A NOTE ON CONFORMAL VECTOR FIELDS on a riemannian manifold

BY
SHARIEF DESHMUKH (Riyadh) and FALLEH AL-SOLAMY (Jeddah)

Abstract

We consider an n-dimensional compact Riemannian manifold (M, g) and show that the presence of a non-Killing conformal vector field ξ on M that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue $\lambda>0$, together with an upper bound on the energy of the vector field ξ, implies that M is isometric to the n-sphere $S^{n}(\lambda)$. We also introduce the notion of φ-analytic conformal vector fields, study their properties, and obtain a characterization of n-spheres using these vector fields.

1. Introduction. The use of differential equations in studying the geometry of a Riemannian manifold was initiated by Obata (cf. [01, [02). His work is about characterizing specific Riemannian manifolds by second order differential equations. According to his main result, a necessary and sufficient condition for an n-dimensional complete and connected Riemannian manifold (M, g) to be isometric to the n-sphere $S^{n}(c)$ is that there exists a non-constant smooth function f on M that satisfies the differential equation $H_{f}=-c f g$, where H_{f} is the Hessian of f. Then Tashiro [TA] showed that the Euclidean spaces R^{n} are characterized by the differential equation $H_{f}=c g$, and Tanno [T] obtained a similar characterization of spheres. Recently García-Río et. al. EGKU, GKU have considered the Laplacian operator Δ acting on smooth vector fields on a Riemannian manifold (M, g) and generalized the result of Obata using a differential equation satisfied by a vector field to characterize the n-sphere $S^{n}(c)$ (cf. [GKU, Theorem 3.5]). These authors have also proved that the differential equation

$$
\Delta Z=-c Z, \quad c=\frac{S}{n(n-1)},
$$

where Z is a non-trivial smooth vector field on an n-dimensional compact Einstein manifold (M, g) of constant scalar curvature $S>0$ (that is, Z is an eigenvector of the Laplacian operator Δ), is a necessary and sufficient condition for M to be isometric to the n-sphere $S^{n}(c)$ (cf. [EGKU, Theorem 6]).

2010 Mathematics Subject Classification: 53C21, 53C24, 53A30.
Key words and phrases: conformal vector fields, Obata's theorem, φ-analytic conformal vector fields.

A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a conformal vector field if there exists a smooth function f on M that satisfies $£_{\xi} g=2 f g$, where $£_{\xi} g$ is the Lie derivative of g with respect to ξ. If in addition ξ is a closed vector field, then ξ is said to be a closed conformal vector field. Riemannian manifolds admitting closed conformal vector fields or conformal gradient vector fields have been investigated in [DA, MP, [O3, [TW], TA and it has been observed that there is a close relationship between the potential functions of conformal vector fields and Obata's differential equation. In [D2, conformal vector fields which are also eigenvectors of the Laplacian operator have been studied on a compact Riemannian manifold of constant scalar curvature and under a suitable restriction on the Ricci curvature of this manifold, and it is shown there that the Riemannian manifold must be isometric to a sphere. Note that there are several examples of non-trivial conformal vector fields which are also eigenvectors of the Laplacian operator acting on smooth vector fields (cf. [D2]). A natural question arises whether we could prove the result in [D2] without these curvature assumptions or by replacing the curvature assumptions with a suitable analytic condition. In the present paper, we answer this question as well as initiate the study of φ-analytic conformal vector fields, i.e. conformal vector fields whose flow leaves invariant a certain tensor field associated to the conformal vector field. We also obtain a characterization of spheres using φ-analytic conformal vector fields.
2. Preliminaries. Let (M, g) be an n-dimensional Riemannian manifold with the Lie algebra $\mathfrak{X}(M)$ of smooth vector fields on M. Recently García-Río et. al. [GKU] have studied the Laplacian operator Δ : $\mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ defined by

$$
\Delta X=\sum_{i=1}^{n}\left(\nabla_{e_{i}} \nabla_{e_{i}} X-\nabla_{\nabla_{e_{i}} e_{i}} X\right),
$$

where ∇ is the Riemannian connection and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M. This operator is elliptic and self-adjoint with respect to the inner product \langle,$\rangle on \mathfrak{X}^{C}(M)$, the space of compactly supported vector fields in $\mathfrak{X}(M)$, defined by

$$
\langle X, Y\rangle=\int_{M} g(X, Y), \quad X, Y \in \mathfrak{X}^{C}(M) .
$$

A non-trivial vector field X is said to be an eigenvector of the Laplacian operator Δ if there is a constant μ such that $\Delta X=-\mu X$. For a compact Riemannian manifold (M, g), using the properties of Δ with respect to the inner product \langle,$\rangle , it is easy to conclude that the eigenvalue satisfies \mu \geq 0$. For example consider the n-sphere $S^{n}(c)$ of constant curvature c (that is,
of radius $\sqrt{1 / c}$) as a hypersurface in the Euclidean space \mathbb{R}^{n+1} with unit normal vector field N and take a constant vector field Z on \mathbb{R}^{n+1}, which can be expressed as $Z=\xi+f N$, where ξ is the tangential component of Z to $S^{n}(c)$ and $f=\langle Z, N\rangle$ is treated as a smooth function on $S^{n}(c),\langle$,$\rangle being$ the Euclidean metric on \mathbb{R}^{n+1}. Then it is easy to show that ξ is a conformal vector field on $S^{n}(c)$ and that $\Delta \xi=-c \xi$.

We shall denote by Δ both Laplacian operators, the one acting on smooth functions on M as well as that acting on smooth vector fields. The Ricci operator Q is a symmetric $(1,1)$-tensor field that is defined by $g(Q X, Y)=$ $\operatorname{Ric}(X, Y), X, Y \in \mathfrak{X}(M)$, where Ric is the Ricci tensor of the Riemannian manifold.

A vector field $\xi \in \mathfrak{X}(M)$ is said to be a conformal vector field if

$$
\begin{equation*}
£_{\xi} g=2 f g \tag{2.1}
\end{equation*}
$$

for a smooth function $f \in C^{\infty}(M)$ called the potential function, where $£_{\xi}$ is the Lie derivative with respect to ξ. Using Koszul's formula (cf. [D1], DD]), we immediately obtain the following for a vector field ξ on M :

$$
\begin{equation*}
2 g\left(\nabla_{X} \xi, Y\right)=\left(£_{\xi} g\right)(X, Y)+d \eta(X, Y), \quad X, Y \in \mathfrak{X}(M) \tag{2.2}
\end{equation*}
$$

where η is the 1-form dual to ξ, that is, $\eta(X)=g(X, \xi), X \in \mathfrak{X}(M)$. Define a skew-symmetric tensor field φ of type $(1,1)$ on M by

$$
\begin{equation*}
d \eta(X, Y)=2 g(\varphi X, Y), \quad X, Y \in \mathfrak{X}(M) \tag{2.3}
\end{equation*}
$$

Then using equations 2.1-2.3), we immediately get

$$
\begin{equation*}
\nabla_{X} \xi=f X+\varphi X, \quad X \in \mathfrak{X}(M) \tag{2.4}
\end{equation*}
$$

and we say that φ is the tensor field associated to the conformal vector field ξ.

Lemma 2.1. Let ξ be a conformal vector field on a Riemannian manifold (M, g) with potential function f. Then

$$
(\nabla \varphi)(X, Y)=R(X, \xi) Y+Y(f) X-g(X, Y) \nabla f, \quad X, Y \in \mathfrak{X}(M)
$$

where $(\nabla \varphi)(X, Y)=\nabla_{X}(\varphi Y)-\varphi\left(\nabla_{X} Y\right), R$ is the curvature tensor field and ∇f is the gradient of the function f.

Proof. Equation 2.4 gives

$$
\begin{equation*}
R(X, Y) \xi=X(f) Y-Y(f) X+(\nabla \varphi)(X, Y)-(\nabla \varphi)(Y, X) \tag{2.5}
\end{equation*}
$$

Note that the 2-form given by $g(\varphi X, Y)$ in 2.3 is closed, whence

$$
g((\nabla \varphi)(X, Y), Z)+g((\nabla \varphi)(Y, Z), X)+g((\nabla \varphi)(Z, X), Y)=0
$$

which together with the skew-symmetry of φ and with 2.5 gives

$$
g(R(X, Y) \xi+Y(f) X-X(f) Y, Z)+g((\nabla \varphi)(Z, X), Y)=0
$$

this proves the lemma.

Lemma 2.2 ([D1]). Let ξ be a conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with potential function f. Then

$$
\int_{M} f=0, \quad \int_{M} g(\nabla f, \xi)=-n \int_{M} f^{2}
$$

where ∇f is the gradient of the function f.
Lemma 2.3. Let ξ be a conformal vector field on a compact Riemannian manifold (M, g) with potential function f. Then

$$
\int_{M}\left(\operatorname{Ric}(\xi, \xi)-n(n-1) f^{2}-\|\varphi\|^{2}\right)=0
$$

Proof. Since $Q(\xi)=\sum R\left(\xi, e_{i}\right) e_{i}$, Lemma 2.1 gives

$$
\begin{equation*}
\sum(\nabla \varphi)\left(e_{i}, e_{i}\right)=-Q(\xi)-(n-1) \nabla f \tag{2.6}
\end{equation*}
$$

Using (2.4), 2.6) to evaluate $\operatorname{div} \varphi(\xi)$, we obtain

$$
\begin{aligned}
\operatorname{div} \varphi(\xi) & =-\sum g\left(f e_{i}+\varphi e_{i}, \varphi e_{i}\right)+\operatorname{Ric}(\xi, \xi)+(n-1) g(\nabla f, \xi) \\
& =-\|\varphi\|^{2}+\operatorname{Ric}(\xi, \xi)+(n-1) g(\nabla f, \xi)
\end{aligned}
$$

Integrating the above equation and using Lemma 2.2 , we get the result.
3. A characterization of spheres. We observe that for a non-Killing conformal vector field ξ on a Riemannian manifold (M, g), the length of ξ cannot be a constant. Indeed, if the length $\|\xi\|$ is a constant, then equation (2.4) shows that $\varphi(\xi)=f \xi$, and so

$$
f\|\xi\|^{2}=0
$$

that is, either $f=0$ or $\xi=0$, which again by (2.4) implies that ξ is a Killing vector field, a contradiction. Recall that the energy of the conformal vector field ξ on a compact Riemannian manifold (M, g) is given by

$$
e(\xi)=\int_{M}\|\xi\|^{2}
$$

Consider the conformal vector field ξ on $S^{n}(c)$ induced by a constant vector field Z on \mathbb{R}^{n+1} which satisfies $\nabla_{X} \xi=-\sqrt{c} \rho X$ and $\nabla \rho=\sqrt{c} \xi$, where the restriction of Z to $S^{n}(c)$ is expressed as $Z=\xi+\rho N$ and N is the unit normal to $S^{n}(c)$. Thus the potential function satisfies $f=-\sqrt{c} \rho$, and we have $\nabla f=-c \xi$ and $\Delta f=-n c f$, where Δ is the Laplacian operator acting on the smooth functions on $S^{n}(c)$. Hence the energy of the conformal vector field ξ is given by

$$
e(\xi)=\frac{1}{c^{2}} \int_{M}\|\nabla f\|^{2}=n c^{-1} \int_{M} f^{2}
$$

Moreover, ξ satisfies $\Delta \xi=-c \xi$. This raises a question: is a compact Riemannian manifold (M, g) that admits a non-Killing conformal vector field with $\Delta \xi=-c \xi$, and having energy satisfying the above equality for a constant c, necessarily isometric to the sphere $S^{n}(c)$? In this section, we show that the answer is affirmative and prove the following:

Theorem 3.1. An n-dimensional compact connected Riemannian manifold (M, g) admits a non-Killing conformal vector field ξ with potential function f that satisfies $\Delta \xi=-\lambda \xi, \lambda>0$, with energy

$$
e(\xi) \leq n \lambda^{-1} \int_{M} f^{2},
$$

if and only if M is isometric to the n-sphere $S^{n}(\lambda)$.
Proof. Choose a pointwise constant local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M and use (2.4) to get

$$
\begin{equation*}
\Delta \xi=\sum \nabla_{e_{i}}\left(f e_{i}+\varphi\left(e_{i}\right)\right)=\nabla f+\sum(\nabla \varphi)\left(e_{i}, e_{i}\right) . \tag{3.1}
\end{equation*}
$$

Now, by $\Delta \xi=-\lambda \xi$ and equations (2.6), (3.1), we have

$$
Q(\xi)=-(n-2) \nabla f+\lambda \xi
$$

Taking the inner product of the above equality with ξ and then integrating, we get

$$
\int_{M} \operatorname{Ric}(\xi, \xi)=\int_{M}\left(-(n-2) g(\nabla f, \xi)+\lambda\|\xi\|^{2}\right),
$$

which together with Lemma 2.2 gives

$$
\int_{M} \operatorname{Ric}(\xi, \xi)=\int_{M}\left(n(n-2) f^{2}+\lambda\|\xi\|^{2}\right) .
$$

Using Lemma 2.3 in the above equation, we get

$$
\int_{M}\|\varphi\|^{2}=\int_{M}\left(\lambda\|\xi\|^{2}-n f^{2}\right) \leq \lambda\left(e(\xi)-n \lambda^{-1} \int_{M} f^{2}\right) .
$$

Thus if the energy of the vector field ξ satisfies the condition in the statement, the above inequality gives $\varphi=0$. In this situation, equation (3.1) takes the form

$$
\nabla f=-\lambda \xi, \quad \lambda>0 .
$$

Note that f is a non-constant function, for otherwise Lemma 2.2 would yield $f=0$, which together with equation (2.4) would imply that ξ is a Killing vector field, contradicting the fact that ξ is a non-Killing conformal vector field. Thus the above equation together with (2.4) gives

$$
\nabla_{X} \nabla f=-\lambda f X, \quad X \in \mathfrak{X}(M),
$$

which is the Obata equation and hence M is isometric to the n-sphere $S^{n}(\lambda)$.

The converse is trivial as the sphere $S^{n}(\lambda)$ admits a non-Killing conformal vector field satisfying the hypothesis.
4. φ-analytic conformal vector fields. In this section, we define φ-analytic vector fields on a Riemannian manifold and study their properties.

Definition 4.1. A conformal vector field ξ on a Riemannian manifold (M, g) with associated tensor field φ is said to be a φ-analytic conformal vector field if φ is invariant under the flow of ξ.

It follows from the above definition that a conformal vector field ξ is a φ-analytic conformal vector field if and only if

$$
\begin{equation*}
\left(£_{\xi} \varphi\right)(X)=0, \quad X \in \mathfrak{X}(M) \tag{4.1}
\end{equation*}
$$

An example of a φ-analytic vector field ξ is given by $\xi=\psi+J \psi \in \mathfrak{X}\left(\mathcal{C}^{n}\right)$, where ψ is the position vector field and J is the complex structure on the complex Euclidean space \mathcal{C}^{n}. It is clear that ξ is the conformal vector field with potential function $f=1$ and associated tensor field $\varphi=J$ and that it satisfies equation (4.1), that is, ξ is indeed a φ-analytic vector field. Also conformal vector fields on the unit sphere S^{n} induced by constant vector fields on \mathbb{R}^{n+1} are φ-analytic vector fields. The following theorem provides a characterization of φ-analytic vector fields.

Theorem 4.2. A conformal vector field ξ on a Riemannian manifold (M, g) with potential function f is a φ-analytic conformal vector field if and only if there exists a smooth function ρ on M such that $\nabla f=\rho \xi$.

Proof. Suppose ξ is a φ-analytic vector field with potential function f. Then using equations (2.4) and (4.1), we obtain

$$
(\nabla \varphi)(\xi, X)=0, \quad X \in \mathfrak{X}(M),
$$

which, in view of Lemma 2.1, gives

$$
g(X, \xi) \nabla f=g(X, \nabla f) \xi, \quad X \in \mathfrak{X}(M) .
$$

Thus, we get $\nabla f \wedge \xi=0$, and consequently the vector fields ∇f and ξ are parallel. Hence, there exists a smooth function ρ on M such that $\nabla f=\rho \xi$.

Conversely, assume that $\nabla f=\rho \xi$. Then from (2.4) and Lemma 2.1, we have
$\left(£_{\xi \varphi}\right)(X)=[\xi, \varphi X]-\varphi[\xi, X]=(\nabla \varphi)(\xi, X)=g(X, \nabla f) \xi-g(X, \xi) \nabla f=0$, which proves that ξ is a φ-analytic vector field.

If a conformal vector field ξ satisfies $\varphi(\xi)=0$, we say that ξ is a null conformal vector field. Next, we prove the following.

Theorem 4.3. A null conformal vector field ξ with potential function f on a Riemannian manifold (M, g) such that $R(\nabla f, \xi ; \xi, \nabla f) \leq 0$ is a φ-analytic conformal vector field.

Proof. Lemma 2.1 gives

$$
(\nabla \varphi)(\nabla f, \xi)=R(\nabla f, \xi) \xi+\xi(f) \nabla f-\xi(f) \nabla f
$$

which, together with $\varphi(\xi)=0$, yields

$$
\begin{equation*}
-\varphi(f \nabla f+\varphi(\nabla f))=R(\nabla f, \xi) \xi \tag{4.2}
\end{equation*}
$$

Taking the inner product of the above equality with ∇f, we get

$$
R(\nabla f, \xi ; \xi, \nabla f)=\|\varphi(\nabla f)\|^{2}
$$

In view of our hypothesis, $\varphi(\nabla f)=0$, and consequently $[\nabla f, \xi]=f \nabla f-$ $\nabla_{\xi} \nabla f$, and equation (4.2) gives $R(\nabla f, \xi) \xi=0$. Thus

$$
\nabla_{\nabla f} f \xi-\nabla_{\xi}(f \nabla f)-\nabla_{f \nabla f} \xi+\nabla_{\nabla_{\xi} \nabla f} \xi=0
$$

which, combined with (2.4), implies that

$$
\|\nabla f\|^{2} \xi-\xi(f) \nabla f+\varphi\left(\nabla_{\xi} \nabla f\right)=0
$$

Taking the inner product of the above equality with ξ, we get

$$
g(\nabla f, \xi)^{2}=\|\nabla f\|^{2}\|\xi\|^{2}
$$

that is, $\nabla f=\rho \xi$ for a smooth function ρ on M; by Theorem 4.2, this proves that ξ is a φ-analytic vector field.

Next, we use a specific type of φ-analytic vector field to find the characterization of a sphere. If the function ρ appearing in the characterization of the φ-analytic conformal vector field ξ in Theorem 4.2 is a constant, then we say that ξ is a φ-analytic conformal vector field of constant type. Notice that the conformal vector field ξ on $S^{n}(c)$ induced by a constant vector field Z on \mathbb{R}^{n+1} satisfies $\nabla_{X} \xi=-\sqrt{c} \rho X$ and $\nabla \rho=\sqrt{c} \xi$, where the restriction of Z to $S^{n}(c)$ is expressed as $Z=\xi+\rho N$ and N is the unit normal to $S^{n}(c)$. Thus, as $\nabla f=-c \xi$, the conformal vector field ξ on $S^{n}(c)$ is a φ-analytic vector field of constant type. This raises a question: is a compact Riemannian manifold that admits a φ-analytic conformal vector field of constant type necessarily isometric to an n-sphere? We answer this question in the following:

Theorem 4.4. Let ξ be a non-Killing φ-analytic conformal vector field of constant type on an n-dimensional compact and connected Riemannian manifold (M, g). Then (M, g) is isometric to the n-sphere $S^{n}(c)$ for some $c>0$.

Proof. Note that $\nabla f=\alpha \xi$, where α is a constant. Observe that $\alpha \neq 0$, for otherwise the potential function f would be constant, which by Lemma 2.2 would imply $f=0$, and so ξ would be a Killing vector field. Hence,
$\alpha \neq 0$ and the vector field $\xi=\alpha^{-1} \nabla f$ is closed, which by the equation (2.3) gives $\varphi=0$. Thus taking the covariant derivatives of both sides of the equation $\nabla f=\alpha \xi$ with respect to $X \in \mathfrak{X}(M)$ and using 2.4, we get

$$
\begin{equation*}
\nabla_{X} \nabla f=\alpha f X, \quad X \in \mathfrak{X}(M) \tag{4.3}
\end{equation*}
$$

We claim that α is a negative constant. To see it, observe that (4.3) gives $\Delta f=n \alpha f$, that is, f is an eigenfunction of the Laplacian operator Δ, which being an elliptic operator on the compact Riemannian manifold has the eigenvalue $n \alpha=0$ or $n \alpha<0$. The first option cannot occur as it implies $\Delta f=0$, that is, f is a constant, which is ruled out as seen above. Hence $\alpha<0$, which implies that (4.3) is the Obata equation, proving that M is isometric to $S^{n}(c), c=-\alpha$.

Acknowledgments. We express our sincere thanks to Professor Andrzej Derdziński for suggesting many improvements.

This work is supported by King Saud University, Deanship of Scientific Research (research group project no. RGP-VPP-182).

REFERENCES

[C] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Orlando, FL, 1984.
[D1] S. Deshmukh, A note on compact hypersurfaces in a Euclidean space, C. R. Math. Acad. Sci. Paris 350 (2012), 971-974.
[D2] S. Deshmukh, Conformal vector fields and eigenvectors of Laplacian operator, Math. Phys. Anal. Geom. 15 (2012), 163-172.
[DD] S. Deshmukh and A. Al-Eid, Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature, J. Geom. Anal. 15 (2005), 589-606.
[DA] S. Deshmukh and F. Al-Solamy, Conformal gradient vector fields on a compact Riemannian manifold, Colloq. Math. 112 (2008), 157-161.
[EGKU] F. Erkekoğlu, E. García-Río, D. N. Kupeli and B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math. 76 (2003), 195-219.
[GKU] E. García-Río, D. N. Kupeli and B. Ünal, On a differential equation characterizing Euclidean spheres, J. Differential Equations 194 (2003), 287-299.
[MP] R. Molzon and K. Pinney Mortensen, A characterization of complex projective space up to biholomorphic isometry, J. Geom. Anal. 7 (1997), 611-621.
[O1] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340.
[O2] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, in: Proc. United States-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, 101-114.
[O3] M. Obata, Conformal transformations of Riemannian manifolds, J. Differential Geom. 4 (1970), 311-333.
[T] S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30 (1978), 509-531.
[TW] S. Tanno and W. Weber, Closed conformal vector fields, J. Differential Geom. 3 (1969), 361-366.
[TA] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275.

Sharief Deshmukh
Department of Mathematics
College of Science
King Saud University
P.O. Box 2455

Riyadh 11451, Saudi Arabia
E-mail: shariefd@ksu.edu.sa

Falleh Al-Solamy
Department of Mathematics
Faculty of Science
King Abdulaziz University
P.O. Box 80015

Jeddah 21589, Saudi Arabia
E-mail: falleh@hotmail.com

Received 3 May 2013;
revised 26 April 2014

