ON THE INDEX OF AN ODD PERFECT NUMBER

By
 FENG-JUAN CHEN (Suzhou) and YONG-GAO CHEN (Nanjing)

Abstract

Suppose that N is an odd perfect number and q^{α} is a prime power with $q^{\alpha} \| N$. Define the index $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$. We prove that m cannot take the form $p^{2 u}$, where u is a positive integer and $2 u+1$ is composite. We also prove that, if q is the Euler prime, then m cannot take any of the 30 forms $q_{1}, q_{1}^{2}, q_{1}^{3}, q_{1}^{4}, q_{1}^{5}, q_{1}^{6}, q_{1}^{7}, q_{1}^{8}, q_{1} q_{2}, q_{1}^{2} q_{2}$, $q_{1}^{3} q_{2}, q_{1}^{4} q_{2}, q_{1}^{5} q_{2}, q_{1}^{2} q_{2}^{2}, q_{1}^{3} q_{2}^{2}, q_{1}^{4} q_{2}^{2}, q_{1} q_{2} q_{3}, q_{1}^{2} q_{2} q_{3}, q_{1}^{3} q_{2} q_{3}, q_{1}^{4} q_{2} q_{3}, q_{1}^{2} q_{2}^{2} q_{3}, q_{1}^{2} q_{2}^{2} q_{3}^{2}, q_{1} q_{2} q_{3} q_{4}$, $q_{1}^{2} q_{2} q_{3} q_{4}, q_{1}^{3} q_{2} q_{3} q_{4}, q_{1}^{2} q_{2}^{2} q_{3} q_{4}, q_{1} q_{2} q_{3} q_{4} q_{5}, q_{1}^{2} q_{2} q_{3} q_{4} q_{5}, q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}, q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}$, where $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}$ are distinct odd primes. A similar result is proved if q is not the Euler prime. These extend recent results of Broughan, Delbourgo, and Zhou. We also pose a related problem.

1. Introduction. For a positive integer N, let $\sigma(N)$ be the sum of all positive divisors of N. We call N perfect if $\sigma(N)=2 N$. It is well known that an even integer N is perfect if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where p and $2^{p}-1$ are both primes. The existence of odd perfect numbers is one of the oldest open problems. If N is an odd perfect number, Euler gave the standard factorization of $N=\gamma_{0}^{\tau_{0}} \gamma_{1}^{2 \tau_{1}} \cdots \gamma_{s}^{2 \tau_{s}}$, where $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{s}$ are distinct odd primes and $\gamma_{0} \equiv \tau_{0} \equiv 1(\bmod 4)$. We call $\gamma_{0}^{\tau_{0}}$ the Euler factor of N, and γ_{0} the Euler prime. In 2007, Nielsen [Ni2] proved that $s \geq 8$. This has been superseded recently by proving that $s \geq 9$ (see Nielsen [Ni1]). Ochem and Rao OR proved that there are no odd perfect numbers below 10^{1500}.

Let N be an odd perfect number with $q^{\alpha} \| N$, where q^{α} is a prime power and $q^{\alpha} \| N$ means that $q^{\alpha} \mid N$ and $q^{\alpha+1} \nmid N$. Since $\sigma(N)=2 N$, we have

$$
\sigma\left(N / q^{\alpha}\right) \sigma\left(q^{\alpha}\right)=\frac{2 N}{q^{\alpha}} \cdot q^{\alpha} .
$$

By $\left(q^{\alpha}, \sigma\left(q^{\alpha}\right)\right)=1$, we have $q^{\alpha} \mid \sigma\left(N / q^{\alpha}\right)$. Define the index $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$. Then m is a positive integer and

$$
\begin{equation*}
m \sigma\left(q^{\alpha}\right)=\frac{2 N}{q^{\alpha}} . \tag{1.1}
\end{equation*}
$$

Dris and Luca DL proved that $m \geq 6$. Chen and Chen [CC improved

[^0]Key words and phrases: odd perfect number, Euler prime.
the result of DL] by showing that $m \neq q_{1}, q_{1}^{2}, q_{1}^{3}, q_{1}^{4}, q_{1} q_{2}, q_{1}^{2} q_{2}$, where q_{1}, q_{2} are primes. By (1.1), $2 \nmid m$ if and only if q is the Euler prime. Recently, Broughan, Delbourgo and Zhou BDZ] extended the list by proving the following theorem.

Theorem A. Suppose that N is an odd perfect number and q^{α} is a prime power with $q^{\alpha} \| N$. Let $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$.
(1) If q is the Euler prime, then m cannot take any of the eleven forms

$$
q_{1}, q_{1}^{2}, q_{1}^{3}, q_{1}^{4}, q_{1}^{5}, q_{1}^{6}, q_{1} q_{2}, q_{1}^{2} q_{2}, q_{1}^{3} q_{2}, q_{1}^{2} q_{2}^{2}, q_{1} q_{2} q_{3}
$$

where q_{1}, q_{2}, q_{3} are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power greater than 1 , then m cannot take any of the seven forms

$$
2,2 q_{1}, 2 q_{1}^{2}, 2 q_{1}^{3}, 2 q_{1}^{4}, 2 q_{1} q_{2}, 2 q_{1}^{2} q_{2}
$$

where q_{1}, q_{2} are distinct odd primes.
(3) If q is not the Euler prime and the Euler prime divides N to the power 1 , then m cannot take any of the five forms

$$
2,2 q_{1}, 2 q_{1}^{2}, 2 q_{1}^{3}, 2 q_{1} q_{2}
$$

where q_{1}, q_{2} are distinct odd primes.
In this paper, we first prove two general theorems and then extend the above list as a corollary.

Theorem 1.1. Suppose that N is an odd perfect number and q^{α} is a prime power with $q^{\alpha} \| N$. Let $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$. Then m cannot take the form $p^{2 u}$, where u is a positive integer and $\sigma\left(p^{2 u}\right)$ is composite. In particular, m cannot take the form $p^{2 u}$, where u is a positive integer and $2 u+1$ is composite.

Motivated by Theorem 1.1, we pose the following problem.
Problem 1.2. Is there any odd prime q such that

$$
\frac{p^{q}-1}{p-1}
$$

is always composite for all primes p ?
If q is such an odd prime, then m in Theorem 1.1 cannot take the form p^{q-1}.

Theorem 1.3. Suppose that N is an odd perfect number and q^{α} is a prime power with $q^{\alpha} \| N$. Let $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}=2^{\beta} q_{1}^{\beta_{1}} \cdots q_{u}^{\beta_{u}}$, where q_{1}, \ldots, q_{u} are distinct odd primes and $\beta, \beta_{1}, \ldots, \beta_{u}$ are integers with $\beta_{1} \geq$ $\cdots \geq \beta_{v}>\beta_{v+1}=\cdots=\beta_{u}=1$ and $\beta \in\{0,1\}$. If $2 \mid m$ and the Euler prime divides N to the power 1 , let $w=1$; otherwise, let $w=0$. Then
(i) $v+w+\beta_{1}+\cdots+\beta_{u}>k_{1}(s)$, where

$$
k_{1}(s)=\lfloor s-1-(\log (s+2)-\log 2) / \log 3\rfloor ;
$$

(ii) $u+w+\beta_{1}+\cdots+\beta_{u}>k_{2}(s)$, where

$$
k_{2}(s)=\lfloor s-1-(\log (s+2)-\log 3) / \log 4\rfloor ;
$$

(iii) $v+\beta_{1}+\cdots+\beta_{u}>k_{3}(s)$ if $2 \nmid m$, where

$$
k_{3}(s)=\lfloor s-1-(\log (s+2)-\log 4) / \log 3\rfloor .
$$

Here $\lfloor x\rfloor$ denotes the largest integer not exceeding x.
In the following corollary, we underline the terms excluded by the condition $s \geq 9$.

Corollary 1.4. Suppose that N is an odd perfect number and q^{α} is a prime power with $q^{\alpha} \| N$. Let $m=\sigma\left(N / q^{\alpha}\right) / q^{\alpha}$.
(1) If q is the Euler prime, then m cannot take any of the 19 forms

$$
\begin{aligned}
& \frac{q_{1}^{7}, q_{1}^{8}, q_{1}^{4} q_{2}, q_{1}^{5} q_{2}}{\underline{q_{1}^{3}}, q_{2}^{2}, q_{1}^{4} q_{2}^{2}, q_{1}^{2} q_{2} q_{3}, q_{1}^{3} q_{2} q_{3},} \\
& \underline{q_{1}^{4} q_{2} q_{3}}, q_{1}^{2} q_{2}^{2} q_{3}, q_{1}^{2} q_{2}^{2} q_{3}^{2}, q_{1} q_{2} q_{3} q_{4}, q_{1}^{2} q_{2} q_{3} q_{4}, \underline{q_{1}^{3} q_{2} q_{3} q_{4}}, \underline{q_{1}^{2} q_{2}^{2} q_{3} q_{4}}, \\
& q_{1} q_{2} q_{3} q_{4} q_{5}, \underline{q_{1}^{2} q_{2} q_{3} q_{4} q_{5}}, q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}, \underline{q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}},
\end{aligned}
$$

where $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}$ are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power greater than 1, then m cannot take any of the 14 forms

$$
\begin{aligned}
& 2 q_{1}^{5}, \underline{2 q_{1}^{6}}, 2 q_{1}^{3} q_{2}, 2 q_{1}^{4} q_{2}, 2 q_{1}^{2} q_{2}^{2}, 2 q_{1}^{3} q_{2}^{2}, 2 q_{1} q_{2} q_{3}, 2 q_{1}^{2} q_{2} q_{3}, \\
& 2 q_{1}^{3} q_{2} q_{3} \\
& , 2 q_{1}^{2} q_{2}^{2} q_{3}, 2 q_{1} q_{2} q_{3} q_{4}, \underline{2 q_{1}^{2} q_{2} q_{3} q_{4}}, 2 q_{1} q_{2} q_{3} q_{4} q_{5}, \underline{2 q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}},
\end{aligned}
$$ where $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}$ are distinct odd primes.

(3) If q is not the Euler prime and the Euler prime divides N to the power 1 , then m cannot take any of the nine forms

$$
2 q_{1}^{4}, \underline{2 q_{1}^{5}}, 2 q_{1}^{2} q_{2}, \underline{2 q_{1}^{3} q_{2}}, \underline{2 q_{1}^{2} q_{2}^{2}}, 2 q_{1} q_{2} q_{3}, \underline{2 q_{1}^{2} q_{2} q_{3}}, 2 q_{1} q_{2} q_{3} q_{4}, \underline{2 q_{1} q_{2} q_{3} q_{4} q_{5}},
$$ where $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}$ are distinct odd primes.

With more arguments, we can exclude $m=q_{1}^{7}, q_{1}^{3} q_{2}^{2}, q_{1}^{2} q_{2}^{2} q_{3}$ by assuming only $s \geq 8$.
2. Lemmas. For any positive integer n, denote by $d(n)$ the number of positive divisors of n. Suppose that N is an odd perfect number with $q^{\alpha} \| N$, where q^{α} is a prime power. In this paper, we always write the standard factorization of N as

$$
N=p_{1}^{\lambda_{1}} \cdots p_{s}^{\lambda_{s}} q^{\alpha},
$$

such that

$$
\begin{equation*}
\sigma\left(p_{i}^{\lambda_{i}}\right)=m_{i} q^{\mu_{i}}, \quad i=1, \ldots, k, \quad \sigma\left(p_{i}^{\lambda_{i}}\right)=q^{\mu_{i}}, \quad i=k+1, \ldots, s, \tag{2.1}
\end{equation*}
$$

where $m_{i} \geq 2$ and $q \nmid m_{i}$ for $i=1, \ldots, k$. Then (1.1) becomes

$$
\begin{equation*}
m \frac{q^{\alpha+1}-1}{q-1}=2 p_{1}^{\lambda_{1}} \cdots p_{k}^{\lambda_{k}} p_{k+1}^{\lambda_{k+1}} \cdots p_{s}^{\lambda_{s}} \tag{2.2}
\end{equation*}
$$

By the definition of m and (2.1), we have

$$
\begin{equation*}
m q^{\alpha}=\sigma\left(p_{1}^{\lambda_{1}} \cdots p_{s}^{\lambda_{s}}\right)=m_{1} \cdots m_{k} q^{\mu_{1}+\cdots+\mu_{s}} \tag{2.3}
\end{equation*}
$$

It follows from (2.2) that $m \mid 2 p_{1}^{\lambda_{1}} \cdots p_{s}^{\lambda_{s}}$. So $q \nmid m$. Noting that $q \nmid m_{i}$ for $i=1, \ldots, k$, by 2.3 we have

$$
\begin{equation*}
m=m_{1} \cdots m_{k}, \quad \alpha=\mu_{1}+\cdots+\mu_{s} \tag{2.4}
\end{equation*}
$$

Write $m=p_{k+1}^{\alpha_{k+1}} \cdots p_{s}^{\alpha_{s}} m^{\prime}$ with $\left(m^{\prime}, p_{k+1} \cdots p_{s}\right)=1$ and $\alpha_{k+1} \geq \cdots$ $\geq \alpha_{s}$. For convenience, let $\alpha_{i}=0$ for all $i>s$. By (2.2) we have $\lambda_{i} \geq \alpha_{i}$ for $k+1 \leq i \leq s$. Now 2.2 becomes

$$
\begin{equation*}
m^{\prime} \frac{q^{\alpha+1}-1}{q-1}=2 p_{1}^{\lambda_{1}} \cdots p_{k}^{\lambda_{k}} p_{k+1}^{\lambda_{k+1}-\alpha_{k+1}} \cdots p_{s}^{\lambda_{s}-\alpha_{s}} \tag{2.5}
\end{equation*}
$$

Noting that p_{j} and q are odd primes, by 2.1 we know that all $\lambda_{j}(k+1 \leq$ $j \leq s$) are positive even integers.

Now we present some lemmas which will be used later.
Lemma 2.1. Let α, μ and γ be positive integers, and p and q be odd primes such that

$$
\frac{p^{\lambda+1}-1}{p-1}=q^{\mu}, \quad p^{\gamma} \left\lvert\, \frac{q^{\alpha+1}-1}{q-1}\right.
$$

Then $p^{\gamma-1} \mid \alpha+1$ if $\mu>1$, and $p^{\gamma} \mid \alpha+1$ if $\mu=1$.
Lemma 2.1 follows from the proof of BDZ, Lemma 2].
Lemma 2.2 ([CC, Lemma 4] or [Ni2, Lemma 4]). If N is an odd perfect number with $q^{\alpha} \| N$, then $d(\alpha+1) \leq s+1$.

Lemma 2.3 (Ljunggren [Lj], see also [EGSS, p. 359]). The only integer solutions (x, n, y) with $|x|>1, n>2, y>0$ to the equation $\left(x^{n}-1\right) /(x-1)$ $=y^{2}$ are $(7,4,20)$ and $(3,5,11)$, i.e. $\left(7^{4}-1\right) /(7-1)=20^{2}$ and $\left(3^{5}-1\right) /(3-1)$ $=11^{2}$.

LEmma 2.4 ([EGSS, p. 363]). The only solutions in non-zero integers with $n>1$ to the equation $y^{n}=x^{2}+x+1$ are $n=3, y=7$ and $x=18$ or $x=-19$.

Lemma 2.5. At most one of the $\lambda_{j}(k+1 \leq j \leq s)$ is 2 .
Proof. If λ_{j} is 2 , then $p_{j}^{2}+p_{j}+1=q^{\mu_{j}}$. Noting that p_{j} is a positive prime, by Lemma 2.4 , we have $\mu_{j}=1$. Since q is fixed, there is at most one prime p with $p^{2}+p+1=q$. Now Lemma 2.5 follows.

Lemma 2.6. Let $\delta=1$ if $2 \nmid m$, otherwise $\delta=0$, and let $\delta_{i}=1$ if $\lambda_{i}>2$ and $\delta_{i}=0$ if $\lambda_{i}=2$. Then

$$
\begin{equation*}
2^{\delta} \prod_{j=k+1}^{s} p_{j}^{\max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}, 0\right\}} \mid \alpha+1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \leq d(\alpha+1) \leq s+1 \tag{2.7}
\end{equation*}
$$

Proof. It is clear that $2 \mid \alpha+1$ if and only if q is the Euler prime. So $2^{\delta} \mid \alpha+1$. From (2.1) and 2.5 we have

$$
\begin{array}{ll}
\frac{p_{j}^{\lambda_{j}+1}-1}{p_{j}-1}=q^{\mu_{j}}, & j=k+1, \ldots, s \\
p_{j}^{\lambda_{j}-\alpha_{j}} & \frac{q^{\alpha+1}-1}{q-1}, \\
j=k+1, \ldots, s
\end{array}
$$

If $\lambda_{i}=2$, then, by Lemma 2.4 and p_{i} being a prime, we have $p_{i}^{2}+p_{i}+1=q$. Noting that all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers, by Lemma 2.1, we have

$$
p_{j}^{\max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}, 0\right\}} \mid \alpha+1, \quad j=k+1, \ldots, s
$$

Thus (2.6) follows immediately and 2.7 follows from 2.6 and Lemma 2.2 .
Remark. By Lemma 2.5, at most one of the δ_{i} is zero.
Lemma 2.7 ([BDZ, Lemma 8]). If the index m is a square, then $\alpha=1$.
Lemma 2.8. If the index m is a square, then $k=s-1$ or s.
Proof. By Lemma 2.7, we have $\alpha=1$. By (2.4), exactly one of the μ_{i} $(1 \leq i \leq s)$ is 1 and the others are 0 . Since $\mu_{i}>0(k+1 \leq i \leq s)$, we have $k=s-1$ or s.

Lemma 2.9. Let the notations be as in Theorem 1.3 and Lemma 2.6. Then none of the following three statements can happen:
(i) $k \leq k_{1}(s)$ and $\alpha_{k_{1}(s)+1} \leq 1$;
(ii) $k \leq k_{2}(s)$ and $\alpha_{k_{2}(s)+1}=0$;
(iii) $2 \nmid m, k \leq k_{3}(s)$ and $\alpha_{k_{3}(s)+1} \leq 1$.

Proof. By Lemma 2.5, at most one of the $\lambda_{j}(k+1 \leq j \leq s)$ is 2 .
(i) Suppose that $k \leq k_{1}(s)$ and $\alpha_{k_{1}(s)+1} \leq 1$. Then $0 \leq \alpha_{i} \leq 1$ for all $k_{1}(s)+1 \leq i \leq s$. Thus, since all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers, the left side of 2.7 is

$$
\begin{aligned}
&(\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \geq \prod_{j=k_{1}(s)+1}^{s}\left(\lambda_{j}-\delta_{j}\right) \geq 2 \cdot 3^{s-k_{1}(s)-1} \geq s+2
\end{aligned}
$$

a contradiction with 2.7).
(ii) Suppose that $k \leq k_{2}(s)$ and $\alpha_{k_{2}(s)+1}=0$. Then $\alpha_{i}=0$ for all $k_{2}(s)+1 \leq i \leq s$. Thus, noting that all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers, the left side of 2.7 is

$$
\begin{aligned}
(\delta+1) \prod_{j=k+1}^{s} \max \{ & \left.\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \geq \prod_{j=k_{2}(s)+1}^{s}\left(\lambda_{j}-\delta_{j}+1\right) \geq 3 \cdot 4^{s-k_{2}(s)-1} \geq s+2
\end{aligned}
$$

a contradiction with (2.7).
(iii) Suppose that $2 \nmid m, k \leq k_{3}(s)$ and $\alpha_{k_{3}(s)+1} \leq 1$. Then $0 \leq \alpha_{i} \leq 1$ for all $k_{3}(s)+1 \leq i \leq s$. Thus, noting that all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers, the left side of 2.7 is

$$
\begin{aligned}
&(\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \geq 2 \prod_{j=k_{3}(s)+1}^{s}\left(\lambda_{j}-\delta_{j}\right) \geq 2 \cdot 2 \cdot 3^{s-k_{3}(s)-1} \geq s+2
\end{aligned}
$$

a contradiction with (2.7).
3. Proof of Theorem 1.1. Suppose that $m=p^{2 u}$, where u is a positive integer and $\sigma\left(p^{2 u}\right)$ is composite. By (2.4) we have $p \mid m_{i}(1 \leq i \leq k)$. By (2.1) we have $p_{i} \neq p(1 \leq i \leq k)$. So $k \leq s-1, p_{k+1}=p$ and $\alpha_{k+1}=2 u$. It follows from Lemmas 2.7 and 2.8 that $\alpha=1$ and $k=s-1$. Thus $\mu_{s}=1$ (by (2.4)), $p_{s}=p$ and $\alpha_{s}=2 u$. By (2.1), we see that $\sigma\left(p^{\lambda_{s}}\right)=q$ is a prime. Noting $\lambda_{s} \geq \alpha_{s}=2 u$ and $\sigma\left(p^{2 u}\right)$ is composite, we have $\lambda_{s}>\alpha_{s}=2 u$. It follows from (2.5) and $\alpha=1$ that $p \mid q+1$. By $\sigma\left(p^{\lambda_{s}}\right)=q$ we have $p \mid q-1$. Thus $p \mid 2$, a contradiction.

This completes the proof of Theorem 1.1.

4. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. If q^{α} is the Euler factor of N, then $q \equiv 1(\bmod 4)$, $2 \mid \lambda_{i}(1 \leq i \leq s), 2 \nmid m$ and $2 \mid \alpha+1$. If q^{α} is not the Euler factor of N, then $2 \mid m, 4 \nmid m$ and $2 \nmid \alpha+1$. We always assume that $2 \mid m_{1}$ if q^{α} is not
the Euler factor of N. It is known that $m_{1} \neq 2$ if the Euler prime divides N to a power greater than 1 (see [BDZ, p. 6]). Recall that $m=2^{\beta} q_{1}^{\beta_{1}} \cdots q_{u}^{\beta_{u}}$, where $\beta, \beta_{1}, \ldots, \beta_{u}$ are non-negative integers with $\beta_{1} \geq \cdots \geq \beta_{v}>\beta_{v+1}=$ $\cdots=\beta_{u}=1$ and $\beta \in\{0,1\}$, and $w=1$ if $2 \mid m$ and the Euler prime divides N to the power 1, otherwise $w=0$. For convenience, let $\beta_{i}=0$ for all $i>u$. By (2.4), we have

$$
k \leq w+\beta_{1}+\cdots+\beta_{u}, \quad \alpha_{k+i} \leq \beta_{i} \quad(i \geq 1)
$$

(i) Suppose that $v+w+\beta_{1}+\cdots+\beta_{u} \leq k_{1}(s)$. Then

$$
k+v \leq v+w+\beta_{1}+\cdots+\beta_{u} \leq k_{1}(s) .
$$

Thus $k \leq k_{1}(s)$ and $\alpha_{k_{1}(s)+1} \leq \alpha_{k+v+1} \leq \beta_{v+1} \leq 1$, a contradiction to Lemma 2.9(i).
(ii) Suppose that $u+w+\beta_{1}+\cdots+\beta_{u} \leq k_{2}(s)$. Then

$$
k+u \leq u+w+\beta_{1}+\cdots+\beta_{u} \leq k_{2}(s) .
$$

Thus $k \leq k_{2}(s)$ and $\alpha_{k_{2}(s)+1} \leq \alpha_{k+u+1} \leq \beta_{u+1}=0$, a contradiction to Lemma 2.9(ii).

Part (iii) can be proved similarly.
This completes the proof of Theorem 1.3.
Proof of Corollary [1.4, Nielsen [Ni2] proved that $s \geq 8$. This has been superseded by proving that $s \geq 9$ (see Nielsen [Ni1]). We have $k_{1}(8)=5$, $k_{2}(8)=6, k_{3}(8)=6, k_{1}(9)=6, k_{2}(9)=7$ and $k_{3}(9)=7$.

By Theorem 1.3(i), we have $v+w+\beta_{1}+\cdots+\beta_{u}>k_{1}(s)$. Thus, m cannot be any one of $2 q_{1}^{3} q_{2}, 2 q_{1}^{4} q_{2}, 2 q_{1} q_{2} q_{3}, 2 q_{1}^{2} q_{2} q_{3}, 2 q_{1}^{3} q_{2} q_{3}, 2 q_{1} q_{2} q_{3} q_{4}, 2 q_{1}^{2} q_{2} q_{3} q_{4}$, $2 q_{1} q_{2} q_{3} q_{4} q_{5}, 2 q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}$ in Corollary 1.4(2) $(w=0)$ or any one of $2 q_{1}^{2} q_{2}$, $\underline{2 q_{1}^{3} q_{2}}, 2 q_{1} q_{2} q_{3}, 2 q_{1}^{2} q_{2} q_{3}, 2 q_{1} q_{2} q_{3} q_{4}, 2 q_{1} q_{2} q_{3} q_{4} q_{5}$ in Corollary 1.4(3) $(w=1)$.

By Theorem 1.3(ii), we have $u+w+\beta_{1}+\cdots+\beta_{u}>k_{2}(s)$. Thus, m cannot be any one of $2 q_{1}^{5}, 2 q_{1}^{6}, 2 q_{1}^{2} q_{2}^{2}, 2 q_{1}^{3} q_{2}^{2}$ in Corollary 1.4(2) $(w=0)$ and $2 q_{1}^{4}$, $2 q_{1}^{5}, 2 q_{1}^{2} q_{2}^{2}$ in Corollary $1.4(3)(w=1)$.

If $2 \nmid m$, then, by Theorem 1.3 (iii), $v+\beta_{1}+\cdots+\beta_{u}>k_{3}(s)$. Thus, m cannot be any one of $q_{1}^{4} q_{2}, \underline{q_{1}^{5} q_{2}}, \underline{q_{1}^{3} q_{2}^{2}}, q_{1}^{2} q_{2} q_{3}, q_{1}^{3} q_{2} q_{3}, \underline{q_{1}^{4} q_{2} q_{3}}, \underline{q_{1}^{2} q_{2}^{2} q_{3}}, q_{1} q_{2} q_{3} q_{4}$, $q_{1}^{2} q_{2} q_{3} q_{4}, q_{1}^{3} q_{2} q_{3} q_{4}, q_{1} q_{2} q_{3} q_{4} q_{5}, \underline{q_{1}^{2} q_{2} q_{3} q_{4} q_{5}}, q_{1} q_{2} q_{3} q_{4} q_{5} q_{6}, \underline{q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7}}$ in Corollary 1.4(1).

Suppose that m is a square. By $s \geq 8$ and Lemma 2.7, we have $k \geq$ $s-1 \geq 7$. Thus, m cannot be any one of $q_{1}^{4} q_{2}^{2}, q_{1}^{2} q_{2}^{2} q_{3}^{2}$ in Corollary 1.4(1). By Theorem 1.1, we have $m \neq q_{1}^{8}$.

Finally, the remaining cases to exclude are $m=q_{1}^{7}, q_{1}^{2} q_{2}^{2} q_{3} q_{4}$ in Corollary 1.4(1) and $m=2 q_{1}^{2} q_{2}^{2} q_{3}$ in Corollary 1.4(2). Suppose that m has one of these forms. We will derive a contradiction.

Case 1: $m=q_{1}^{7}$. Then $k \leq 7$ and $\delta=1$. By (2.1) and (2.4), we have $q_{1} \mid m_{i}(1 \leq i \leq \bar{k})$ and $p_{i} \neq q_{1}(1 \leq i \leq k)$. So $\alpha_{k+1}=7$ and $\alpha_{i}=0$ $(k+2 \leq i \leq s)$. Since $\lambda_{k+1} \geq \alpha_{k+1}$ and λ_{k+1} is even, we have $\lambda_{k+1} \geq 8$ and $\delta_{k+1}=1$. If $\lambda_{k+1}=8$, then

$$
q^{\mu_{k+1}}=\frac{p_{k+1}^{9}-1}{p_{k+1}-1}=\frac{p_{k+1}^{9}-1}{p_{k+1}^{3}-1} \frac{p_{k+1}^{3}-1}{p_{k+1}-1} .
$$

This implies that at least one of

$$
\frac{p_{k+1}^{9}-1}{p_{k+1}-1}, \quad \frac{p_{k+1}^{9}-1}{p_{k+1}^{3}-1}, \quad \frac{p_{k+1}^{3}-1}{p_{k+1}-1}
$$

is a square (q to an even power), a contradiction with Lemma 2.3. So λ_{k+1} ≥ 10 and then $\lambda_{k+1}-\alpha_{k+1}-\delta_{k+1}+1 \geq 3$. Since $s \geq 9$ and $k \leq 7$, the left side of (2.7) is

$$
\begin{aligned}
&(\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \geq 2 \cdot 3 \cdot \prod_{j=k+2}^{s}\left(\lambda_{j}-\delta_{j}+1\right) \geq 2 \cdot 3^{s-k}>s+1,
\end{aligned}
$$

a contradiction with (2.7). Now, we have proved that $m \neq q_{1}^{7}$.
CASE 2: $m=q_{1}^{2} q_{2}^{2} q_{3} q_{4}$. Then $k \leq 6$ and $\delta=1$. By Lemma 2.9 (iii) and $k_{3}(9)=7$, we have $\alpha_{8} \geq 2$. So $k=6, \alpha_{7}=2, \alpha_{8}=2$ and $\alpha_{i} \leq 1(9 \leq i \leq s)$. By $s \geq 9$, as all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers and at most one of $\lambda_{j}(k+1 \leq j \leq s)$ is 2 , the left side of (2.7) is

$$
\begin{aligned}
&(\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \geq 2\left(\lambda_{7}-\delta_{7}-1\right)\left(\lambda_{8}-\delta_{8}-1\right) \prod_{j=9}^{s}\left(\lambda_{j}-\delta_{j}\right) \\
& \geq \min \left\{2 \cdot 2 \cdot 3^{s-8}, 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3^{s-9}\right\}>s+1,
\end{aligned}
$$

a contradiction with (2.7).
Case 3: $m=2 q_{1}^{2} q_{2}^{2} q_{3}$, and q is not the Euler prime and the Euler prime divides N to a power greater than 1 . Then $k \leq 5$. By Lemma 2.9(ii) and $k_{2}(9)=7$, we may assume that $\alpha_{8} \geq 1$. So $k=5, \alpha_{6}=2, \alpha_{7}=2, \alpha_{8}=1$ and $\alpha_{i}=0(9 \leq i \leq s)$. By $s \geq 9$, since all $\lambda_{j}(k+1 \leq j \leq s)$ are positive even integers and at most one of $\lambda_{j}(k+1 \leq j \leq s)$ is 2 , the left side of (2.7) is

$$
\begin{aligned}
& (\delta+1) \prod_{j=k+1}^{s} \max \left\{\lambda_{j}-\alpha_{j}-\delta_{j}+1,1\right\} \\
& \quad \geq\left(\lambda_{6}-\delta_{6}-1\right)\left(\lambda_{7}-\delta_{7}-1\right) \prod_{j=8}^{s}\left(\lambda_{j}-\delta_{j}\right) \geq 2 \cdot 2 \cdot 3^{s-8}>s+1
\end{aligned}
$$

a contradiction with 2.7.
This completes the proof of Corollary 1.4.
Acknowledgements. This work was supported by the National Natural Science Foundation of China, grant no. 11371195, and the Natural Science Foundation of the Jiangsu Higher Education Institutions, grant no. 12KJB110019. We would like to thank the referee for his/her comments.

REFERENCES

[BDZ] K. A. Broughan, D. Delbourgo, and Q. Zhou, Improving the Chen and Chen result for odd perfect numbers, Integers 13 (2013), A39.
[CC] F. J. Chen and Y. G. Chen, On odd perfect numbers, Bull. Austral. Math. Soc. 86 (2012), 510-514.
[DL] J. A. B. Dris and F. Luca, A note on odd perfect numbers, arXiv:1103.1437v5 [math.NT] (2012).
[EGSS] D. Estes, R. Guralnick, M. Schacher, and E. Straus, Equations in prime powers, Pacific J. Math. 118 (1985), 359-367.
[Lj] W. Ljunggren, Some theorems on indeterminate equations of the form $\left(x^{n}-1\right) /(x-1)=y^{q}$, Norsk Mat. Tidsskr. 25 (1943), 17-20.
[Ni1] P. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comp. (2014), to appear; http://www.math.byu.edu/~pace/BestBound_ web.pdf
[Ni2] P. P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp. 76 (2007), 2109-2126.
[OR] P. Ochem and M. Rao, Odd perfect numbers are greater than 10^{1500}, Math. Comp. 81 (2012), 1869-1877.

Feng-Juan Chen
School of Mathematical Sciences
Soochow University
Suzhou 215006, China
E-mail: cfjsz@126.com

Yong-Gao Chen
School of Mathematical Sciences and Institute of Mathematics

Nanjing Normal University
Nanjing 210023, China E-mail: ygchen@njnu.edu.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11A25, 11B83.

