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GLOBAL WELL-POSEDNESS FOR THE 2-D BOUSSINESQ SYSTEM
WITH TEMPERATURE-DEPENDENT THERMAL DIFFUSIVITY

BY

QIONGLEI CHEN (Beijing) and LIYA JIANG (Hangzhou)

Abstract. We prove the global well-posedness of the 2-D Boussinesq system with
temperature dependent thermal diffusivity and zero viscosity coefficient.

1. Introduction. The following 2-D Boussinesq system is one of the
most popular models in fluid and geophysical fluid dynamics:

Ou—V - (vVu)+u-Vu+Vp=~0ez, e2=1(01),
00 —V - (kVO) +u-Vl =0,

V-u=0,

u(0,z) = ug(z), 0(0,2) = 06y(x).

(1.1)

Here u and 6 denote the velocity and temperature of the fluid, respectively.
The viscosity v and the thermal diffusivity x depend on the temperature.

Owing to the similarity with the incompressible Navier—Stokes equa-
tion, system has been studied extensively by many researchers. In the
case when v and k are positive constants, global well-posedness results were
proved by numerous authors in various function spaces (see [3|, [16] and the
references therein). For the case that one of v and k is zero and the other
is a positive constant, results on global well-posedness in various function
spaces can be found in [I], 5, 6] [7, 9] 10, [II]. There is also extensive litera-
ture on the global well-posedness of the anisotropic Boussinesq system (see
[4, 8, 13, [14]). Recently, using methods based on the De Giorgi technique,
Wang and Zhang [19] proved global well-posedness results for system
with v = v(0) and kK = k(#), where v(-) and k(-) are smooth functions
satisfing

(1.2) Cyl <w(0) <Co, Cy'<r(f)<Co 0OER,
for some positive constant Cj.
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In this paper, we consider the case v = 0 and k = k(0), i.e.,
Ou+u-Vu+ Vp =0fea, ez =(0,1),

0 —V - (kVO)+u-Vo =0,

V-u=0,

w(0,z) = ug(x), 0(0,2) = 0y(x).

Our main result reads as follows.

THEOREM 1.1. Let s > 2 and (ug,0y) € H*(R?). Assume that k()
satisfies (1.2). Then the Boussinesq system (L.3|) has a unique global in
time solution (u,0) such that

uwe C(RY; H*(R?)), 6eCRY;H(R?)NLE (RT; HTH(R?)).

(1.3)

2. Preliminaries. We first recall the nonhomogeneous Littlewood—Pa-
ley decomposition and some classical spaces. Choose a function ¢ € Cg° (R9)
supported in the unit ball and satisfying ¢(§) = 1 for [£| < 1/2. Let ¥ (&) =
©(€/2) — p(€), s0 ¥ € C°(R?) is supported in {1/2 < |¢| < 2} and satisfies
the identity

O+ w27 =1, VLeR"
j=>0
We denote by A; and S; the convolution operators with symbols respectively
P(279€) and ¢(277¢), and set A_1f = Sof, Arf = 0 for k < —2. We can
easily verify that
(2.1) A]Ak =0 if |] - k“ > 3, Aj(Sk_lfAkg) =0 if |j - k:| > 4.
The Sobolev space H*P(R?) (1 < p < o) is defined by

, 1/2
HP®RY) = {f e DRY : | fler ~||( D QQ”\Ajf\Q) | <o}
P P
If p = 2, it is just the classical Sobolev space H*(R?%) whose norm is de-
fined by ||A®f||2, where A° is the Fourier multiplier operator with symbol
(1+€]?)*/2. Moreover, we introduce the following space-time Sobolev spaces:

L=(0,T; H*) = {f € D'((0,T) x RY) :
11z o5y ~ |1 f 1l
L) = {f € D((0,T) xR :
o 1/2
Wl ~ (30 22914 B moriey) | <o)
j>—1

It is obvious that LS°(H®) C L>°(0,T; H®).
Next we recall some lemmas which will be used throughout this paper.

L=01) < oo},
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LEMMA 2.1 (see [12]). Let 1 < p < oo and s > 0. Assume that f,g €
H*P(R?). Then there exists a constant C independent of f, g such that

1A%, 91 f lp < CUNVGllpy 1F | rs=r.02 + gllzrsws || f1]pa)
with pa2,ps € (1,00) such that
1 1 1 1 1

7:7_'_7:7_’_7,
b b1 D2 b3 D4

where |, | is the commutator.

LEMMA 2.2 (see [18]). Let s > 0 and f € H*(R?). Assume that F(-) is
a smooth function on R with F(0) = 0. Then

IEH) s < OO+ [ flloe) 5 1l

where the constant C' depends on SUDPk<[s12, [t|<| ] |1E®) (£)]] 0o -
LEMMA 2.3 (see [19]). Let s > d/2 and f € H*(RY). Then
1flloo < CQA £l ar2) log* (e + || fllz15)-
LEMMA 2.4 (see [15]). Let s > 1+d/2 and f € H*(RY). Then
IV fllso < C(1 + [lcurl f[|oo) log(e + [ £l z2)-

LEMMA 2.5. Let s >0 and f,g € H*(RY) N WhH. Then

. 1/2
(3 29014571 Vol3) " < CUTTleollgllzs + IVl )

j>—1

Proof. The proof is standard; we give a sketch for the sake of complete-
ness. Recall Bony’s decomposition (see [2])

where

2
Trg= ) Si-sfAjg, R(f.9)= ) Aifdjg, Aji= ) Aj.

Jj=—-1 j>-1 v=-2
Then we decompose
[Aj, f1- Vg = 1[4, fi]0ig
= (4. T,10ig — Ta0,9fi — R(A;0ig, [i)
+ A;(To,g) fi + Aj(R(fi, 0i9))
=1—-II—-I1IT+1V+YV,
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where the Einstein convention on the summation over repeated indices ¢ =

1,2 is used. Thanks to the condition (2.1)), and denoting h = F 11, we have
I="[4;,S5-3fi]0:Apg
J'~g
= | 29h(27(x — 9))(Sj—sfiy) — Sy—sfi(2)0iAyg(y) dy
iR
= - Z | 2%(0:h) (27 (x — 1)) (Sj—sfi(y) — Sy—sfi(x))0: Ajrg(y) dy
J'~jR?
=" | 22 (2 (= ))0i(Sj—3fi) (1) i Ay g(y) dy.
J'~i R2
Applying Taylor’s formula and the usual convolution inequalities yields
]2 < ClIV Flloo D 1459ll2-
J'~3
Thus we get the desired estimate
o 1/2
(3 291113) " < Il
j>—1
For the term II, we can write

1= | > Sis40.945 ] < ClIVlloe Y 1451l

3253 3253

Then thanks to the convolution inequality for series we get, for s > 0,
. 1/2 e
(X 22I1B) < ClIVgllo|| 3 29705274 filla
i>—1 i1>j+2
< ClIVgllooll f1I -
For the term I11, it is easy to see that
111 = | 3 Ap(A0,9) A5 fi| < ClIVglloo - Agefi

J'~g 3~

ZQ

hence
2sj 2\ 1/2
(> 29111g) ™ < ClVgllscll e
Jj=—-1
By the same argument, we obtain

A 1/2
(D 2vI3) ™ < ClIVgllocl

iz-1
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The last term can be written as
V= Z Aj(Ajzé)igANj/fi).
J'>j—5
Hence
IVil2 < ClIVglle Y 14 fill2,
Jj'>j—=5

and again using the convolution inequality for series as for 11, we get, for
s> 0,

‘ 1/2
(X2 2IvI3) < ClIVgllocl £l

j>—1

Thus the lemma is completely proved.

3. The proof of the main theorem. We divide the proof into three
parts. In the following, the same generic constant C' will be used to denote
various constants that depend on Cy, T and ||ug|| g2, ||0o|| g2- Here Cy comes

from inequalities (1.2)).

Step 1. A priori estimates in H*(R?). First, we prove the following
a priori estimate:

PROPOSITION 3.1. Let s > 2 and (ug,0y) € H*(R?). There exists a
constant C such that if (u,0) is a solution of (1.3), then

t
(31 Nullfs + 1007 +Co ' VIVO)Is dr
0
t

< (luoll3r + 16ol%) exp {C [ G(r) dr |
0

with G(7) = 14 ||Vu(7)| L= + | VO(T)]|72

Proof. First, we will obtain an H' estimate. The straightforward energy
estimate for (1.3) and Gronwall’s inequality give

t t
16113 +§ Co IVOm I3 dr < [160l13,  Nlullz < lluollz + | [6(r)]12 dr,
0 0
SO
t
(3.2) lulo < C, [0l <C, (IVO(D)3dr <O, VE<T.

0
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Let p > 2. Multiplying the second equation of (I.3)) by |#|P~26 and integrat-
ing by parts leads to

1d )
gggW%+%p—1)§mmanww2dx:o

R2
Thus we have ||0||, < [|6o]|p, which implies
(3:3) 16]ls0 < [1€0]lso-

It is well-known that u can be recovered from the vorticity w via the Biot—
Savart law:

1
~ 2nfaf?
Thus ||Vull2 ~ ||w||2 and ||Aul|2 ~ |[Vw||2. The vorticity equation is given
by
(3.4) Oyw +u - Vw = —046.
Hence, the energy estimate and Gronwall’s inequality give
t

lwllz < [lwollz + § I V0(r)|2 dr,
0

u=PV.Kxw, K(zx) (—xa, x1).

which implies
(3.5) [Vullz < C.
For the high order energy estimate for 6, it follows from [17] that the quantity
O =K()= Sg k(z) dz satisfies the following simple equation:
K(©)(0,0 +u-VO)— AO =0,
{ 0(0,z) = K(bo(x)),
with & an increasing smooth such that k(@) = k(K(6)) = 6 and
1

w0
By the energy estimate (for more details, see [I7, Step 2 in Section 4, Proof
of Theorem 1.2]), we finally deduce that

1 d

s V@it dr + — | [VOP do < C(1+ |lul7:IVul7:) VO,
sy | R0 4§

from which, (3.2)), (3.5) and Gronwall’s inequality, it follows that

(3.7) IVOllLge(r2) + 1€t L2 (1) < ClIVOollL2 < Cllb0]| -

From (3.6) and Gagliardo—Nirenberg’s inequality, we get

IV26l| 2 < C|| 48] 12 < OO 2 + 5 VO| 1 + Cllu 2| Vul 2 VO 2

(3.6)

K'(0) = k(0), K(0)=(K'(0))" =
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Moreover, we have
V0|2 = [[K'(©)VO| |2 < C[[VO| 2,
IV26] 2 = [K'(©)V?6 + K" (0)VO @ VO| 12 < C(1 + VO] 12)| V6| 2.

Thus we infer that
t

(3.8) Vol <C, {lag3<c, wt<T.
0
Next we will get an H® estimate. Applying A® to the velocity equation
and computing the L?(R?) inner product with A%u, we get
1d

5 dt||/1$u||% = — S APu[A% u] - Vudr + S Auld®(Oeq) dx,

R2 R2
where we have used the fact divu = 0. It follows from Holder’s inequality
and Lemma 2.1 that
d
(3.9) %IIUH%{S < 20| [l s + Cllull s [ V]| o

< (1011Fs + l[ulls) (1 + ClIVulo).

Similarly, applying A° to the temperature equation and taking the L?(R?)
inner product with A°6, we obtain

1d spnl2 s 2
(310) 5 - ]4°6]3 +R§2,~@(9)|A Vo|? dx
= — | A%0[4%, 0] - VOdz — | A°V0 - [A°, k(0) — K(0)] VO da.
R2 R2
Obviously,
(3.11) ‘ { /{(9)|A5V0|2dx‘ > O Y|V0| 1+,
R2

and by Lemmas 2.1 and 2.2,

(3.12) ‘ | 4°v6 - 2%, x(6) —ﬁ(O)]V@dm‘
R2
< IVl { (1 + 118]l0) N0 125 [ VOl oo + [Vl 161 225 }

C—l
< 0]z [IVO] 2 | VO]| o < %HV‘%@S +C1I011H: 1V 2,

where in the second inequality the estimates (3.3)) and ||6o|lecc < C||00|| 12
are used. For the last term of the right hand side of (3.10)), we have

| § 401 ] - VO da| < A0 147 ] - VL5

R2
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Using the Gagliardo—Nirenberg inequality in 2-D, we obtain
s sanl/2 4s 1/2 1/2 1/2

|4°0lla < ClLA%6], | AVl = el 991157

Lemma 2.1 and the Gagliardo—Nirenberg inequality give
1A% ] - VO|lays < C(IVull2l VO] grs—1.a + ull = VO] )
1/2 1/2 1/2 1/2
< C(IVulla 8l 1VO1 572 + lull = 1V6]1y | 2015"%).

Collecting the above three estimates, we finally get

(3.13) ‘ | 4°014%, 0] - vedx(

RQ

C 1
7||V6)HHS + (1013 + llullzr) (Va3 + VO3 + [ A6]]3).

Combining (3.10|) with - - 3.13)) yields

d _
%IWII%S +Cy VO
< C(1011s + lullF) IVOIZ + I Vull3 + (V63 + [ 26]3).
This estimate together with (3.9) leads to

d _
(3.14) = (lullf + 1017:) + Co VOl 7
< CU0I1Zs + llullz) (IVullso + IVOI3, + [Vl + VO3 + [[A0]3).

By Gronwall’s inequality, we deduce

t
En 2 |[ullfs + 1017 + Co Y IVO(D) 1 3e dr
0

< (luollZs + [160ll%+)
t

x exp(C ] (1+ 1Vl + [ V0112 + [ Vull3 + V613 + | A613) dr ).
0

This inequality combined with (3.5 and (3.8)) implies (3.1)). m

Step 2. Local well-posedness. Here, we construct local in time solu-
tions.

THEOREM 3.2. Let s > 2 and (ug,8) € H*(R?). Then there exist T > 0
and a unique solution (u,8) on [0,T) of the Boussinesq system (1.3|) such
that

u e C([0,T]; H*(R?)), 6 e C([0,T]; H*(R?) N L*(0, T; H*1(R?)).
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Furthermore,

(315)  Jull2,

R S

0,t;H* L2(0,t;H%)

t

< (luollfr- + 160 )3) exp({ 2(r) ar ),
0

with Z (1) = F(||0]| L) (1 + [|Vu(®) |2 + [VO(t)||2), where F(-) is a non-
decreasing function on RT.
Proof. We modify the proof in [19, Theorem 3.1] using Friedrichs’

method to construct approximate solutions. Define the projector operator
P, by
F(Pa)€) = x5, F (1),  FIE)= | flx)e** dx,
R2
where x g, is the characteristic function on the ball B,, centered at the origin
with radius n. The approximate system of (|1.3]) is
Opun, + Py P(Ppuy, - VPpuy) = P(Pp0ne),
(3.16) 00y, — P,V - (k(Pp0,)V P,0,) + P, P(Ppuy, - VP,0,) =0,
un(0,2) = Pyug(z), 6,(0,2) = P,0o(x).
Here P denotes the Helmholtz projection operator onto the divergence-free
fields, which is given by
P = (dij + RiRj)i<ij<z
with Riesz transform R; defined by
i&
F(Rif)(&) = E]‘"f(f)-

It is clear that P,P = PP,. It is known that system (3.16|) has a unique
solution (uy, 6y,) € C([0,T,]; L?(R?)) for some T, > 0. Thanks to P2 = P,,
(Pyun, Py0y,) is also a solution of (3.16)), so (Pyuy, Py0n) = (un,0,). Thus
approximate system (3.16]) can be rewritten as

O, + P P(uy - Vuy,) = P(Ope2),
(3.17) 00, — P,V - (k(0,)V0,) + P, P(uy - V,) =0,

un(0,2) = Poug(x), 6,(0,2) = P,00(x).

Next we will show energy estimates. Applying the operator A; to (3.17))

yields

Ot Ajun + PyPAj(uy - Vuy,) = PAj(Opea),
(3.18) 0: A0, — Py AN - (6, VO,) + Py PA(uy, - V) =0,

Ajun(0,2) = PyAjug(x), A;0,(0,2) = P,A;600(z).
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Multiplying both sides of the first equation in (3.18) by Aju,, and integrating
over R?, we obtain

(3.19) HA unlls = —([Aj,un] - Vun), Ajup) + (PAj(0nea), Ajun)
< |[Aj, un] - Vugll2l| Ajunll2 + Cl| 405 |2]] Ajunl|2
<[4, un] - Vugll3 + CllA;0,]15 + C|| Ajunlf3-

Here we have used the fact that divw, = 0. Similarly, from the second
equation of (3.18] - ) and divu, = 0 we get

2dt

5 dtIIA O3 = —(A5(ka V), A;V0L) — (Aj(un - V), Ajbn)
—(knA; VO, AjNVO,) — ([A}, kn|V O, A;jVO,)
—([Aj,up] - VO, A;0,).
This equality implies that

1d C 1
3 dtHA Onll5 + —2— | A; V0,3

< C|[4;, kn — n( )IVOu13 + Cll 456015 + CIl[A7, un] - V3.
Summing up (3.19)) and (3.20)) yields
d _
@(Hﬂjun!@ +114;6,13) + C H114; V6,13
< C(IA7unll3 + 1450113 + 1[4, fn — £ (0)] V0|13
+ (1[4, un] - Va3 + [[4;, un] - VO|[3).

(3.20)

Applying Gronwall’s lemma, it follows that
t

‘|AjunH%§°(L2) + HAjGnH%?ouy) + S ”Ajv‘gn(T)H% dr
0

t
< {17003 + 14560]3 + € § e~ (1A i — n (0] V0 ()]
0

1145, un] - Var (7)[13 + [[A7, un] - VO (7)]I3) dT}'
According to Lemma 2.5, we have, for s > 2,
2 2 2
o2 510y 1000 e + 1900125

)
t

< ¢ (lluoliFrs + [160]17) + O [T {1+ 18 (r) | 0) 2
0

X (IVun(T) 12 + 1V0 ()3 (lunllFrs + 10017 } dr,
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whence, owing to Gronwall’s inequality, we get

I 1100117 g7y + V001172,

£ (H®) H*)

t
< (luolihs + 180l13-) exp(C | Za(r) dr ).
0
with Zy,(t) = F([|0n(8)l|22) (1 + [[Vun(®)[ e + VO (1) [[F0)-
These a priori estimates are sufficient to show the convergence of the
sequence (uy,6,) towards a unique solution of problem (1.3). We refer the
reader to [19] for more details. m

Step 3. Global well-posedness. Let us prove the following blow-up
criterion first.

THEOREM 3.3. Let (ug,0y) € H*(R?), s > 2. Suppose that u € C([0,T);
HS(RQ)) 0 € C([0,T); H*(R?)) N L?(0,T; H**1(R?)) is the smooth solution
to . If the vorticity w corresponding to the solution u satisfies

T
[ llw(m) oo dr < o0,
0

then the solution (u,0) can be extended beyond t = T.
Proof. Using Lemma 2.3 with f = V6, we deduce
IVO]1% < C(L+ [10]l51)* log(e + [16]+)-
Applying Lemma 2.4 | we obtain
IVulloo < C(1+ [|lwlloo) log(e + ullFs).
So, by Theorem 3.1, we have

el Zre + 161177 < (IluollZrs + [16o]17-)

¢
x exp(CT +C [ (1+ 03 + [w(7)lloe) Tog(e + [u(r) [ + 107 [3.) dr ).
0
Setting E(t) £ log(e + ||u(t)||%. + [|0(t)]|%), the above inequality implies
E(t) < E(0) +CT + C§ L+ 101 + lw(r) o) B(T) dr
0
for all 0 < t < T. Applying Gronwall’s inequality and , we obtain
¢

E(t) < (E(0) + CT)exp(cg (1+ [lw(r)]l0) dT).
0

This completes the proof. m
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Now let us turn to global well-posedness; we just need to show that
T
(3.21) | llwlloo < o0.
0
In fact, recall the vorticity equation
Ow +u - Vw = —040.
Let p > 2. Multiplying the vorticity equation by |w|P~2w and integrating by
parts leads to
1d -2 -1
——[wllp = | AlwPwde < w5V
p dt
R2
where, in the last inequality, we have used Holder’s inequality. Thus we have

d
g 1wllp < VOl

By integrating in time over [0, 7], we deduce

T
lollp < llwollp + § [V6(T) ], dr.
0
This implies that
T
lwlloo < lwollos + § IVO(T)os dr-
0
It follows from [19, Proposition 5.1] that
T
V0|0 < oo
0

Therefore estimate (3.21)) holds true.
This completes the proof of Theorem 1.1.
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