−t/2).J.γ(t), I)

= lim
t→∞

d((γ(−t/2)Jγ(t/2)).I, I).

Because J is an upper triangular matrix with 1s on the diagonal and the
eigenvalues of the generator of the geodesic line γ are decreasing, the ma-
trix γ(−t/2)Jγ(t/2) tends to the identity as t tends to infinity (see
[1, Proposition 10.64]). Hence the above limit equals 0, and consequently
|J | = |UJ | = 0.

Recall from the definition of H that it is a diagonal matrix with positive
diagonal entries. Such a matrix acts as an elliptic isometry exactly when
H = I, otherwise it acts as a translation on the geodesic line through I
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and H. It moves I to H2 and one can easily compute

|H| = d(I,H.I) = d(I,H2) = ‖log(H2)‖2

=

√ ∑
λ∈σ(H)

(log λ2)2 = 2

√ ∑
λ∈σ(H)

(log λ)2.

Computing further, we get

2

√ ∑
λ∈σ(H)

(log λ)2 = |H|

= lim
r→∞

1

r
d(HrHrT , I) = lim

r→∞

1

r
d(HrHrT , I) + lim

r→∞

1

r
d((UJ)r(UJ)rT , I)

= lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , (UJ)r(UJ)rT )+ lim

r→∞

1

r
d((UJ)r(UJ)rT, I)

≥ lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , I) = lim

r→∞

1

r
d((HUJ)r(HUJ)rT , I) = |g|

≥ lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , (UJ)r(UJ)rT )− lim

r→∞

1

r
d((UJ)r(UJ)rT, I)

= lim
r→∞

1

r
d(HrHrT , I) = |H|.

Because the absolute values of eigenvalues of g and their multiplicities
are exactly the same as those of H, we infer that

|g| = 2

√ ∑
λ∈σ(g)

(log |λ|)2.

Theorem 5.1 together with Corollary 3.3 yields the following corollary:

Corollary 5.2. Given g̃ ∈ PSL(n,R)σ, its translation length is

|g̃| =
√ ∑
λ∈σ(gg−T )

(log |λ|)2.

Acknowledgments. The author was supported by the Slovenian Re-
search Agency.

REFERENCES

[1] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grund-
lehren Math. Wiss. 319, Springer, Berlin, 1999.

[2] P. E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: struc-
ture theory, J. Topol. 2 (2009), 661–700.

[3] P. B. Eberlein, Geometry of Non-Positively Curved Manifolds, Chicago Lectures in
Math., Univ. Chicago Press, Chicago, IL, 1996.

http://dx.doi.org/10.1112/jtopol/jtp026


102 G. ZADNIK

[4] K. Fujiwara, CAT(0) spaces for Riemannian geometers, Geometry Symposium, 2004;
http://www.math.tohoku.ac.jp/˜fujiwara/gs04.2.pdf.

[5] K. Fujiwara, K. Nagano and T. Shioya, Fixed point sets of parabolic isometries of
CAT(0) spaces, Comment. Math. Helv. 81 (2006), 305–335.

[6] N. Monod, Continuous Bounded Cohomology of Locally Compact Groups, Lecture
Notes in Math. 1758, Springer, Berlin, 2001.

[7] E. L. Swenson, A cut point theorem for CAT(0) groups, J. Differential Geom. 53
(1999), 327–358.
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