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QCH KÄHLER MANIFOLDS WITH κ = 0

BY

WŁODZIMIERZ JELONEK (Kraków)

Abstract. The aim of this paper is to describe all Kähler manifolds with quasi-con-
stant holomorphic sectional curvature with κ = 0.

1. Introduction. The aim of the present paper is to describe all con-
nected Kähler manifolds (M, g, J) admitting a global, 2-dimensional, J-
invariant distribution D having the following property: The holomorphic
curvature K(π) = R(X, JX, JX,X) of any J-invariant 2-plane π ⊂ TxM ,
where X ∈ π and g(X,X) = 1, depends only on the point x and the number
|XD| =

√
g(XD, XD), where XD is the orthogonal projection of X on D. In

this case we have
R(X, JX, JX,X) = φ(x, |XD|)

where φ(x, t) = a(x) + b(x)t2 + c(x)t4 and a, b, c are smooth functions on M .
Also R = aΠ + bΦ + cΨ for certain curvature tensors Π,Φ, Ψ ∈

⊗4 X∗(M)
of Kähler type. The investigation of such manifolds, called QCH Kähler
manifolds, was started by G. Ganchev and V. Mihova [G-M-1], [G-M-2]. In
[J-1] we partially classify QCH manifolds with non-vanishing invariant κ
of the distribution D (see also [G-M-2]). In that case the distribution D is
integrable and the foliation induced by D turns out to be a holomorphic,
homothetic foliation by curves.

In the present paper we shall investigate QCH Kähler manifolds satisfying
the condition κ = 0. It turns out that from the results in [G-M-1] it easily
follows that in that case a, b are constant, and if b 6= 0 andM is complete and
simply connected with dimM ≥ 6 then M = Ma ×Σ where Ma is a Kähler
manifold of constant holomorphic curvature a 6= 0 and Σ is a Riemannian
surface.

If b = 0 then the situation is much more complicated and we shall mainly
investigate the case where the distribution D is integrable or M is complete.
If D is integrable then M is locally a manifold with constant holomorphic
sectional curvature or a productM0×Σ whereM0 has holomorphic sectional
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curvature 0 and Σ is a Riemannian surface. If a = b = 0, c 6= 0 on M and
(M, g, J) is complete and simply connected then M is a product Cn−1 ×Σ
where Σ has non-vanishing scalar curvature. If a > 0, b = 0 and (M, g)
is complete then (M, g, J) has constant holomorphic curvature. If a = 0,
b = 0 and M is complete then M is the union of a manifold of constant
holomorphic sectional curvature 0 and a manifold which is a local product
of a (2n− 2)-manifold of constant holomorphic sectional curvature 0 and a
Riemannian surface Σ.

2. The invariant κ. Let (M, g, J) be a 2n-dimensional Kähler manifold
with a 2-dimensional J-invariant distribution D. Let X(M) denote the alge-
bra of all differentiable vector fields onM , and Γ (D) the set of local sections
of the distribution D. If X ∈ X(M) then we shall denote by X[ the 1-form
φ ∈ X∗(M) dual to X with respect to g, i.e. φ(Y ) = X[(Y ) = g(X,Y ). By Ω
we shall denote the Kähler form of (M, g, J), i.e. Ω(X,Y ) = g(JX, Y ). Let
E denote the distribution D⊥, which is a 2(n − 1)-dimensional, J-invariant
distribution.

By h,m we shall denote the tensors h = g ◦ (pD× pD),m = g ◦ (pE × pE),
where pD, pE are the orthogonal projections on D, E respectively. It follows
that g = h+m. By ω we shall denote the Kähler form of D, i.e. ω(X,Y ) =
h(JX, Y ), and by Ωm the Kähler form of E , i.e. Ωm(X,Y ) = m(JX, Y ).

For any local section X ∈ Γ (D) we define divE X = trm∇X[ =
mij∇eiX[(ej) where {e1, . . . , e2(n−1)} is any basis of E and [mij ] is a ma-
trix inverse to [mij ], where mij = m(ei, ej). Note that if f ∈ C∞(M) then
divE(fX) = f divE X for X ∈ Γ (D).

Let ξ ∈ Γ (D) be a unit local section of D. Then {ξ, Jξ} is an orthonormal
basis of D. Let η(X) = g(ξ,X) and Jη = −η◦J , which means that Jη(X) =
g(Jξ,X). Let us denote by κ the function

κ =
√

(divE ξ)2 + (divE Jξ)2.

Then κ does not depend on the choice of the section ξ. Note that κ = 0 if
and only if divE ξ = 0 for all ξ ∈ Γ (D).

3. Curvature tensor of a QCH Kähler manifold. We shall recall
some results from [G-M-1]. Let R(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z and write

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

If R is the curvature tensor of a QCH Kähler manifold (M, g, J), then there
exist functions a, b, c ∈ C∞(M) such that

(1) R = aΠ + bΦ+ cΨ,
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where Π is the standard Kähler tensor of constant holomorphic curvature,
i.e.

Π(X,Y, Z, U) = 1
4

(
g(Y, Z)g(X,U)− g(X,Z)g(Y,U)

+ g(JY, Z)g(JX,U)− g(JX,Z)g(JY, U)− 2g(JX, Y )g(JZ,U)
)
,

the tensor Φ is defined by

Φ(X,Y, Z, U) = 1
8

(
g(Y,Z)h(X,U)− g(X,Z)h(Y, U)

+ g(X,U)h(Y, Z)− g(Y, U)h(X,Z) + g(JY, Z)ω(X,U)

− g(JX,Z)ω(Y,U) + g(JX,U)ω(Y,Z)− g(JY, U)ω(X,Z)

− 2g(JX, Y )ω(Z,U)− 2g(JZ,U)ω(X,Y )
)
,

and finally

Ψ(X,Y, Z, U) = −ω(X,Y )ω(Z,U) = −(ω ⊗ ω)(X,Y, Z, U).

If (M, g, J) is a QCH Kähler manifold then one can show that the Ricci
tensor r of (M, g, J) satisfies the equation

r(X,Y ) = λm(X,Y ) + µh(X,Y )

where λ = n+1
2 a + b

4 , µ = n+1
2 a + n+3

4 b + c are eigenvalues of the Ricci
tensor (see [G-M-1, Corollary 2.1 and Remark 2.1]). In particular the distri-
butions E ,D are eigendistributions of the Ricci tensor corresponding to the
eigenvalues λ, µ.

Now let us assume that (M, g, J) is a QCH Kähler manifold of dimension
2n ≥ 6 and let ξ be a local unit section of D and η(Z) = g(ξ, Z). Let us
define two 1-forms ε, ε∗ by

ε(Z) = g(pE(∇ξξ), Z) = g(∇ξξ, Z)− pJη(Z),

ε∗(Z) = g(pE(∇JξJξ), Z) = g(∇JξJξ, Z)− p∗η(Z),

where p = g(∇ξξ, Jξ),p∗ = g(∇JξJξ, ξ) and pE denotes the orthogonal pro-
jection on E . Note that the distribution D is integrable if and only if ε+ε∗ = 0
(see [G-M-1, Lemma 3.3]). In fact for Z ∈ Γ (E) we have

g([ξ, Jξ], Z) = g(∇ξJξ −∇Jξξ, Z) = g(J∇ξJξ − J∇Jξξ, JZ)

= −g(∇ξξ +∇JξJξ, JZ) = −(ε(JZ) + ε∗(JZ)).

Let {Zλ} be any complex basis of the complex subbundle E1,0 of the com-
plex tangent bundle T cM = C ⊗ TM . We also write Zλ̄ = Z̄λ. Then the
Bianchi identity for the tensor R of the form (1) gives in the case κ = 0 and
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dimM ≥ 6 the following relations (see [G-M-1, Theorem 3.5]):

∇a = 0, ∇b = 0,(2)
b∇Zλη(Zµ) = 0, c∇Zλη(Zµ) = 0,(3)
b∇Zλη(Zµ̄) = 0, c∇Zλη(Zµ̄) = 0,(4)

bε(Zλ) = 0, bε∗(Zλ) = 0,(5)
(6) c(ε(Zλ) + ε∗(Zλ)) = dc(Zλ).

Hence we will obtain

Theorem 1. Let (M, g, J) be a QCH Kähler manifold with κ = 0 and
dimM ≥ 6. If b 6= 0 and M is complete and simply connected then M =
Ma×Σ whereMa is a Kähler manifold of constant holomorphic sectional cur-
vature a 6= 0 and Σ is a Riemannian surface. Conversely, every such product
is a QCH manifold with κ = 0 with respect to the distribution TΣ ⊂ TM .

Proof. From (2) we obtain a = const, b = const1. If b 6= 0 then ∇Zλη(Zµ)
= 0, ∇Zλη(Zµ̄) = 0, ε = 0, ε∗ = 0. It follows that the distribution D
is integrable and totally geodesic. In fact if ε = 0, ε∗ = 0 then ∇ξξ = pJξ,
∇JξJξ = p∗ξ and consequently ∇ξJξ = −pξ, ∇Jξξ = −p∗Jξ. Thus if X,Y ∈
Γ (D) then h(X,Y ) = pE(∇XY ) = 0 and D is totally geodesic.

On the other hand since ∇Zλη(Zµ̄) = 0 and ∇Zλη(Zµ) = 0 we obtain
g(∇Xξ, Y ) = 0 for X,Y ∈ Γ (E). Analogously g(∇XJξ, Y ) = 0 for X,Y ∈
Γ (E). Hence g(ξ,∇XY ) = g(Jξ,∇XY ) = 0 and the foliation E is totally
geodesic with leaves of constant holomorphic curvature a. Now the result
follows from the de Rham theorem (see [K-N]). Note that for M = Ma ×Σ
we have R = aΠ − 2aΦ + (1

2τ + a)Ψ where τ is the scalar curvature of Σ
(see [J-2]).

Now we consider the case dimM ≥ 6 and b = 0. Let M0 = {x ∈ M :
c(x) = 0}. Then M0 is closed in M and let U = M − M0 = {x ∈ M :
c(x) 6= 0}. Note that µ−λ = c where λ, µ are eigenvalues of the Ricci tensor
of (M, g, J) corresponding respectively to eigensubbundles E ,D.

In what follows we assume that the distribution D is integrable. From
(6) this means that ∇c ∈ Γ (D). We will show that in U the distribution
D induces a holomorphic, homothetic foliation by curves (see [Ch-N]), and
moreover LV g = 0 on TD⊥ = TE and LV J(TM) ⊂ D for every V ∈ Γ (D).

From (3)–(4) it follows that g(∇Xξ, Y ) = 0 for every X,Y ∈ Γ (E) and
therefore Lξg = 0 on TE . Analogously LJξg = 0 on TE and consequently
LV g = 0 on TE for V ∈ Γ (D). Note that LV J = J ◦ ∇V −∇V ◦ J = [J, T ]
where TX = ∇XV . It is enough to show that LξJTM ⊂ D. From (2.5) it
is clear that ∇Xξ ∈ D for X ∈ E and LξJ(E) ⊂ D. We also have LξJξ =
J∇ξξ −∇Jξξ = [ξ, Jξ] ∈ D if D is integrable. Hence the result follows.
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Let us define an almost complex structure J ′ on M by J ′X = JX if
X ∈ E and J ′X = −JX if X ∈ D. It is clear that J commutes with J ′.

Proposition 1. The manifold (U, g, J ′) is an almost Kähler manifold
belonging to the class AK2, i.e.

(7) R(X,Y, Z,W )−R(J ′X, J ′Y,Z,W )

= R(J ′X,Y, J ′Z,W ) +R(J ′X,Y, Z, J ′W )

for all X,Y, Z,W ∈ TU . The distribution E is included in the Kähler nullity
of J ′. If ∇J ′ 6= 0 then (U, g, J ′) is a normal almost Kähler manifold.

Proof. The Ricci form ρ of (U, g, J) equals ρ = λΩm+µω where λ = n+1
2 a

is constant and µ = λ+ c. From dρ = 0 we get (note that dω + dΩm = 0)

dω = −d ln |λ− µ| ∧ ω = −d ln |c| ∧ ω.
Hence if D is integrable we obtain dω = dΩm = 0 and (U, g, J ′) is an almost
Kähler manifold. Since J commutes with J ′ it is easy to prove (7).

Now note that ∇XJ ′ = 0 for every X ∈ E . Since J = J ′ on E and the
foliation induced by E is totally geodesic we get ∇XJ ′Y = 0 for every Y ∈ E .
If ξ ∈ D then

(∇XJ ′)ξ = ∇X(J ′ξ)− J ′(∇Xξ) = −∇X(Jξ) + J(∇Xξ) = 0

since ∇Xξ ∈ D if X ∈ E .
Now we show that (U, g, J ′) is a normal almost Kähler manifold, i.e.

∇J ′ ◦ J ′(D,D) ⊂ E (see [N]) assuming that ∇J ′ 6= 0. It is enough to show
that ∇ξJ ′η ∈ E if ξ, η ∈ D. Indeed,

∇ξJ ′η = −∇ξ(Jη)− J ′(∇ξη|D +∇ξη|E)
= −J(∇ξη) + J(∇ξη|D)− J(∇ξη|E) = −2J(∇ξη|E) ∈ E .

Theorem 2. Let (M, g, J) be a QCH manifold with dimM ≥ 6, κ = 0,
b = 0 and integrable distribution D. If a = 0 then M is the union of a man-
ifold of constant holomorphic sectional curvature 0 and a manifold which is
a local product of a (2n− 2)-manifold of constant holomorphic sectional cur-
vature 0 and a Riemannian surface Σ. If a 6= 0 then (M, g, J) has constant
holomorphic sectional curvature a.

Proof. Write U = U1 ∪ U2 where U1 = {x ∈ U : ∇J ′(x) = 0} and
U2 = {x ∈ U : ∇J ′ 6= 0}. If intU1 6= ∅ then in intU1, g is locally a product
metric and consequently a = −b/2 = 0. Hence if a 6= 0 then intU1 = ∅. The
manifold (U2, g, J

′) is a normal almost Kähler non-Kähler manifold whose
opposite almost Kähler structure is Kähler. Such manifolds are described
in [N]. In particular D is spanned locally by two holomorphic Killing vector
fields ξ, η which commute, [ξ, η] = 0. It follows (see [Bes] for the proof in
the compact case, but the result also holds locally) that ρ(ξ, η) = µω(ξ, η) =
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−1
2δ(J [ξ, η]) = 0 and consequently µ = 0, which means that c = −n+1

2 a and
c 6= 0 is constant. In particular a 6= 0.

The metric of the manifold (U2, g, J
′) can locally be described as follows

(see [N]). Let (Ma, ga, Ja) be a space of constant holomorphic curvature a 6= 0
and f : Ma → C be a holomorphic function f = u + iv such that u > 0.
Then M = Ma × R2 with the metric

g = ga + udx⊗2 +
1

u
(dy + vdx)⊗2

where x, y are standard coordinates on R2, and the complex structure J
which coincides with the complex structure Ja of Ma on Ma and which is
given by J(dx) = 1

u(dy + vdx) on R2. The Kähler form is Ω = ωa + dx ∧ dy
where ωa is the Kähler form of (Ma, ga, Ja). From Proposition 7.2 in [N] it
follows that a normal AK2 manifold is locally a product of a Kähler manifold
and a strictly normal AK2 manifold. It follows that (M, g, J ′) is strictly
normal. On the other hand it follows from [N] that (M, g, J ′) cannot be
strictly normal, since dimMa ≥ 4 and no holomorphic function f : Ma → C
can be immersive.

Corollary. Let (M, g, J) be a QCH manifold with dimM ≥ 6, κ = 0
and constant scalar curvature. Then two cases are possible:

(a) (M, g, J) has constant holomorphic sectional curvature,
(b) (M, g, J) is locally a product Ma×Σ where Ma is a Kähler manifold

of constant holomorphic sectional curvature a and Σ is a Riemannian
surface of constant scalar curvature.

Proof. The scalar curvature is constant if and only if c is constant. From
(6) it follows that if c 6= 0 is constant then D is integrable.

Remark. If we take Σ with non-zero scalar curvature τ on Σ − V and
which vanishes on some closed set V ⊂ Σ with non-empty interior then
Cn−1 × Σ is a QCH manifold with κ = 0, b = 0, a = 0 for which we have
M0 = Cn−1×V and U1 = Cn−1× (Σ−V ) where on Cn−1 there is the stan-
dard Euclidean metric. The curvature tensor is R = 1

2τΨ . Note that QCH
manifolds with κ = 0 and constant scalar curvature are locally symmetric
(if a ≥ 0 and M is compact this also follows from [O]).

Next we consider general QCH manifolds with a = b = 0.

Theorem 3. A QCH-manifold with a = b = 0 and c 6= 0 on M is
is a semi-symmetric manifold foliated with (2n − 2)-dimensional Euclidean
manifolds (see [Sz]). Conversely, every Kähler manifold foliated with (2n−2)-
dimensional Euclidean spaces is a QCH manifold with a = b = 0 and c 6= 0
for which D = V 1, where V 1 is a subbundle of TM irreducible with respect
to the primitive holonomy group.
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Proof. A QCH-manifold with a = b = 0 satisfies R.R =
(
a+ b

2

)
Π.R = 0

(see [J-2]). If c 6= 0 on M then (M, g, J) is a manifold foliated with (2n− 2)-
dimensional Euclidean manifolds (see [Sz]). The primitive holonomy group
of (M, g, J) at a point x ∈ M is Kx = SO(2) = {cos tpD + sin tJpD} and
V 0 = E , V 1 = D since E = {X : R(U, V )X = 0 for all U, V ∈ TM}.

Conversely, every Kähler manifold foliated with (2n − 2)-dimensional
Euclidean spaces is a QCH manifold with a = b = 0 and c 6= 0 for which
D = V 1. In fact since J ◦ R(U, V ) = R(U, V ) ◦ J it follows that JV 0 = V 0

and JV 1 = V 1. Set D = V 1 and let X ∈ TM with ‖X‖ = 1, X = XE +XD.
Then

R(X, JX, JX,X) = R(XD, JXD, JXD, XD) = ‖XD‖4c
where c is the sectional curvature of D. It follows that R = cΨ with respect
to D = V 1.

Theorem 4. Let (M, g, J) be a complete, simply connected Kähler semi-
symmetric manifold foliated with (2n − 2)-dimensional Euclidean spaces.
Then (M, g) is the product of (2n − 2)-dimensional Euclidean space and a
Riemannian surface with non-vanishing scalar curvature.

Proof. From [Sz] it follows that the space S=span{pE(∇XY ) : X,Y ∈D}
is at most 1-dimensional. We have to show that the hyperbolic and parabolic
parts Mh and Mp of M are empty. We shall show that in the Kähler case
JS = S. In fact, if pE(∇XY ) = ξ ∈ S then pE(∇XJY ) = JpE(∇XY ) = Jξ ∈
S and consequently JS = S. It follows that S cannot be 1-dimensional and
S = 0. Thus D is totally geodesic. Since V 0 = E is also totally geodesic, it
follows from the de Rham theorem that (M, g) is the product of (2n − 2)-
dimensional Euclidean space and a Riemannian surface with non-vanishing
scalar curvature.

Theorem 5. Let (M, g, J) be a QCH Kähler manifold with κ = 0, and
dimM ≥ 6 and U = {x : c(x) 6= 0}. Let x0 ∈ U and mx0 ∈ Tx0M ∩ Ex0 be a
unit vector. Then there exists a neighbourhood V ⊂ U of x0 and a unit field
m ∈ Γ (E|V ) such that ∇mm = 0 and m(x0) = mx0.

Proof. Let Σ ⊂ U be a hypersurface perpendicular tomx0 and letm be a
unit vector field on Σ with values in E . Let E ⊂ TM|Σ be the 1-dimensional
vector bundle spanned by m. Let us consider the map φ : E →M defined by
φ(X) = expp(X)X. There exists a neighbourhood W of 0x0 in E such that
φ|W is a diffeomorphism and φ(W ) ⊂ U . Define m(φ(X)) = d

φ(X)
p(X)mp(X)

where d is parallel translation along the curve d(t) = expp(X) tX. Note that
∇mm = 0 and m ∈ Γ (E) since E|U is totally geodesic.

Define on U the operator Bm(X) = pD(∇Xm). Note that Bm(Y ) = 0 if
Y ∈ E . Let m be as in Theorem 4. Then (∇mBm)(Y ) = 0 if Y ∈ E and to
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find Bm it is sufficient to consider Bm|D. We get, for X ∈ Γ (D),

∇mBm(X) +Bm(∇mX) = ∇mpD(∇Xm) = pD(∇m∇Xm)

= pD(R(m,X)m+∇X∇mm+∇[X,m]m)

− 1
4aX + pD(∇∇mXm)− pD(∇∇Xmm)

− 1
4aX −B

2
m(X) +Bm(∇mX).

LetX,Y be a parallel basis of unit vectors along d(t) = expx tm. Such a basis
exists in U . If m(t) = ḋ then Bm(t) can be considered as a 2×2 matrix B(t)
by the choice of parallel basis. This matrix satisfies the ordinary differential
equation

(8) B′ +B2 = −1
4aI.

Now let ξ be a section of the bundle E . Then R(X, ξ)Y = aΠ(X, ξ)Y .
Let X,Y, Z ∈ TM . Then for B(X) = pD(∇Xξ) we get

∇ZR(X, ξ)Y +R(X,B(Z))Y +R(X, pE(∇Zξ))
= aΠ(X,B(Z))Y + aΠ(X, pE(∇Zξ))Y.

Consequently,
∇ZR(X, ξ)Y = −cΨ(X,B(Z))Y.

Hence

∇ξR(X,Y )Z = −∇YR(ξ,X)Z −∇XR(Y, ξ)Z

= cΨ(B(Y ), X)Z + cΨ(Y,B(X))Z

= −cΨ(B(X), Y )Z − cΨ(X,B(Y ))Z

= −c trBΨ(X,Y )Z.

Now let x0 ∈ U and mx0 ∈ Ex0 be a unit vector. Let d(t) = expx0(tmx0)

and m(t) = ḋ(t). Then

(9)
dc

dt
= −c trBm(t)

and consequently

(10) c(d(t)) = c(x0) exp
(
−
t�

0

trBm(s) ds
)
.

It follows that if (M, g, J) is complete and d is a geodesic such that d(0) ∈ U ,
ḋ(0) ∈ Ex0 then im d ⊂ U . In particular E|U is integrable and its leaves Σ
are complete and contained in U if M is complete.

Let S be the distribution defined by

S = span{pE∇XX, pE∇XY, pE∇YX, pE∇Y Y }
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where X,Y = JX is an orthonormal local basis of D. The dimension of S
cannot be constant. Note that dimS ≤ 4. It is easy to see that pE(∇c) ∈ S,
JpE(∇c) ∈ S and JS = S. Note also that pE([X, JX]) = JpE(∇ ln c).

Theorem 6. Let (M, g, J) be a QCH Kähler manifold with κ = 0 and
dimM ≥ 6. If b = 0 and a > 0 then M cannot be complete unless it is of
constant holomorphic curvature. If M is complete and a = 0, b = 0 then
M is the union of a manifold of constant holomorphic sectional curvature 0
and a manifold which is a local product of a (2n − 2)-manifold of constant
holomorphic sectional curvature 0 and a Riemannian surface Σ.

Proof. Let x ∈ U = {x : c(x) 6= 0}. Let m0 ∈ S⊥x ∩ Ex. Let m be
constructed as in Theorem 5, m(x) = m0 and let d(t) = expx(tm0). Let
m(t) = ḋ(t) and B(t) be the 2×2 matrix corresponding to Bm by choosing a
parallel orthonormal basis of D along d. Then B(0) = 0 and B′+B2 = −1

4aI.
Consequently, B(t) = −γ tan(γt)I if a = 4γ2 > 0, B(t) = 0 if a = 0, and
B(t) = γ tanh(γt)I if a = −4γ2 < 0 where γ > 0.

Hence if dimM ≥ 8 and U 6= ∅ then M cannot be complete if a > 0
since the solution B(t) = −γ tan(γt)I of equation (8) with initial condition
B(0) = 0 is defined only on (− 1

2γπ,
1

2γπ).
If dimM = 6 and a = 4γ2 > 0 note that the solution of (8) with initial

condition B(0) = B0 is

B(t) = γ(cos(γt)B0 − γ sin(γt)I)(sin(γt)B0 + γ cos(γt)I)−1.

If B0 has a real eigenvalue different from 0 then B(t) is not defined on the
whole of R. On the other hand if dimSx ≥ 2 then as in [Sz] one can prove
that there exists m0 ∈ S⊥x ∩ Ex such that Bm0 = B0 has a nonzero real
eigenvalue. It follows that S = 0 and consequently D is totally geodesic and
in particular integrable. Thus (M, g, J) is a complete manifold of constant
holomorphic curvature. If a = 0 we prove as in Theorem 3 that S = 0
in U = {x : c(x) 6= 0} and consequently D|U is totally geodesic, and the
theorem follows.

We finish by giving a second proof of Theorem 2. Let U = {x : c(x) 6= 0}
and let x ∈ U . First we assume that a 6= 0. Since pE(∇c) = 0 we have
dimSx ≤ 2. Let m0 ∈ S⊥x ∩ Ex with ‖m0‖ = 1. Then Bm0 = 0 and we
deduce from (10) that along the geodesic d(t) = expx(tm0) we get c(d(t)) =
c(x)/ cos(γt)2 if a = 4γ2 and c(d(t)) = c(x)/cosh(γt)2 if a = −4γ2 where
γ > 0. On the other hand, since pE(∇c) = 0 the function c is constant on the
leaves of the foliation E . The geodesic d is contained in a leaf of the foliation
E and c is not constant on d, which gives a contradiction. Hence U = ∅ and
(M, g, J) has constant holomorphic curvature. If a = 0, S 6= 0 then since
BJm0 = J ◦ Bm0 using the results of [Sz] one can easily prove that there
exists m0 ∈ S such that trBm(t) 6= 0 for t close to 0. Consequently, from (9)
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we again infer that c is not constant on d, a contradiction. Hence S = 0 and
D is totally geodesic in U , which finishes the proof.
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