VOL. 136	2014

UNIQUENESS OF DECOMPOSITION OF PSEUDO-RIEMANNIAN SUPERALGEBRAS

BY
KELI ZHENG (Changchun and Harbin), LIANGYUN CHEN (Changchun) and YONGZHENG ZHANG (Changchun)

Abstract

This paper is primarily concerned with pseudo-Riemannian superalgebras, which are superalgebras endowed with pseudo-Riemannian non-degenerate supersymmetric consistent bilinear forms. Decompositions of pseudo-Riemannian superalgebras whose left centers are isotropic and whose left centers are not isotropic are investigated.

1. Introduction. In the last few decades one of the most active and fertile subjects in algebra is the recently developed theory of graded algebras and so called superalgebras. The prefix super- comes from the theory of supersymmetry in theoretical physics $[\mathrm{BPZ}, \mathrm{F}$. Superalgebras and their representations (supermodules) provide an algebraic framework for supersymmetry [DJ, K, V]. Sometimes the study of such objects is called superlinear algebra VS. In the related field of supergeometry, superalgebras also play an important role. For example, they enter the definitions of graded manifolds, supermanifolds and superschemes Ma .

In mathematics and theoretical physics, a superalgebra S is a \mathbb{Z}_{2}-graded algebra KMZ. This means that there exists a direct sum decomposition $S=S_{\overline{0}} \oplus S_{\overline{1}}$ together with a bilinear multiplication $S \times S \rightarrow S$ such that $S_{\alpha} S_{\beta} \subseteq S_{\alpha+\beta}$, where the subscripts belong to \mathbb{Z}_{2} and $\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$ is the residue class ring modulo 2. Elements of S_{α} are said to be homogeneous, and the degree of a homogeneous element x is $\overline{0}$ or $\overline{1}$ according to whether it is in $S_{\overline{0}}$ or $S_{\overline{1}}$. Elements of degree $\overline{0}$ are said to be even, and those of degree $\overline{1}$ are odd. If x and y are two homogeneous elements of S, then so is their product $x y$.

The motivation for studying pseudo-Riemannian algebras comes from the study of Lie groups with left-invariant pseudo-metrics [AM, Mi]. In some sense pseudo-Riemannian algebras are related to pseudo-Riemannian connections, which are pseudo-metric connections such that the torsion is

[^0]zero and parallel translation preserves the bilinear form on the tangent spaces [S]. Recently, certain classes of pseudo-Riemannian algebras have been investigated. In [CZ1, Chen and Zhu found that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and studied a special class of pseudo-Riemannian Novikov algebras. They also proved in CZ2] that the underlying Lie algebras of pseudo-Riemannian associative fermionic Novikov algebras are 2-step nilpotent and that pseudo-Riemannian associative fermionic Novikov algebras are 3 -step nilpotent. Pseudo-Riemannian bilinear forms and pseudo-Riemannian Leibniz algebras, i.e., Leibniz algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms, were considered by Lin and Chen [LC]. More generally, algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms were investigated in [CLZ].

The purpose of this paper is to study pairs (S, λ), where $\lambda: S \times S \rightarrow \mathbb{C}$ is a non-degenerate supersymmetric bilinear form on the superalgebra S such that

$$
\begin{equation*}
\lambda(x y, z)+(-1)^{\alpha \beta} \lambda(y, x z)=0 \tag{1.1}
\end{equation*}
$$

for all $x \in S_{\alpha}, y \in S_{\beta}$ and $z \in S$ and

$$
\lambda(x, y)=0 \quad \text { for all } x \in S_{\overline{0}}, y \in S_{\overline{1}},
$$

where $\alpha, \beta \in \mathbb{Z}_{2}$. Such pairs will be called pseudo-Riemannian superalgebras. In particular, if S is a Lie superalgebra, then the pseudo-Riemannian superalgebra (S, λ) is in fact a quadratic Lie superalgebra (see e.g. $\overline{\mathrm{ABB}}, \mathrm{BB}, \mathrm{ZM}$ and the references therein). Therefore, pseudo-Riemannian superalgebras are natural generalizations of quadratic Lie superalgebras.

The aim of this paper is to generalize some of the beautiful results proved in CLZ, ZM. A brief summary of the relevant concepts and propositions on superalgebras and bilinear forms is presented in Section 2. Section 3 shows some properties of pseudo-Riemannian superalgebras whose left centers are not isotropic. In Section 4, we consider pseudo-Riemannian superalgebras whose left centers are isotropic and determine that the orthogonal decomposition of any pseudo-Riemannian superalgebra into indecomposable non-degenerate ideals is unique up to an isometry if the left centers equal the centers. In particular, we establish conditions allowing us to construct pseudo-Riemannian superalgebras from certain other pseudo-Riemannian superalgebras.

Throughout this paper, all superalgebras are assumed to be finite-dimensional over the complex number field \mathbb{C} and all subspaces of superalgebras are assumed to be homogeneous. Without explicit mention, α and β will always be assumed to be elements of \mathbb{Z}_{2}.
2. Preliminaries. In this section, some necessary definitions and propositions will be given. Let S be a superalgebra with a bilinear multiplication $S \times S \rightarrow S$ denoted by $(x, y) \mapsto x y$.

The following notation will be used. Let I^{\perp} denote the subspace of S orthogonal to I with respect to a bilinear form $\lambda: S \times S \rightarrow \mathbb{C}$, i.e.,

$$
I^{\perp}=\{x \in S \mid \lambda(x, y)=0 \text { for any } y \in S\} .
$$

Denote by $L C(S)$ the left center of S, i.e.,

$$
L C(S)=\{x \in S \mid y x=0 \text { for any } y \in S\},
$$

and by $Z(S)$ the center of S, i.e.,

$$
Z(S)=\{x \in S \mid x y=y x=0 \text { for any } y \in S\} .
$$

Definition 2.1. A subspace $I=I_{\overline{0}} \oplus I_{\overline{1}}$ of S is called a left (resp. right) ideal of S if $S I \subseteq I$ (resp. $I S \subseteq I$), where $I_{\alpha}=I \cap S_{\alpha}$. If I is both a left and a right ideal, then I is an ideal. The superalgebra S is called abelian if $S \neq 0$ and $x y=0$ for all $x, y \in S$.

Definition 2.2. Let S be a superalgebra over \mathbb{C}.
(a) A bilinear form $\lambda: S \times S \rightarrow \mathbb{C}$ is pseudo-Riemannian if

$$
\lambda(x y, z)+(-1)^{\alpha \beta} \lambda(y, x z)=0
$$

for all $x \in S_{\alpha}, y \in S_{\beta}$ and $z \in S$.
(b) A bilinear form $\lambda: S \times S \rightarrow \mathbb{C}$ is supersymmetric if $\lambda(x, y)=$ $(-1)^{\alpha \beta} \lambda(y, x)$ for all $x \in S_{\alpha}$ and $y \in S_{\beta}$, and consistent if $\lambda(x, y)=0$ for all $x \in S_{\overline{0}}$ and $y \in S_{\overline{1}}$.
(c) The pair (S, λ) is a pseudo-Riemannian superalgebra if $\operatorname{dim}_{\mathbb{C}} S$ is finite and λ is a pseudo-Riemannian non-degenerate supersymmetric consistent bilinear form on S.
(d) The left center $L C(S)$ of a pseudo-Riemannian superalgebra (S, λ) is isotropic if $L C(S) \subseteq L C(S)^{\perp}$.
From now on we shall consider only consistent bilinear forms.
Proposition 2.3. The pair (S, λ) is a pseudo-Riemannian superalgebra if and only if $\left(S_{\overline{0}}, \lambda_{0}\right)$ is a pseudo-Riemannian superalgebra and there exists a skew-symmetric non-degenerate bilinear form λ_{1} on the $S_{\overline{0}}$-module $S_{\overline{1}}$ such that

$$
\begin{array}{ll}
\lambda_{0}(y x, z)=\lambda_{1}(x, y z) & \text { for any } x, y \in S_{\overline{1}}, z \in S_{\overline{0}}, \\
\lambda_{1}(y x, z)=-\lambda_{1}(x, y z) & \text { for any } x, z \in S_{\overline{1}}, y \in S_{\overline{0}} . \tag{2.2}
\end{array}
$$

Proof. Since λ is consistent, it is easy to see that the restriction of λ to $S_{\overline{0}}$ is a pseudo-Riemannian non-degenerate symmetric bilinear form, as also is the restriction of λ to $S_{\overline{1}}$. Clearly, (2.1) and (2.2) follow from λ being pseudo-Riemannian.

Conversely, let $\left(S_{\overline{0}}, \lambda_{0}\right)$ be a pseudo-Riemannian superalgebra and λ_{1} a non-degenerate skew-symmetric bilinear form on $S_{\overline{1}}$ such that (2.1) and (2.2) are satisfied. Consider the form λ defined on S by

$$
\begin{gathered}
\lambda\left(S_{\overline{0}}, S_{\overline{1}}\right)=0=\lambda\left(S_{\overline{1}}, S_{\overline{0}}\right), \\
\lambda(x, y)=\lambda_{\overline{0}}(x, y) \text { for } x, y \in S_{\overline{0}}, \quad \lambda(x, y)=\lambda_{\overline{1}}(x, y) \text { for } x, y \in S_{\overline{1}} .
\end{gathered}
$$

Then it is easy to see that λ is a pseudo-Riemannian non-degenerate supersymmetric consistent bilinear form on S. Therefore, (S, λ) is a pseudoRiemannian superalgebra.

Definition 2.4. Let (S, λ) be a pseudo-Riemannian superalgebra. If there exist non-trivial and non-degenerate ideals I_{1} and I_{2} such that $S=$ $I_{1} \oplus I_{2}$, then (S, λ) is called decomposable; otherwise it is indecomposable. Furthermore, if $\lambda\left(I_{1}, I_{2}\right)=0$, then the decomposition $S=I_{1} \oplus I_{2}$ is said to be orthogonal.

Definition 2.5. Let (S, λ) be a pseudo-Riemannian superalgebra. An automorphism π of S is called an isometry if π preserves the bilinear form, i.e., $\lambda(\pi(x), \pi(y))=\lambda(x, y)$ for any $x, y \in S$.

Proposition 2.6. If (S, λ) is a pseudo-Riemannian superalgebra, then $L C(S)=(S S)^{\perp}$. As a consequence, $\operatorname{dim}_{\mathbb{C}} L C(S)+\operatorname{dim}_{\mathbb{C}} S S=\operatorname{dim}_{\mathbb{C}} S$.

Proof. Assume that $x \in L C(S) \cap S_{\alpha}$, i.e., $y x=0$ for any $y \in S_{\beta}$. Then $\lambda(y x, z)=0$ for any $z \in S$. It follows that $-(-1)^{\alpha \beta} \lambda(x, y z)=0$, so $L C(S) \subseteq(S S)^{\perp}$.

Conversely, assume that $x \in(S S)^{\perp}$ and $d(x)=\alpha \in \mathbb{Z}_{2}$, i.e., $\lambda(x, y z)=0$ for any $y \in S_{\beta}$ and $z \in S$. It follows that $-(-1)^{\alpha \beta} \lambda(y x, z)=0$ since λ is a pseudo-Riemannian bilinear form. By the non-degeneracy of λ, we have $y x=0$, so $x \in L C(S)$. Therefore, $(S S)^{\perp} \subseteq L C(S)$.

Proposition 2.7. Suppose that (S, λ) is a pseudo-Riemannian superalgebra and I is an ideal of S. Then I^{\perp} is a left ideal and $I I^{\perp}=0$.

Proof. Assume that x is an arbitrary homogeneous non-zero element of the ideal $I \cap S_{\alpha}$. Then $\lambda(x, y z)=-(-1)^{\alpha \beta} \lambda(y x, z)=0$ for any $y \in S_{\beta}$ and $z \in I^{\perp}$. It follows that $y z=0$, i.e., I^{\perp} is a left ideal of S and $I I^{\perp}=0$.

Proposition 2.8. Suppose that (S, λ) is a pseudo-Riemannian superalgebra. Then there exists a decomposition $S=\bigoplus_{i=1}^{l} S_{i}$ into indecomposable non-degenerate ideals.

Proof. We shall use induction on $\operatorname{dim}_{\mathbb{C}} S$. If S is one-dimensional, then the result is clear. The inductive hypothesis gives a decomposition of S into indecomposable non-degenerate ideals for $\operatorname{dim}_{\mathbb{C}} S<n$. If S is n-dimensional, then let I be a non-degenerate proper super-subalgebra of S, i.e., $\operatorname{dim}_{\mathbb{C}} I<$ $\operatorname{dim}_{\mathbb{C}} S$. It is clear that $I \cap I^{\perp}=0$. Then $S=I \oplus I^{\perp}$. From the inductive
hypothesis and since $\operatorname{dim}_{\mathbb{C}} I^{\perp}<\operatorname{dim}_{\mathbb{C}} S$, we conclude that I and I^{\perp} can be decomposed into indecomposable non-degenerate ideals. This completes the proof.

Proposition 2.9. Let S be an abelian superalgebra. If λ is a nondegenerate supersymmetric bilinear form on S, then (S, λ) is a pseudoRiemannian superalgebra. Furthermore, there exists an orthogonal decomposition $S=S_{1} \oplus \cdots \oplus S_{n}$ into indecomposable non-degenerate ideals such that $\operatorname{dim}_{\mathbb{C}} S_{i}=1,1 \leq i \leq n$.

Proof. Since S is abelian, we know that any super-subspace is an ideal. Note that $\lambda(x y, z)=0=(-1)^{\alpha \beta} \lambda(y, x z)$ for any $x \in S_{\alpha}, y \in S_{\beta}$ and $z \in S$. Then $\lambda(x y, z)-(-1)^{\alpha \beta} \lambda(y, x z)=0$, i.e., (S, λ) is a pseudo-Riemannian superalgebra. Every element of the standard orthogonal basis of S generates an indecomposable non-degenerate one-dimensional ideal $S_{i}, 1 \leq i \leq n$, such that the decomposition $S=S_{1} \oplus \cdots \oplus S_{n}$ is orthogonal.
3. Pseudo-Riemannian superalgebras whose left centers are not isotropic. First of all, we give an example of a pseudo-Riemannian superalgebra whose left center is not isotropic.

Example 3.1. Let $\left(H, \lambda_{H}\right)$ be an abelian pseudo-Riemannian superalgebra and $\left(J, \lambda_{J}\right)$ be a pseudo-Riemannian superalgebra with product \circ. Set

$$
s o(J)=\left\{A \in \operatorname{End}_{\theta}(J) \mid \lambda_{J}(A(x), y)+(-1)^{\alpha \theta} \lambda_{J}(x, A(y))=0\right\}
$$

where $x \in J_{\alpha}, y \in J$ and $\operatorname{End}_{\theta}(J)=\left\{f \in \operatorname{End}(J) \mid f\left(J_{\alpha}\right) \subseteq J_{\theta+\alpha}\right.$ for $\left.\theta \in \mathbb{Z}_{2}\right\}$. Given an even linear mapping $L: H \rightarrow s o(J)$ denoted by $x \mapsto L_{x}$, define a product $*$ on a vector superspace $S=H+J$ (direct sum as supersubspace) by

$$
\begin{array}{ll}
x * y=0 & \text { for any } x, y \in H \\
x * y=0 & \text { for any } x \in J, y \in H \\
x * y=x \circ y & \text { for any } x, y \in J, \\
x * y=L_{x}(y) & \text { for any } x \in H, y \in J
\end{array}
$$

and define a supersymmetric bilinear form λ on S by

$$
\begin{array}{ll}
\lambda(x, y)=\lambda_{H}(x, y) & \text { for any } x, y \in H \\
\lambda(x, y)=\lambda_{I}(x, y) & \text { for any } x, y \in J \\
\lambda(x, y)=0 & \text { for any } x \in H, y \in J
\end{array}
$$

An easy verification shows that (S, λ) is a pseudo-Riemannian superalgebra whose left center H is not isotropic.

Next, we give some theorems on pseudo-Riemannian superalgebras whose left centers are not isotropic.

Theorem 3.2. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center is not isotropic. Then there exists a sequence $S=S_{0} \supset S_{1} \supset$ $\cdots \supset S_{n}$ of non-degenerate supersubalgebras of S such that S_{i} is an ideal of S_{i-1}, the quotient superalgebra S_{i-1} / S_{i} is abelian for each $i \in\{1, \ldots, n\}$, and the left center of S_{n} is isotropic.

Proof. Since the left center $L C(S)$ is not isotropic, there exists a maximal subspace H_{1} of $L C(S)$ such that $\left.\lambda\right|_{H_{1} \times H_{1}}$ is non-degenerate. Then $H_{1} \cap H_{1}^{\perp}=$ 0 . Hence $S=H_{1} \oplus H_{1}^{\perp}$ and the restrictions of λ to H_{1} and H_{1}^{\perp} are nondegenerate. Let $S_{1}=H_{1}^{\perp}$. For $a \in S_{\alpha}, h \in\left(H_{1}\right)_{\beta}$ and $h^{\prime} \in\left(S_{1}\right)$, we have $\lambda\left(h, a h^{\prime}\right)=-(-1)^{\alpha \beta} \lambda\left(a h, h^{\prime}\right)=0$. Hence $a h^{\prime} \in H_{1}^{\perp}=S_{1}$ and so S_{1} is a left ideal of S. For $a \in S_{\alpha}, h \in\left(H_{1}\right)_{\beta}$ and $h^{\prime \prime} \in\left(S_{1}\right)$, we have

$$
\lambda\left(h, h^{\prime \prime} a\right)=-(-1)^{\alpha \beta} \lambda\left(h^{\prime \prime} h, a\right)=-(-1)^{\alpha \beta} \lambda(0, a)=0 .
$$

Thus $h^{\prime \prime} a \in H_{1}^{\perp}=S_{1}$ and so S_{1} is a right ideal of S. Therefore, S_{1} is an ideal of S. Using the above methods, we can show that S_{i} is an ideal of S_{i-1} for every $i \in\{1, \ldots, n\}$ and the left center of S_{n} is isotropic.

Next we prove that the quotient superalgebra S_{i-1} / S_{i} is abelian for each $i \in\{1, \ldots, n\}$. The equality $\lambda(x y, h)=-(-1)^{\alpha \beta} \lambda(y, x h)=0$ for any $x \in\left(S_{i-1}\right)_{\alpha}, y \in\left(S_{i-1}\right)_{\beta}$ and $h \in H_{i}$ shows that $S_{i-1} S_{i-1} \subseteq H_{i}^{\perp}=S_{i}$. Hence $\left(S_{i-1} / S_{i}\right)\left(S_{i-1} / S_{i}\right)=S_{i-1} S_{i-1} / S_{i}=0$.

Theorem 3.3. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center equals its center. If the left center is not isotropic, then there exist non-degenerate ideals S_{1} and S_{2} of S such that $S=S_{1} \oplus S_{2}$, where $\lambda\left(S_{1}, S_{2}\right)=0, S_{1} S_{1}=0$ and the left center of S_{2} is isotropic.

Proof. According to Theorem 3.2, we may assume that $S_{2}=S_{n}$. Then the left center of S_{2} is isotropic and S / S_{2} is abelian. Hence $S_{1} S_{1}=0$. Since $S_{1}=S_{2}^{\perp}$ and $S_{2}=S_{1}^{\perp}$, we have $\lambda\left(S_{1}, S_{2}\right)=0$.

Hereafter, we write $L\left(e_{1}, \ldots, e_{i}\right)$ for the subspace spanned by e_{1}, \ldots, e_{i}.
Theorem 3.4. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center equals its center and is not isotropic. If the decomposition $S=$ $S_{1} \oplus S_{2}$ is orthogonal such that S_{1} and S_{2} are non-degenerate, $L C\left(S_{1}\right)$ is isotropic and $S_{2} \in L C(S)$, then the decomposition is unique up to an isometry.

Proof. Let $S=S_{1}^{\prime} \oplus S_{2}^{\prime}$ be another such decomposition. Then

$$
S_{1} S_{1}=S_{1} S_{1}^{\prime}=S_{1}^{\prime} S_{1}=S_{1}^{\prime} S_{1}^{\prime} .
$$

It follows that $L C\left(S_{1}\right) \subseteq L C\left(S_{1}\right)^{\perp}=S_{1} S_{1}=S_{1}^{\prime} S_{1}^{\prime}$ since the left center of S_{1} is isotropic and by Proposition 2.6. Since $L C(S)=Z(S)$, we have
$L C\left(S_{1}\right) \subseteq L C(S) \cap S_{1}^{\prime} S_{1}^{\prime}=L C\left(S_{1}^{\prime}\right)$. Similarly, $L C\left(S_{1}^{\prime}\right) \subseteq L C\left(S_{1}\right)$. That is, $L C\left(S_{1}\right)=L C\left(S_{1}^{\prime}\right)$. By Proposition 2.6, we have $\operatorname{dim}_{\mathbb{C}} S_{1}=\operatorname{dim}_{\mathbb{C}} S_{1}^{\prime}$. Hence also $\operatorname{dim}_{\mathbb{C}} S_{2}=\operatorname{dim}_{\mathbb{C}} S_{2}^{\prime}$. Let $\left\{e_{1}, \ldots, e_{m+k}, u_{1}, \ldots, u_{n+l}\right\}$ be a basis of S_{1} such that $\left(S_{1}\right)_{\overline{0}}=L\left(e_{1}, \ldots, e_{m+k}\right),\left(S_{1}\right)_{\overline{1}}=L\left(u_{1}, \ldots, u_{n+l}\right),\left(L C\left(S_{1}\right)\right)_{\overline{0}}=$ $L\left(e_{1}, \ldots, e_{k}\right),\left(L C\left(S_{1}\right)\right)_{\overline{1}}=L\left(u_{1}, \ldots, u_{l}\right),\left(S_{1} S_{1}\right)_{\overline{0}}=L\left(e_{1}, \ldots, e_{m}\right),\left(S_{1} S_{1}\right)_{\overline{1}}$ $=L\left(u_{1}, \ldots, u_{n}\right)$ and

$$
\begin{aligned}
\lambda\left(e_{i}, e_{j}\right) & =\delta_{i j}, & & k+1 \leq i, j \leq m \\
\lambda\left(u_{g}, u_{h}\right) & =\delta_{g h}, & & l+1 \leq g, h \leq n \\
\lambda\left(e_{i}, e_{m+j}\right) & =\delta_{i j}, & & 1 \leq i, j \leq k \\
\lambda\left(u_{g}, u_{n+h}\right) & =\delta_{g h}, & & 1 \leq g, h \leq l \\
\lambda\left(e_{i}, e_{j}\right) & =0, & & 1 \leq i, j \leq k \\
\lambda\left(u_{g}, u_{h}\right) & =0, & & 1 \leq g, h \leq l \\
\lambda\left(e_{i}, e_{j}\right) & =0, & & m+1 \leq i, j \leq m+k \\
\lambda\left(u_{g}, u_{h}\right) & =0, & & n+1 \leq g, h \leq n+l
\end{aligned}
$$

where $\delta_{s t}$ is Kronecker's delta.
Now we consider the projections

$$
\pi_{1}: S_{1} \rightarrow S_{1}^{\prime}, \quad \pi_{2}: S_{2} \rightarrow S_{2}^{\prime}
$$

which are isomorphisms. It is clear that $\left.\pi_{1}\right|_{S_{1} S_{1}}=\mathrm{id}$. Then $\lambda\left(\pi_{1}\left(e_{i}\right), \pi_{1}\left(e_{j}\right)\right)$ $=\lambda\left(e_{i}, e_{j}\right)$ and $\lambda\left(\pi_{1}\left(u_{g}\right), \pi_{1}\left(u_{h}\right)\right)=\lambda\left(u_{g}, u_{h}\right)$ for $1 \leq i \leq m+k, 1 \leq j \leq m$, $1 \leq g \leq n+l, 1 \leq h \leq n$.

Assume that $e_{p}=e_{p_{3}}+e_{p_{4}}$ for $m+1 \leq p \leq m+k$ and $u_{a}=u_{a_{3}}+u_{a_{4}}$ for $n+1 \leq a \leq n+l$, where $e_{p_{3}} \in\left(S_{1}^{\prime}\right)_{\overline{0}}, e_{p_{4}} \in\left(S_{2}^{\prime}\right)_{\overline{0}}, u_{a_{3}} \in\left(S_{1}^{\prime}\right)_{\overline{1}}, u_{a_{4}} \in\left(S_{2}^{\prime}\right)_{\overline{1}}$. For $m+1 \leq q \leq m+k$ and $n+1 \leq b \leq n+l$, we have

$$
\begin{aligned}
& 0=\lambda\left(e_{p}, e_{q}\right)=\lambda\left(e_{p_{3}}, e_{q_{3}}\right)+\lambda\left(e_{p_{4}}, e_{q_{4}}\right) \\
& 0=\lambda\left(u_{a}, u_{b}\right)=\lambda\left(u_{a_{3}}, u_{b_{3}}\right)+\lambda\left(u_{a_{4}}, u_{b_{4}}\right)
\end{aligned}
$$

Let $c_{p q}=\lambda\left(e_{p_{4}}, e_{q_{4}}\right)$ for $p \neq q, 2 c_{p p}=\lambda\left(e_{p_{4}}, e_{p_{4}}\right), d_{a b}=\lambda\left(u_{a_{4}}, u_{b_{4}}\right)$ for $a \neq b$, $2 d_{a a}=\lambda\left(u_{a_{4}}, u_{a_{4}}\right)$ and

$$
e_{p_{3}}^{\prime}=e_{p_{3}}+\sum_{g=p}^{m+k} c_{p g} e_{g-m}, \quad u_{a_{3}}^{\prime}=e_{a_{3}}+\sum_{h=p}^{n+l} c_{a h} e_{h-n}
$$

It is easy to see that

$$
\begin{aligned}
\lambda\left(e_{p_{3}}^{\prime}, e_{p_{3}}^{\prime}\right) & =\lambda\left(e_{p_{3}}+\sum_{g=p}^{m+k} c_{p g} e_{g-m}, e_{p_{3}}+\sum_{g=p}^{m+k} c_{p g} e_{g-m}\right) \\
& =\lambda\left(e_{p_{3}}, e_{p_{3}}\right)+2 \lambda\left(e_{p_{3}}, \sum_{g=p}^{m+k} c_{p g} e_{g-m}\right) \\
& =\lambda\left(e_{p_{3}}, e_{p_{3}}\right)+2 c_{p p}=0, \quad m+1 \leq p \leq m+k
\end{aligned}
$$

$$
\begin{aligned}
\lambda\left(u_{a_{3}}^{\prime}, u_{a_{3}}^{\prime}\right) & =\lambda\left(u_{a_{3}}+\sum_{h=a}^{n+l} c_{a h} u_{h-n}, u_{a_{3}}+\sum_{h=a}^{n+l} c_{a h} u_{h-n}\right) \\
& =\lambda\left(u_{a_{3}}, u_{a_{3}}\right)+2 \lambda\left(u_{a_{3}}, \sum_{h=a}^{n+l} c_{a h} u_{h-n}\right) \\
& =\lambda\left(u_{a_{3}}, u_{a_{3}}\right)+2 d_{a a}=0, \quad n+1 \leq a \leq n+l, \\
\lambda\left(e_{p_{3}}^{\prime}, e_{q_{3}}^{\prime}\right) & =\lambda\left(e_{p_{3}}, e_{q_{3}}\right)+\lambda\left(e_{p_{3}}, \sum_{s=q}^{m+k} c_{q s} e_{s-m}\right)+\lambda\left(e_{q_{3}}, \sum_{t=p}^{m+k} c_{p t} e_{t-m}\right) \\
& =\lambda\left(e_{p_{3}}, e_{q_{3}}\right)+c_{p q}=0, \quad m+1 \leq p<q \leq m+k, \\
\lambda\left(u_{p_{3}}^{\prime}, u_{q_{3}}^{\prime}\right) & =\lambda\left(u_{a_{3}}, u_{b_{3}}\right)+\lambda\left(u_{a_{3}}, \sum_{s=b}^{n+l} c_{b s} u_{g-n}\right)+\lambda\left(u_{b_{3}}, \sum_{t=a}^{n+l} c_{a t} u_{t-n}\right) \\
& =\lambda\left(u_{a_{3}}, u_{b_{3}}\right)+d_{a b}=0, \quad n+1 \leq a<b \leq n+l .
\end{aligned}
$$

Define $\pi_{1}^{\prime}: S_{1} \rightarrow S_{1}^{\prime}$ by

$$
\begin{array}{lll}
\pi_{1}^{\prime}\left(e_{j}\right)=e_{j}, & 1 \leq j \leq m, & \pi_{1}^{\prime}\left(u_{k}\right)=u_{k}, \\
\pi_{1}^{\prime}\left(e_{j}\right)=e_{j_{3}}^{\prime}, & m+1 \leq j \leq m+k, & \pi_{1}^{\prime}\left(u_{k}\right)=u_{k_{3}}^{\prime},
\end{array} \quad n+1 \leq k \leq n+l .
$$

An easy verification shows that π_{1}^{\prime} is also an isomorphism from S_{1} to S_{1}^{\prime} and preserves the bilinear form. Then $\pi=\left(\pi_{1}^{\prime}, \pi_{2}\right)$ is an isometry of S.
4. Pseudo-Riemannian superalgebras whose left centers are isotropic. Theorem 3.2 shows that left centers of pseudo-Riemannian superalgebras play an important role. In this section we obtain some results on pseudo-Riemannian superalgebras whose left centers are isotropic.

Proposition 4.1. Suppose that (S, λ) is a pseudo-Riemannian superalgebra whose left center is isotropic. Then (S, λ) is decomposable if and only if there exist non-trivial ideals I_{1} and I_{2} of S such that $S=I_{1} \oplus I_{2}$.

Proof. The necessity is obvious. Conversely, assume that there exist nontrivial homogeneous ideals I_{1} and I_{2} of S such that $S=I_{1} \oplus I_{2}$. It is enough to show that $\left.\lambda\right|_{I_{1} \times I_{1}}$ and $\left.\lambda\right|_{I_{2} \times I_{2}}$ are non-degenerate. Assume that $\left.\lambda\right|_{I_{1} \times I_{1}}$ is degenerate. Then there exists a non-zero element x of I_{1} such that $\lambda\left(x, I_{1}\right)=0$. If $x \in I_{1} I_{1}$, then $\lambda\left(x, I_{2}\right) \subseteq \lambda\left(I_{1} I_{1}, I_{2}\right)=\lambda\left(I_{1}, I_{1} I_{2}\right)$ (or $\left.-\lambda\left(I_{1}, I_{1} I_{2}\right)\right)=0$. It follows that $x=0$ as λ is non-degenerate. This contradicts the assumption $x \neq 0$, and therefore $x \notin I_{1} I_{1}$. By Proposition 2.6 and since $L C(S)$ is isotropic, we have $L C(S) \subseteq L C(S)^{\perp}=S S$. Thus $x \notin$ $L C\left(I_{1}\right)$, i.e., there exists $y \in I$ such that $y x \neq 0$. Since λ is non-degenerate, there exists a homogeneous element z of S such that $\lambda(y x, z) \neq 0$. Thus $\lambda(x, y z)=-(-1)^{\alpha \beta} \lambda(y x, z) \neq 0$ for any $x \in\left(I_{1}\right)_{\alpha}, y \in\left(I_{1}\right)_{\beta}$. It follows that
$y z \in I_{1}$ because I_{1} is an ideal of S and $y \in I_{1}$. This contradicts the choice of x, i.e., $\left.\lambda\right|_{I_{1} \times I_{1}}$ is non-degenerate. Similarly, $\left.\lambda\right|_{I_{2} \times I_{2}}$ is non-degenerate.

In the following, we show that the decomposition of a pseudo-Riemannian superalgebra whose left center is isotropic into non-degenerate indecomposable ideals is unique up to an automorphism.

Let (S, λ) be a pseudo-Riemannian superalgebra whose left center is isotropic. Suppose that

$$
S=S_{1} \oplus \cdots \oplus S_{n} \quad \text { and } \quad S=S_{1}^{\prime} \oplus \cdots \oplus S_{m}^{\prime}
$$

where $S_{i}, S_{j}, 1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of S.

Note that $S_{1} S_{1} \neq 0$. Indeed, assume that $S_{1} S_{1}=0$. Thus $S_{1} \subseteq L C(S)$, which contradicts that $L C(S)$ is isotropic. Since $S_{1} S_{1}=S_{1} S=\bigoplus_{j=1}^{m} S_{1} S_{j}^{\prime}$, we have $S_{1} S_{j}^{\prime} \neq 0$ for some j. Without loss of generality, we assume that $S_{1} S_{1}^{\prime} \neq 0$. Let $H_{1}=\bigoplus_{i=2}^{n} S_{i}$ and $H_{1}^{\prime}=\bigoplus_{j=2}^{m} S_{j}^{\prime}$, which are non-degenerate ideals of S by Proposition 4.1.

Lemma 4.2. $S_{1} \cap H_{1}^{\prime}=0$ and $S_{1}^{\prime} \cap H_{1}=0$.
Proof. Let $B_{1}=S_{1} \cap S_{1}^{\prime}$ and $B_{2}=S_{1} \cap H_{1}^{\prime}$. Clearly, $S_{1} S_{1}=S_{1} S=$ $S_{1} S_{1}^{\prime} \oplus S_{1} H_{1}^{\prime} \subseteq S_{1} \cap S_{1}^{\prime} \oplus S_{1} \cap H_{1}^{\prime}=B_{1} \oplus B_{2}$.
(1) If $S_{1}=B_{1} \oplus B_{2}$, then both B_{1} and B_{2} are non-degenerate ideals of S_{1}, hence also of S. Since S_{1} is indecomposable and $B_{1} \neq 0$, we have $B_{2}=0$, i.e., $S_{1} \cap H_{1}^{\prime}=0$.
(2) If $S_{1} \neq B_{1} \oplus B_{2}$, then there exists $x \in S_{1}$ such that $x \notin B_{1} \oplus B_{2}$. Therefore, $x=x_{1}+x_{2}$, where $x_{1} \in S_{1}^{\prime}$ and $x_{2} \in H_{1}^{\prime}$. Using the other decomposition, we have

$$
x_{1}=x_{1}^{1}+x_{1}^{2} \quad \text { and } \quad x_{2}=x_{2}^{1}+x_{2}^{2}
$$

where $x_{1}^{1}, x_{1}^{2} \in S_{1}$ and $x_{2}^{1}, x_{2}^{2} \in H_{1}$. So $x=x_{1}^{1}+x_{1}^{2}+x_{2}^{1}+x_{2}^{2}$. Then $x=x_{1}^{1}+x_{2}^{1}$ and $x_{1}^{2}+x_{2}^{2}=0$. An easy verification shows that

$$
\begin{array}{ll}
S_{1} x_{1}^{1} \subseteq S_{1} S_{1}^{\prime}, & x_{1}^{1} S_{1} \subseteq S_{1}^{\prime} S_{1} \\
S_{1} x_{2}^{1} \subseteq S_{1} H_{1}^{\prime}, & x_{2}^{1} S_{1} \subseteq H_{1}^{\prime} S_{1}
\end{array}
$$

If $x_{1}^{1} \notin B_{1} \oplus B_{2}$, then we can let $B_{1}^{(1)}=B_{1}+\mathbb{C} x_{1}^{1}$ and $B_{2}^{(1)}=B_{2}$.
If $x_{1}^{1} \in B_{1} \oplus B_{2}$, then $x_{2}^{1} \notin B_{1} \oplus B_{2}$. Let $B_{1}^{(1)}=B_{1}$ and $B_{2}^{(1)}=B_{2}+\mathbb{C} x_{2}^{1}$. One may easily verify that both $B_{1}^{(1)}$ and $B_{2}^{(1)}$ are ideals of S_{1} satisfying $B_{1}^{(1)} \cap B_{2}^{(1)}=0$. If $S_{1}=B_{1}^{(1)} \oplus B_{2}^{(1)}$, then $B_{2}^{(1)}=0$ by a similar argument to that in (1). Accordingly, $S_{1} \cap H_{1}^{\prime}=0$.

If $S_{1} \neq B_{1}^{(1)} \oplus B_{2}^{(1)}$, then we may repeat the discussion in (2). Since $\operatorname{dim}_{\mathbb{C}} S_{1}<\infty$, we may choose $B_{1}^{(k)}$ and $B_{2}^{(k)}$ such that $S_{1}=B_{1}^{(k)} \oplus B_{2}^{(k)}$. Similarly, we can show that both $B_{1}^{(k)}$ and $B_{2}^{(k)}$ are non-degenerate ideals
of S_{1}. Then we can obtain $B_{2}^{(k)}=0$ by a similar method to (1). As a consequence, $S_{1} \cap H_{1}^{\prime}=0$. Similarly, $S_{1}^{\prime} \cap H_{1}=0$.

Lemma 4.3. Let $\pi_{1}: S_{1} \rightarrow S_{1}^{\prime}$ be the restriction of the projection π : $S \rightarrow S_{1}^{\prime}$ to the ideal S_{1} of S. Then π_{1} is an isomorphism and preserves the bilinear form.

Proof. Since ker $\pi_{1} \subseteq S_{1} \cap H_{1}^{\prime}$, Lemma 4.2 shows that π_{1} is injective. Then $\operatorname{dim}_{\mathbb{C}} S_{1} \leq \operatorname{dim}_{\mathbb{C}} S_{1}^{\prime}$. Similarly, $\operatorname{dim}_{\mathbb{C}} S_{1}^{\prime} \leq \operatorname{dim}_{\mathbb{C}} S_{1}$. Therefore, $\operatorname{dim}_{\mathbb{C}} S_{1}=$ $\operatorname{dim}_{\mathbb{C}} S_{1}^{\prime}$. It is clear that $\pi_{1}(x y)=\pi_{1}(x) \pi_{1}(y)$ for any $x, y \in S_{1}$. Then π_{1} is an isomorphism from S_{1} to S_{1}^{\prime}. Assume that $x=x_{1}+x_{2}$, where $x \in S_{1}, x_{1} \in S_{1}^{\prime}$ and $x_{2} \in H_{1}^{\prime}$. Clearly, we have $S_{1}^{\prime} x_{2}=0$ and $H_{1}^{\prime} x_{2}=H_{1}^{\prime}\left(x-x_{1}\right)=H_{1}^{\prime} x \subseteq$ $H_{1}^{\prime} \cap S_{1}=0$. Thus $x_{2} \in L C(S)$. Therefore, $\lambda(x, x)=\lambda\left(x_{1}, x_{1}\right)$ or $\lambda(x, x)=$ $\lambda\left(x_{1}, x_{1}\right)+2 \lambda\left(x_{1}, x_{2}\right)$. Let $x_{1}=h_{1}+h_{2}$, where $h_{1} \in H_{1}$ and $h_{2} \in H_{1}^{\perp}$. It follows that $h_{1} \in L C\left(H_{1}\right) \subseteq L C(S)$, because $H_{1} h_{1}=H_{1}\left(x_{1}-h_{2}\right)=0$. Then we have

$$
\lambda\left(x_{1}, x_{2}\right)=\lambda\left(h_{1}+h_{2}, x_{2}\right)=\lambda\left(h_{1}, x_{2}\right)+\lambda\left(h_{2}, x_{2}\right)=0
$$

Therefore, $\lambda(x, x)=\lambda\left(x_{1}, x_{1}\right)=\lambda\left(\pi_{1}(x), \pi_{1}(x)\right)$, i.e., π_{1} preserves the bilinear form.

Furthermore, we have

$$
\begin{gathered}
S_{1} S_{1}=S_{1} S_{1}^{\prime}=S_{1}^{\prime} S_{1}=S_{1}^{\prime} S_{1}^{\prime} \\
S_{1} H_{1}^{\prime}=H_{1}^{\prime} S_{1}=S_{1}^{\prime} H_{1}=H_{1} S_{1}^{\prime}=0
\end{gathered}
$$

Applying the above method for $j=2, \ldots, n$, we can obtain the following theorem.

TheOrem 4.4. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center is isotropic. Suppose that $S=S_{1} \oplus \cdots \oplus S_{n}$ and $S=S_{1}^{\prime} \oplus \cdots \oplus S_{m}^{\prime}$, where $S_{i}, S_{j}^{\prime}, 1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of S. Then:
(1) $n=m$.
(2) Changing the subscripts if necessary, we can obtain

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} S_{j}=\operatorname{dim}_{\mathbb{C}} S_{j}^{\prime} \\
S_{j} S_{j}=S_{j} S_{j}^{\prime}=S_{j}^{\prime} S_{j}=S_{j}^{\prime} S_{j}^{\prime} \\
S_{j} S_{k}^{\prime}=S_{j}^{\prime} S_{k}=0, \quad j \neq k
\end{gathered}
$$

(3) The projections $\pi_{i}: S_{i} \rightarrow S_{i}^{\prime}, 1 \leq i \leq n$, are isomorphisms and preserve the bilinear form. Furthermore, $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is an isometry of S.

Proposition 4.5. Let (S, λ) be a decomposable pseudo-Riemannian superalgebra whose left center equals its center. If the left center is isotropic,
then there exist non-degenerate ideals S_{1} and S_{2} of S such that the decomposition $S=S_{1} \oplus S_{2}$ is orthogonal.

Proof. Since (S, λ) is decomposable, we have $S=S_{1} \oplus S_{2}$, where $\left.\lambda\right|_{S_{1} \times S_{1}}$ and $\left.\lambda\right|_{S_{2} \times S_{2}}$ are non-degenerate. Therefore, $S=S_{1} \oplus S_{1}^{\perp}$ and $S_{1} S_{1}^{\perp}=0$. If x is an arbitrary element of S_{1}^{\perp}, then $x=x_{\overline{0}}+x_{\overline{1}}=\left(x_{1}\right)_{\overline{0}}+\left(x_{1}\right)_{\overline{1}}+\left(x_{2}\right)_{\overline{0}}+\left(x_{2}\right)_{\overline{1}}$, where $\left(x_{1}\right)_{\overline{0}} \in\left(S_{1}\right)_{\overline{0}},\left(x_{1}\right)_{\overline{1}} \in\left(S_{1}\right)_{\overline{1}},\left(x_{2}\right)_{\overline{0}} \in\left(S_{2}\right)_{\overline{0}},\left(x_{2}\right)_{\overline{1}} \in\left(S_{2}\right)_{\overline{1}}$. Since both $S_{1}=\left(S_{1}\right)_{\overline{0}} \oplus\left(S_{1}\right)_{\overline{1}}$ and $S_{2}=\left(S_{2}\right)_{\overline{0}} \oplus\left(S_{2}\right)_{\overline{1}}$ are ideals, we have, for any $y \in\left(S_{1}\right)_{\alpha}, z \in S_{1}$,

$$
\begin{aligned}
\lambda\left(y x_{1}, z\right) & =\lambda\left(y\left(\left(x_{1}\right)_{\overline{0}}+\left(x_{1}\right)_{\overline{1}}\right), z\right)=\lambda\left(y\left(x_{1}\right)_{\overline{0}}, z\right)+\lambda\left(y\left(x_{1}\right)_{\overline{1}}, z\right) \\
& =-\lambda\left(\left(x_{1}\right)_{\overline{0}}, y z\right)-(-1)^{\alpha} \lambda\left(\left(x_{1}\right)_{\overline{1}}, y z\right) \\
& =\lambda\left(-x_{\overline{0}}+\left(x_{2}\right)_{\overline{0}}, y z\right)+(-1)^{\alpha} \lambda\left(-x_{\overline{1}}+\left(x_{2}\right)_{\overline{1}}, y z\right) \\
& =\lambda\left(\left(x_{2}\right)_{\overline{0}}, y z\right)+(-1)^{\alpha} \lambda\left(\left(x_{2}\right)_{\overline{1}}, y z\right) \\
& =-\lambda\left(y\left(x_{2}\right)_{\overline{0}}, z\right)-\lambda\left(y\left(x_{2}\right)_{\overline{1}}, z\right) \\
& =-\lambda\left(y\left(\left(x_{2}\right)_{\overline{0}}+\left(x_{2}\right)_{\overline{1}}\right), z\right)=0 .
\end{aligned}
$$

As $\left.\lambda\right|_{S_{1} \times S_{1}}$ is non-degenerate, we obtain $S_{1} x_{1}=0$. Then $x_{1}=\left(x_{1}\right)_{\overline{0}}+\left(x_{1}\right)_{\overline{1}} \in$ $L C(S)=Z(S)$. It follows that $x y=\left(\left(x_{1}\right)_{\overline{0}}+\left(x_{1}\right)_{\overline{1}}+\left(x_{2}\right)_{\overline{0}}+\left(x_{2}\right)_{\overline{1}}\right) y=0$ for any $y \in S_{1}$. Therefore, $S_{1}^{\perp} S_{1}=0$, i.e., S_{1}^{\perp} is an ideal of S. Since S is uniquely decomposable, we have $S_{2}=S_{1}^{\perp}$. Similarly, $S_{1}=S_{2}^{\perp}$.

Similarly to Theorem 4.4 and Proposition 4.5, we have the following results.

TheOrem 4.6. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center equals its center and is isotropic. Suppose that $S=S_{1} \oplus \cdots \oplus S_{n}$ and $S=S_{1}^{\prime} \oplus \cdots \oplus S_{m}^{\prime}$ are orthogonal decompositions of S, where S_{i}, S_{j}^{\prime}, $1 \leq i \leq n, 1 \leq j \leq m$, are indecomposable non-degenerate ideals of S. Then:
(1) $n=m$.
(2) Changing the subscripts if necessary, we can obtain

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} S_{j}=\operatorname{dim}_{\mathbb{C}} S_{j}^{\prime} \\
S_{j} S_{j}=S_{j} S_{j}^{\prime}=S_{j}^{\prime} S_{j}=S_{j}^{\prime} S_{j}^{\prime} \\
S_{j} S_{k}^{\prime}=S_{j}^{\prime} S_{k}=0, \quad j \neq k
\end{gathered}
$$

(3) The projections $\pi_{i}: S_{i} \rightarrow S_{i}^{\prime}, 1 \leq i \leq n$, are isomorphisms and preserve the bilinear form; moreover, $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is an automorphism of S, i.e., the decomposition is unique up to an isometry.

By Theorems 3.4 and 4.6, we can also obtain the following theorem.
TheOrem 4.7. Let (S, λ) be a pseudo-Riemannian superalgebra whose left center equals its center. Then the orthogonal decomposition of S into indecomposable non-degenerate ideals is unique up to an isometry.

Next we show how to construct a new one from two pseudo-Riemannian superalgebras whose left centers are isotropic.

Theorem 4.8. Let $\left(S_{1}, \lambda_{1}\right)$ and $\left(S_{2}, \lambda_{2}\right)$ be pseudo-Riemannian superalgebras whose left centers are isotropic, $S=S_{1} \oplus S_{2}$ and λ a supersymmetric bilinear form on S such that $\left.\lambda\right|_{S_{1} \times S_{1}}=\lambda_{1}$ and $\left.\lambda\right|_{S_{2} \times S_{2}}=\lambda_{2}$. If

$$
\lambda\left(S_{1} S_{1}, S_{2}\right)=\lambda\left(S_{2} S_{2}, S_{1}\right)=0
$$

then (S, λ) is a pseudo-Riemannian superalgebra whose left center is isotropic.

Proof. By Proposition 2.6 and since the left center of S is isotropic, we have $L C\left(S_{1}\right) \subseteq L C\left(S_{1}\right)^{\perp}=S_{1} S_{1}$. Notice that $\lambda_{1}(x, y)=0$ for any $x \in S_{\overline{0}}$, $y \in S_{\overline{1}}$. Thus there exist a basis

$$
\left\{e_{1}, \ldots, e_{i_{1}}, e_{i_{1}+1}, \ldots, e_{m_{1}}, e_{m_{1}+1}, \ldots, e_{m_{1}+i_{1}}\right\}
$$

of $\left(S_{1}\right)_{\overline{0}}$ and a basis

$$
\left\{u_{1}, \ldots, u_{i_{2}}, u_{i_{2}+1}, \ldots, u_{m_{2}}, u_{m_{2}+1}, \ldots, u_{m_{2}+i_{2}}\right\}
$$

of $\left(S_{1}\right)_{\overline{1}}$ such that

$$
\begin{aligned}
\lambda_{1}\left(e_{i}, e_{j}\right) & =\delta_{i j}, & & i_{1}+1 \leq i, j \leq m_{1} \\
\lambda_{1}\left(u_{l}, u_{k}\right) & =\delta_{l k}, & & i_{2}+1 \leq l, k \leq m_{2} \\
\lambda_{1}\left(e_{i}, e_{m_{1}+j}\right) & =\delta_{i j}, & & 1 \leq i, j \leq i_{1} \\
\lambda_{1}\left(u_{l}, u_{m_{2}+k}\right) & =\delta_{l k}, & & 1 \leq l, k \leq i_{2} \\
\lambda_{1}\left(e_{i}, e_{j}\right) & =0, & & 1 \leq i, j \leq i_{1} \\
\lambda_{1}\left(u_{l}, u_{k}\right) & =0, & & 1 \leq l, k \leq i_{2} \\
\lambda_{1}\left(e_{i}, e_{j}\right) & =0, & & m_{1}+1 \leq i, j \leq m_{1}+i_{1} \\
\lambda_{1}\left(u_{l}, u_{k}\right) & =0, & & m_{2}+1 \leq l, k \leq m_{2}+i_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
L C\left(S_{1}\right)_{\overline{0}} & =L\left(e_{1}, \ldots, e_{i_{1}}\right), \quad L C\left(S_{1}\right)_{\overline{1}}=L\left(u_{1}, \ldots, u_{i_{2}}\right) \\
\left(S_{1} S_{1}\right)_{\overline{0}} & =L\left(e_{1}, \ldots, e_{m_{1}}\right), \quad\left(S_{1} S_{1}\right)_{\overline{1}}
\end{aligned}=L\left(u_{1}, \ldots, u_{m_{2}}\right) .
$$

Similarly, there exist a basis

$$
\left\{h_{1}, \ldots, h_{i_{3}}, h_{i_{3}+1}, \ldots, h_{n_{1}}, h_{n_{1}+1}, \ldots, h_{n_{1}+i_{3}}\right\}
$$

of $\left(S_{2}\right)_{\overline{0}}$ and a basis

$$
\left\{v_{1}, \ldots, v_{i_{4}}, v_{i_{4}+1}, \ldots, v_{n_{2}}, v_{n_{2}+1}, \ldots, v_{n_{2}+i_{4}}\right\}
$$

of $\left(S_{2}\right)_{\overline{1}}$ such that

$$
\begin{aligned}
\lambda_{2}\left(h_{i}, h_{j}\right) & =\delta_{i j}, & & i_{3}+1 \leq i, j \leq n_{1}, \\
\lambda_{2}\left(v_{l}, v_{k}\right) & =\delta_{l k}, & & i_{4}+1 \leq l, k \leq n_{2}, \\
\lambda_{2}\left(h_{i}, h_{m_{1}+j}\right) & =\delta_{i j}, & & 1 \leq i, j \leq i_{3}, \\
\lambda_{2}\left(v_{l}, v_{m_{2}+k}\right) & =\delta_{l k}, & & 1 \leq l, k \leq i_{4}, \\
\lambda_{2}\left(h_{i}, h_{j}\right) & =0, & & 1 \leq i, j \leq i_{3}, \\
\lambda_{2}\left(v_{l}, v_{k}\right) & =0, & & 1 \leq l, k \leq i_{4}, \\
\lambda_{2}\left(h_{i}, h_{j}\right) & =0, & & n_{1}+1 \leq i, j \leq n_{1}+i_{3}, \\
\lambda_{2}\left(v_{l}, v_{k}\right) & =0, & & n_{2}+1 \leq l, k \leq n_{2}+i_{4},
\end{aligned}
$$

where

$$
\begin{aligned}
L C\left(S_{2}\right)_{\overline{0}} & =L\left(h_{n_{1}+1}, \ldots, h_{n_{1}+i_{3}}\right), \quad L C\left(S_{2}\right)_{\overline{1}}
\end{aligned}=L\left(v_{n_{2}+1}, \ldots, v_{n_{2}+i_{4}}\right), ~\left(S_{2} S_{2}\right)_{\overline{0}}=L\left(h_{i_{3}+1}, \ldots, h_{n_{1}+i_{3}}\right), \quad\left(S_{2} S_{2}\right)_{\overline{1}}=L\left(v_{i_{4}+1}, \ldots, v_{n_{2}+i_{4}}\right) .
$$

Since $\lambda\left(S_{1} S_{1}, S_{2}\right)=\lambda\left(S_{2} S_{2}, S_{1}\right)=0$ and λ is consistent, the matrix of λ with respect to the basis

$$
\left\{e_{1}, \ldots, e_{m_{1}+i_{1}}, h_{1}, \ldots, h_{n_{1}+i_{3}}, u_{1}, \ldots, u_{m_{2}+i_{2}}, v_{1}, \ldots, v_{n_{2}+i_{4}}\right\}
$$

of S is
where F and H are arbitrary matrices over \mathbb{C}, and F^{\prime} and H^{\prime} denote the transposes of F and H, respectively. An easy verification shows that $\operatorname{det} G$ $\neq 0$. Thus λ is a non-degenerate supersymmetric bilinear form such that the identity $(\sqrt{1.1})$ is satisfied. Hence (S, λ) is a pseudo-Riemannian superalgebra whose left center is isotropic.

Remark 4.9. Let (S, λ) be a pseudo-Riemannian superalgebra. If $S=$ $S_{1} \oplus S_{2}$, then it is easy to see that $\lambda\left(S_{1} S_{1}, S_{2}\right)=\lambda\left(S_{2} S_{2}, S_{1}\right)=0$.

REmARK 4.10. Let the notations be as above. If $L C\left(S_{1}\right)=0$ or $L C\left(S_{2}\right)$ $=0$, then the decomposition $S=S_{1} \oplus S_{2}$ is orthogonal.

Proof. If $L C\left(S_{1}\right)=0$, then $S_{1}=S_{1} S_{1}$. It follows that

$$
\lambda\left(S_{1}, S_{2}\right)=\lambda\left(S_{1} S_{1}, S_{2}\right)=\lambda\left(S_{1}, S_{1} S_{2}\right)\left(\text { or }-\lambda\left(S_{1}, S_{1} S_{2}\right)\right)=0
$$

Similarly, the result follows for $L C\left(S_{2}\right)=0$.

Acknowledgements. This research was partly supported by the National Natural Science Foundation of China (Grant No. 11171055), Natural Science Foundation of Jilin province (No. 201115006, 20130101068), Scientific Research Foundation for Returning Scholars of Ministry of Education of China and the Fundamental Research Funds for the Central Universities (No. 12SSXT139).

The authors thank Professors Yang Jiang and Ruimei Gao for their helpful comments and suggestions. We also give our special thanks to the referees for many helpful suggestions.

REFERENCES

[ABB] H. Albuquerque, E. Barreiro and S. Benayadi, Quadratic Lie superalgebras with a reductive even part, J. Pure Appl. Algebra 213 (2009), 724-731.
[AM] A. Aubert et A. Medina, Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J. (2) 55 (2003), 487-506.
[BB] H. Benamer and S. Benayadi, Double extension of quadratic Lie superalgebras, Comm. Algebra 27 (1999), 67-88.
[BPZ] A. Belavin, A. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333-380.
[CLZ] Z. Chen, K. Liang and F. Zhu, Algebras with pseudo-Riemannian bilinear forms, J. Korean Math. Soc. 48 (2011), 1-12.
[CZ1] Z. Chen and F. Zhu, Pseudo-Riemannian Novikov algebras, J. Phys. A 41 (2008), 1-9.
[CZ2] Z. Chen and F. Zhu, A note on pseudo-Riemannian associative fermionic Novikov algebras, Bull. Korean Math. Soc. 49 (2012), 353-358.
[DJ] P. Deligne and J. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, Amer. Math. Soc., New York, 1999, 41-97.
[F] P. Freund, Introduction to Supersymmetry, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1986.
[K] V. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.
[KMZ] V. Kac, C. Martinez and E. Zelmanov, Graded simple Jordan superalgebras of growth one, Mem. Amer. Math. Soc. 150 (2001), no. 711, x+140 pp.
[LC] J. Lin and Z. Chen, Leibniz algebras with pseudo-Riemannian bilinear forms, Front. Math. China 5 (2010), 103-115.
[Ma] Yu. Manin, Gauge Field Theory and Complex Geometry, 2nd ed., Grundlehren Math. Wiss. 289, Springer, Berlin, 1997.
[Mi] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329.
[S] A. Sagle, Nonassociative algebras and Lagrangian mechanics on homogeneous spaces, Algebras Groups Geom. 2 (1985), 478-494.
[V] V. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Math. 11, Amer. Math. Soc., New York, 2004.
[VS] W. Vasantha Kandasamy and F. Smarandache, Super Linear Algebra, InfoLearnQuest, Ann Arbor, MI, 2008.
[ZM] L. Zhu and D. Meng, Uniqueness of the decomposition of Lie superalgebras and quadratic Lie superalgebras, Sci. China Ser. A 45 (2002), 273-279.

Keli Zheng
School of Mathematics and Statistics
Northeast Normal University
130024 Changchun, P.R. China
and
Department of Mathematics
Northeast Forestry University
150040 Harbin, P.R. China
E-mail: zhengkl561@nenu.edu.cn

Liangyun Chen (corresponding author),
Yongzheng Zhang
School of Mathematics and Statistics
Northeast Normal University
130024 Changchun, P.R. China
E-mail: chenly640@nenu.edu.cn
zhyz@nenu.edu.cn

[^0]: 2010 Mathematics Subject Classification: Primary 17A30; Secondary 17A70, 16W55, 17D99.
 Key words and phrases: pseudo-Riemannian superalgebra, indecomposable ideal, orthogonal decomposition, isometry.

