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Abstract. Let G be a finite cyclic group. Every sequence S over G can be writ-
ten in the form S = (n1g) · . . . · (nlg) where g ∈ G and n1, . . . , nl ∈ [1, ord(g)], and
the index ind(S) is defined to be the minimum of (n1 + · · · + nl)/ord(g) over all pos-
sible g ∈ G such that 〈g〉 = G. A conjecture says that every minimal zero-sum sequence
of length 4 over a finite cyclic group G with gcd(|G|, 6) = 1 has index 1. This conjec-
ture was confirmed recently for the case when |G| is a product of at most two prime
powers. However, the general case is still open. In this paper, we make some progress
towards solving the general case. We show that if G = 〈g〉 is a finite cyclic group of or-
der |G| = n such that gcd(n, 6) = 1 and S = (x1g) · (x2g) · (x3g) · (x4g) is a minimal
zero-sum sequence over G such that x1, . . . , x4 ∈ [1, n− 1] with gcd(n, x1, x2, x3, x4) = 1,
and gcd(n, xi) > 1 for some i ∈ [1, 4], then ind(S) = 1. By using a new method, we give
a much shorter proof to the index conjecture for the case when |G| is a product of two
prime powers.

1. Introduction. Throughout the paper, G is an additively written
finite cyclic group of order |G| = n. By a sequence over G we mean a finite
sequence of terms from G which is unordered and repetition of terms is
allowed. We view sequences over G as elements of the free abelian monoid
F(G) and use multiplicative notation. Thus a sequence S of length |S| = k
is written in the form S = (n1g) · . . . ·(nkg), where n1, . . . , nk ∈ N and g ∈ G.

We call S a zero-sum sequence if
∑k

j=1 njg = 0. If S is a zero-sum sequence,
but no proper nontrivial subsequence of S has sum zero, then S is called a
minimal zero-sum sequence. Recall that the index of a sequence S over G is
defined as follows.

Definition 1.1. For a sequence over G

S = (n1g) · . . . · (nkg), where 1 ≤ n1, . . . , nk ≤ n,

the index of S is defined by ind(S) = min{‖S‖g | g ∈ G with 〈g〉 = G},
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where

‖S‖g =
n1 + · · ·+ nk

ord(g)
.(1.1)

Clearly, S has sum zero if and only if ind(S) is an integer. We note that
there are also slightly different definitions of the index in the literature, but
they are all equivalent (see [Ger2, Lemma 5.1.2]). The index of a sequence is
a crucial invariant in the investigation of (minimal) zero-sum sequences and
has received a great deal of attention (see, for example [CS], [Gao], [GaoG],
[GLPPW], [Ger1], [GerH], [Gry], [PengL] and [YZ]).

Conjecture 1.2. Let G be a finite cyclic group such that gcd(|G|, 6)
= 1. Then every minimal zero-sum sequence S over G of length |S| = 4 has
ind(S) = 1.

If S is a minimal zero-sum sequence of length |S| such that |S| ≤ 3
or |S| ≥ bn/2c + 2, then ind(S) = 1 (see [SavC], [Y]). In contrast, it was
shown that for each k with 5 ≤ k ≤ bn/2c+ 1, there is a minimal zero-sum
subsequence T of length |T | = k with ind(T ) ≥ 2 (see [Pon], [XY]) and that
the same is true for k = 4 and gcd(n, 6) 6= 1 ([Pon]). The only unsolved case
leads to the above conjecture.

In [LPYZ], it was proved that Conjecture 1.2 holds true if n is a prime
power. Recently, in [LP], it was proved that Conjecture 1.2 holds for n =

pα1 · p
β
2 (a product of two prime powers) with the restriction that at least

one ni is co-prime to |G|. In a most recent paper [XS], the conjecture was

confirmed for the remaining situation in the case when n = pα1 · p
β
2 . Thus

these two papers together completely settle the case when n is a product of
two prime powers.

Let S = (n1g) · . . . · (nkg) be a minimal zero-sum sequence over G. Then
S is called reduced if (pn1g) · . . . · (pnkg) is no longer a minimal zero-sum
sequence for every prime factor p of n. In [X] and [ShenX], Conjecture 1.2 was
proved if the sequence S is reduced. However, the general case is still open.

In the present paper, we make some progress towards solving the general
case and obtain the following main result.

Theorem 1.3. Let G = 〈g〉 be a finite cyclic group of order |G| = n such
that gcd(n, 6) = 1. Let S = (x1g) · (x2g) · (x3g) · (x4g) be a minimal zero-sum
sequence over G, where g ∈ G with ord(g) = n and x1, . . . , x4 ∈ [1, n − 1]
with gcd(n, x1, x2, x3, x4) = 1, and gcd(n, xi) > 1 for some i ∈ [1, 4]. Then
ind(S) = 1.

2. Preliminaries. Recall that G always denotes a finite cyclic group
of order |G| = n. Given real numbers a, b ∈ R, we use [a, b] = {x ∈ Z |
a ≤ x ≤ b} to denote the set of integers between a and b. For x ∈ Z,
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we denote by |x|n ∈ [1, n] the integer congruent to x modulo n. Let S =
(x1g) · (x2g) · (x3g) · (x4g) be a minimal zero-sum sequence over G such that
ord(g) = n = |G| and 1 ≤ x1, x2, x3, x4 ≤ n − 1. For convenience, we set
f(xi) := gcd(n, xi) for i ∈ [1, 4]. In what follows we always assume that
gcd(n, x1, x2, x3, x4) = 1, so gcd(f(xi), f(xj), f(xk)) = 1 for any different
i, j, k. The following lemma is crucial and will be used frequently.

According to the assumption of Theorem 1.3, the order n of G is not a
prime number (since 1 < gcd(n, xi) ≤ n−1 < n for some i ∈ [1, 4]). In what
follows, we may always assume that n is an arbitrary positive integer such
that gcd(n, 6) = 1 and n is not a prime number unless stated otherwise.

Lemma 2.1 ([LP, Remark 2.1]).

(1) If there exists a positive integer m such that gcd(n,m) = 1 and
|mxi| < n/2 for at most one i (or, similarly, |mxi| > n/2 for at
most one i), then ind(S) = 1.

(2) If there exists a positive integer m such that gcd(n,m) = 1 and
|mx1|n + |mx2|n + |mx3|n + |mx4|n = 3n, then ind(S) = 1.

Denote by U(n) the unit group of n, i.e. U(n) = {k ∈ N | 1 ≤ k ≤
n− 1, gcd(k, n) = 1}. Thus |U(n)| = ϕ(n) where ϕ is the Euler ϕ-function.
We note that for any y ∈ U(n), ind(S) = ind(yS) where yS = (|yx1|ng) ·
(|yx2|ng) · (|yx3|ng) · (|yx4|ng).

Lemma 2.2. Let p be a prime factor of n, and α = n/p. Then for any
1 ≤ v < n there exist 1 + kα, 1 + jα ∈ U(n) such that |v + kα|n < n/2 and
|v + jα|n > n/2. Moreover, if gcd(v, p) = 1, then there exists y = 1 + tα
∈ U(n) such that |yv|n < n/2.

Proof. If y = 1+tα 6∈ U(n), then there exists a prime factor q | gcd(n, y).
If q 6= p, we have q |α, and thus q | gcd(y, α) = 1, a contradiction. We infer
that p | y and gcd(p, α) = 1. It is easy to check that there is at most one
t < p such that y = 1 + tα 6∈ U(n). So we may assume that for some t0, all
p− 1 terms |1 + t0α|n, |1 + (t0 + 1)α|n, . . . , |1 + (t0 + p− 2)α|n are in U(n).
If all the corresponding terms |v + tα|n with t0 ≤ t ≤ t0 + p − 2 are on
the same side of n/2, then without loss of generality, we may assume that
all these terms satisfy |v + tα|n < n/2, where t0 ≤ t ≤ t0 + p − 2. Since
(v + (t+ 1)α)− (v + tα) = α < n/4 (t0 ≤ t ≤ p− 2), we conclude that any
two consecutive terms (v+ (t+ 1)α) and (v+ tα) fall into the same interval[
n
⌊
v+tα
n

⌋
, n
⌊
v+tα
n

⌋
+ n

2

]
. Thus all the above terms fall into the same interval,

so

b = v + t0α < v + (t0 + 1)α < · · · < v + (t0 + p− 2)α < b+ n/2.

Hence we infer that (p − 2)α < n/2, which implies that p < 4, giving a
contradiction as gcd(n, 6) = 1 and p |n. Thus the first statement holds.
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Next assume that gcd(v, p) = 1. We note that if 0 ≤ t1 6= t2 ≤ p − 1,
then |v(1 + t1α)|n 6= |v(1 + t2α)|n. Thus, as sets,

{|v|n, |v(1+α)|n, . . . , |v(1+(p−1)α)|n} = {|v|n, |v+α|n, . . . , |v+(p−1)α|n}.
As above, we can prove that there exists y = 1 + tα ∈ U(n) such that
|yv|n < n/2.

Remark 2.3. We note that if p2 |n, then y = 1 + tα ∈ U(n) for any
t ∈ [0, p− 1]. If p |n and p2 -n, then gcd(p, α) = 1, and so there is a unique
t ∈ [0, p− 1] such that y = 1 + tα 6∈ U(n). In particular, if v ∈ [1, n− 1] and
p | v, then |yv|n = v for any y = 1 + tα.

Corollary 2.4. If ps |β < n, ps+1 -β and ps+1 |n, then there exists
y = 1 + tn/ps+1 ∈ U(n) (with 0 ≤ t < p) such that |yβ|n < n/2.

Proof. Let β1 = β/ps, n1 = n/ps and α = n1/p = n/ps+1. Then
we have 1 ≤ β1 < n1 and gcd(β1, p) = 1. By Lemma 2.2, there exists
y = 1 + tα ∈ U(n1) ⊆ U(n) such that |yβ1|n1 < n1/2. Thus |yβ|n =
|yβ1ps|n = ps|yβ1|n1 < psn1/2 = n/2 as desired.

Lemma 2.5. If f(x1) = f(x2) = d > 1, then ind(S) = 1.

Proof. We first show that there exists u ∈ U(n) such that |ux1|n < n/2
and |ux2|n < n/2. By multiplying S by a unit, we may assume that x1 = d
and x2 = n − kd, where k ∈ U(n). If kd > n/2, then we are done. So
we may assume that kd < n/2. Since S is a minimal zero-sum sequence,
we conclude that k 6= 1, so x1 = d < n/2k ≤ n/4. If kd > n/4, then
2x1 = 2d ≤ kd < n/2 and n/2 < 2kd < n. Let u = 2. Then we get
|ux1|n < n/2 and |ux2|n < n/2 as desired. If kd < n/4, then there exists s
such that 2sx1 < n/4 ≤ 2skd < n/2. Let u = 2s+1. Then |ux1|n < n/2 and
|ux2|n < n/2 as desired.

Next we may assume that x1 < n/2 and x2 < n/2. Let p be a prime fac-
tor of d, and α = n/p. Then gcd(p, x3) = 1. By Lemma 2.2, there exists y =
1+jα ∈ U(n) such that |yx3|n < n/2. Since y fixes x1 and x2 (i.e. |yx1|n = x1
and |yx2|n = x2), by Lemma 2.1(1) we have ind(S) = ind(yS) = 1.

Next we assume that n has at least three prime factors. Then for every
prime p |n, we have p ≥ 11 or α = n/p ≥ 55. This estimate for α will be
used in Lemmas 2.6–2.7, and then in Lemmas 2.9–2.10.

Lemma 2.6. If f(x1) = 7, gcd(f(x1), f(xi)) = 1 with i ∈ [2, 4] and 72 -n,
then ind(S) = 1.

Proof. Let α = n/7. As noted in Remark 2.3 there exist exactly six t in
[0, 6] such that y = 1+ tα ∈ U(n). By multiplying S with a suitable unit, we
may assume that x1 = (n− 7)/2. Note that |yx1|n = x1 < n/2 for any y =
1 + tα ∈ U(n). We may also assume that exactly one of |yx2|n, |yx3|n, |yx4|n
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is less than n/2, for otherwise it follows from Lemma 2.1 that ind(S) = 1,
and we are done.

We claim that there exist at most two elements y = 1 + tα ∈ U(n) such
that both |yx3|n > n/2 and |yx4|n > n/2. Indeed, otherwise either at least
five |yx3|n or at least five |y′x4|n are greater than n/2. As in the proof of
Lemma 2.2, this implies that (5−1)α < n/2, so 4n/7 < n/2, a contradiction.

If there exists at most one y = 1 + tα ∈ U(n) with |yx3|n > n/2 and
|yx4|n > n/2, then there exist at least five y = 1+tα ∈ U(n) such that |yx3|n
and |yx4|n lie on opposite sides of n/2. Since by assumption exactly one of
|yx2|n, |yx3|n, |yx4|n is less than n/2, we conclude that |yx2|n > n/2 for all
these five y. As above, we have (5−1)α < n/2, giving a contradiction again.

Next we may assume there exist exactly two elements y = 1 + tα ∈ U(n)
such that |yx3|n > n/2 and |yx4|n > n/2, hence exactly four |yx3|n > n/2
and exactly four |y′x4|n > n/2. A similar discussion on x2 and x3 shows
that exactly four |y′′x2|n are > n/2.

Since |yx1|n = x1 for any y = 1 + tα ∈ U(n) (t ∈ [0, 6]), we have

M =
∑

y=1+tα∈U(n)
t∈[0,6]

4∑
i=1

|yxi|n =
4∑
i=1

∑
y=1+tα∈U(n)

t∈[0,6]

|yxi|n

≥ 6× n− 7

2
+
(
x′2 + (x′2 + α) + (x′2 + 3α) + (x′2 + 4α) + (x′2 + 5α) + (x′2 + 6α)

)
+
(
x′3 + (x′3 + α) + (x′3 + 3α) + (x′3 + 4α) + (x′3 + 5α) + (x′3 + 6α)

)
+
(
x′4 + (x′4 + α) + (x′4 + 3α) + (x′4 + 4α) + (x′4 + 5α) + (x′4 + 6α)

)
= 3n− 21 + 6x′2 + 6x′3 + 6x′4 + 57α,

where |yxi|n = x′i + tiα and x′i < α.
Since there are exactly four y such that |yxi|n > n/2 for i ∈ [2, 4], we

conclude that x′i+ 3α > n/2, which implies that x′i > α/2 for i ∈ [2, 4]. Now
we infer that

M > 3n− 21 + 66α = 12n+ 3(α− 7) > 12n,

and thus there exists at least one y = 1 + tα such that |yx1|n + |yx2|n +
|yx3|n + |yx4|n = 3n. By Lemma 2.1, we get ind(S) = 1 as desired.

Lemma 2.7. If f(x1) = 5, gcd(f(x1), f(xi)) = 1 with i ∈ [2, 4] and 52 -n,
then ind(S) = 1.

Proof. The proof is similar to that of the above lemma.

Lemma 2.8. If gcd(f(x1), f(x2)) = d > 1, then ind(S) = 1.

Proof. If f(x1) = f(x2) = d, the result follows from Lemma 2.5. So we
may assume that x1 = f(x1) > d. Note that x1 = f(x1) < n/2.
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Since x1 > d, there must exist a prime p and a nonnegative integer
s such that ps |x2, ps+1 -x2 and ps+1 |x1 (in fact, we may choose p to be
any prime factor of x1/d). Let α = n/ps+1. By Corollary 2.4, there exists
y = 1+kα ∈ U(n) such that |yx2|n < n/2. We note that |yx1|n = x1 < n/2.

By multiplying S by such a y, we may assume x1 < n/2 and x2 < n/2.
Choose a prime p such that p | d and let α′ = n/p. Since gcd(d, x3) = 1,
we have gcd(p, x3) = 1, so it follows from Lemma 2.2 that there exists
y1 = 1+k1α

′ ∈ U(n) such that |y1x3|n < n/2. Since y1 fixes both x1 and x2,
it follows from Lemma 2.1 that ind(S) = 1.

Lemma 2.9. If f(x1) > 1, f(x2) > 1 and gcd(f(x1), f(x2)) = 1, then
ind(S) = 1.

Proof. First we assume that x1 = f(x1) < n/2. Let p and q be the
largest primes such that p | f(x1) and q | f(x2), and set α = n/p. Without
loss of generality, we may assume that p > q. In view of Lemma 2.8, we may
also assume that gcd(f(x1), f(xi)) = 1 for all i ∈ [2, 4].

Next, since gcd(x1, q) = 1, we may assume that x3 = w1x1 + v1q and
x4 = w2x1 + v2q where gcd(x1, vi) = 1 for all i ∈ [1, 2]. As in Lemma 2.2,
there exists at most one t ∈ [0, p − 1] such that y = 1 + tα 6∈ U(n). If
(1 + tα)x3 = (1 + sα)x3 (mod n), then n | (t − s)αv1q, and thus p | (t − s)
(as gcd(p, v1q) = 1), so t = s. A similar result holds for x4.

If there is no y such that |yx3|n < n/2 and |yx4|n < n/2, and there exist
at least three y such that both |yx3|n > n/2 and |yx4|n > n/2, then there
exist at least (p− 1)/2 + 2 many y such that |yx3|n > n/2 or |yx4|n > n/2.
This implies that p/2 > (p− 1)/2 + 2 − 1 = (p+ 1)/2, a contradiction.
Thus, either we can find y = 1 + tα ∈ U(n) such that |yx3|n < n/2 and
|yx4|n < n/2, or there exist at least p − 3 many y = 1 + tα ∈ U(n) such
that |yx3|n and |yx4|n lie on opposite sides of n/2 for each y. For the former
case, as before we have ind(S) = 1 by Lemma 2.1.

Next we consider the latter case. If p ≥ 11, we can find y = 1+tα ∈ U(n)
such that |yx2|n < n/2. Indeed, otherwise for these p − 3 many y we have
|yx2|n > n/2, and as before, we infer that p/2 > p−4 and thus p < 8, giving
a contradiction.

Now assume that p = 7. Since gcd(f(x1), f(x2)) = 1, we conclude that
f(x1) = 7λ and f(x2) = 5µ. If 72 |n, then either we can find y = 1 + tα ∈
U(n) such that |yx3|n < n/2 and |yx4|n < n/2, or, as before, there exist
at least six elements y = 1 + tα ∈ U(n) such that |yx3|n and |yx4|n lie on
opposite sides of n/2. For the latter case, we can find y ∈ U(n) such that at
least two of |yx2|n < n/2, |yx3|n < n/2 and |yx4|n < n/2 hold. Thus in both
cases we have ind(S) = 1 by Lemma 2.1. Finally, if 72 -n, by Lemma 2.6 we
have ind(S) = 1. This completes the proof.
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Lemma 2.10. If f(x1) = d > 1 and f(x2) = f(x3) = f(x4) = 1 (i.e.
x2, x3, x4 are co-prime to n), then ind(S) = 1.

Proof. Let p be the largest prime factor of f(x1), and α = n/p. Since
x2, x3, x4 are co-prime to n (hence to p), we may assume that xi = wip+ vi
for i ∈ [2, 4], where vi ∈ [1, p − 1]. Again, we can show that (1 + tα)xi =
(1 + sα)xi (mod n) for any i ∈ [2, 4] if and only if t = s.

If p ≥ 11 or p2 |n, a proof similar to that of Lemma 2.9 shows that
ind(S) = 1. If p ≤ 7, f(x1) = p ∈ {5, 7} and p2 -n, by Lemmas 2.6 and 2.7
we get ind(S) = 1 as desired.

Finally, we consider the last case when p = 7, p2 -n and f(x1) = 5·7 = 35.
Since n has at least three different prime factors and α = n/7 ≥ 55, as in
the proof of Lemma 2.6 we may assume that x1 = (n− 35)/2 and we can
reduce to the only case that there are exactly four y = 1 + tα ∈ U(n) such
that |yxi|n > n/2 for each i ∈ [2, 4]. As before, we can estimate the sum M
as follows:

M =
∑

y=1+tα∈U(n)
t∈[0,6]

4∑
i=1

|yxi|n =

4∑
i=1

∑
y=1+tα∈U(n)

t∈[0,6]

|yxi|n

> 3n− 105 + 66α = 12n+ 3(α− 35) > 12n.

Thus there exists at least one y = 1 + tα ∈ U(n) such that |yx1|n + |yx2|n +
|yx3|n + |yx4|n = 3n. By Lemma 2.1, we get ind(S) = 1 as desired.

3. Proof of main result. As mentioned earlier, in [XS] the authors
settled the remaining case when |G| is a product of two prime powers. How-
ever, the proof is quite long. By applying a new method developed in this
paper, we are able to give a very short proof for the above mentioned case.
This together with [LP] provides a complete solution to the index conjecture
for the product-of-two-prime-powers case.

Theorem 3.1. Let G = 〈g〉 be a finite cyclic group of order |G| = n
such that gcd(n, 6) = 1 and n = pβqγ is a product of two different prime
powers. If S = (x1g) · (x2g) · (x3g) · (x4g) is any minimal zero-sum sequence
over G, then ind(S) = 1.

Proof. In view of [LP, Theorem 1.3], we may assume f(xi) > 1 for
each i ∈ [1, 4]. We may also assume gcd(f(x1), f(x2), f(x3), f(x4)) = 1,
p | gcd(f(x1), f(x2)) and q | gcd(f(x3), f(x4)). Thus we have f(x1) = ps1 ,
f(x2) = ps2 , f(x3) = qs3 and f(x4) = qs4 with si ≥ 1, i ∈ [1, 4]. Without
loss of generality, we may assume that x1 = f(x1) < n/2 and f(x1) ≥ f(x2)
(i.e. s1 ≥ s2). We divide the proof into two cases.
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Case 1: f(x1) = f(x2) = gcd(f(x1), f(x2)) > 1. As in Lemma 2.5,
we can find u ∈ U(n) such that |ux1|n < n/2 and |ux2|n < n/2. Since
gcd(|ux3|n, p) = 1, by Lemma 2.2 there exists y = 1 + tn/p ∈ U(n) such
that |yux3|n < n/2. Note also that |yuxi|n = |uxi|n < n/2 for all i ∈ [1, 2].
So it follows from Lemma 2.1 that ind(S) = 1.

Case 2: f(x1) > f(x2) = ps2 . Note that ps2 | f(x2), p
s2+1 - f(x2) and

ps2+1 | f(x1). By Corollary 2.4, there exists u = 1 + tα ∈ U(n) with α =
n/ps2+1 such that |ux2|n < n/2. Note also that |ux1|n = x1 < n/2. As in
Case 1, we can find y = 1 + tn/p ∈ U(n) such that |yuxi|n < n/2 for all
i ∈ [1, 3]. Therefore, ind(S) = 1 as desired.

Proof of Theorem 1.3. If n has at most two distinct prime factors, the
result follows immediately from [LP] and Theorem 3.1. So we need only
consider the case when n has at least three distinct prime factors. Assume
that x1 = f(x1) = d > 1 and n has at least three distinct prime factors. We
divide the proof into the following two cases:

Case 1: gcd(f(x1), f(xi)) > 1 for at least one i ∈ [2, 4]. Without loss
of generality, we may assume that gcd(f(x1), f(x2)) > 1. It follows from
Lemma 2.8 that ind(S) = 1.

Case 2: gcd(f(x1), f(xi)) = 1 for all i ∈ [2, 4]. We divide the proof into
two subcases.

Subcase 2.1: f(xi) > 1 for at least one i ∈ [2, 4]. Without loss of gen-
erality, we may assume that f(x2) > 1. The result follows from Lemma 2.9.

Subcase 2.2: f(x2) = f(x3) = f(x4) = 1. The result follows from
Lemma 2.10.
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