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Abstract. We consider an n-dimensional compact Riemannian manifold (M, g) and
show that the presence of a non-Killing conformal vector field ξ on M that is also an
eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue λ > 0,
together with an upper bound on the energy of the vector field ξ, implies that M is
isometric to the n-sphere Sn(λ). We also introduce the notion of ϕ-analytic conformal
vector fields, study their properties, and obtain a characterization of n-spheres using these
vector fields.

1. Introduction. The use of differential equations in studying the ge-
ometry of a Riemannian manifold was initiated by Obata (cf. [O1], [O2]). His
work is about characterizing specific Riemannian manifolds by second order
differential equations. According to his main result, a necessary and suffi-
cient condition for an n-dimensional complete and connected Riemannian
manifold (M, g) to be isometric to the n-sphere Sn(c) is that there exists
a non-constant smooth function f on M that satisfies the differential equa-
tion Hf = −cfg, where Hf is the Hessian of f . Then Tashiro [TA] showed
that the Euclidean spaces Rn are characterized by the differential equation
Hf = cg, and Tanno [T] obtained a similar characterization of spheres.
Recently Garćıa-Ŕıo et. al. [EGKU], [GKU] have considered the Laplacian
operator ∆ acting on smooth vector fields on a Riemannian manifold (M, g)
and generalized the result of Obata using a differential equation satisfied by
a vector field to characterize the n-sphere Sn(c) (cf. [GKU, Theorem 3.5]).
These authors have also proved that the differential equation

∆Z = −cZ, c =
S

n(n− 1)
,

where Z is a non-trivial smooth vector field on an n-dimensional compact
Einstein manifold (M, g) of constant scalar curvature S > 0 (that is, Z is an
eigenvector of the Laplacian operator ∆), is a necessary and sufficient condi-
tion for M to be isometric to the n-sphere Sn(c) (cf. [EGKU, Theorem 6]).
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A smooth vector field ξ on a Riemannian manifold (M, g) is said to be
a conformal vector field if there exists a smooth function f on M that sat-
isfies £ξg = 2fg, where £ξg is the Lie derivative of g with respect to ξ. If
in addition ξ is a closed vector field, then ξ is said to be a closed conformal
vector field . Riemannian manifolds admitting closed conformal vector fields
or conformal gradient vector fields have been investigated in [DA], [MP],
[O3], [TW], [TA] and it has been observed that there is a close relation-
ship between the potential functions of conformal vector fields and Obata’s
differential equation. In [D2], conformal vector fields which are also eigenvec-
tors of the Laplacian operator have been studied on a compact Riemannian
manifold of constant scalar curvature and under a suitable restriction on
the Ricci curvature of this manifold, and it is shown there that the Rieman-
nian manifold must be isometric to a sphere. Note that there are several
examples of non-trivial conformal vector fields which are also eigenvectors
of the Laplacian operator acting on smooth vector fields (cf. [D2]). A natu-
ral question arises whether we could prove the result in [D2] without these
curvature assumptions or by replacing the curvature assumptions with a
suitable analytic condition. In the present paper, we answer this question as
well as initiate the study of ϕ-analytic conformal vector fields, i.e. confor-
mal vector fields whose flow leaves invariant a certain tensor field associated
to the conformal vector field. We also obtain a characterization of spheres
using ϕ-analytic conformal vector fields.

2. Preliminaries. Let (M, g) be an n-dimensional Riemannian man-
ifold with the Lie algebra X(M) of smooth vector fields on M . Re-
cently Garćıa-Ŕıo et. al. [GKU] have studied the Laplacian operator ∆ :
X(M)→ X(M) defined by

∆X =

n∑
i=1

(∇ei∇eiX −∇∇eieiX),

where ∇ is the Riemannian connection and {e1, . . . , en} is a local orthonor-
mal frame on M . This operator is elliptic and self-adjoint with respect to
the inner product 〈 , 〉 on XC(M), the space of compactly supported vector
fields in X(M), defined by

〈X,Y 〉 =
�

M

g(X,Y ), X, Y ∈ XC(M).

A non-trivial vector field X is said to be an eigenvector of the Laplacian
operator ∆ if there is a constant µ such that ∆X = −µX. For a compact
Riemannian manifold (M, g), using the properties of ∆ with respect to the
inner product 〈 , 〉, it is easy to conclude that the eigenvalue satisfies µ ≥ 0.
For example consider the n-sphere Sn(c) of constant curvature c (that is,
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of radius
√

1/c) as a hypersurface in the Euclidean space Rn+1 with unit
normal vector field N and take a constant vector field Z on Rn+1, which can
be expressed as Z = ξ + fN , where ξ is the tangential component of Z to
Sn(c) and f = 〈Z,N〉 is treated as a smooth function on Sn(c), 〈 , 〉 being
the Euclidean metric on Rn+1. Then it is easy to show that ξ is a conformal
vector field on Sn(c) and that ∆ξ = −cξ.

We shall denote by∆ both Laplacian operators, the one acting on smooth
functions on M as well as that acting on smooth vector fields. The Ricci
operator Q is a symmetric (1, 1)-tensor field that is defined by g(QX,Y ) =
Ric(X,Y ), X,Y ∈ X(M), where Ric is the Ricci tensor of the Riemannian
manifold.

A vector field ξ ∈ X(M) is said to be a conformal vector field if

(2.1) £ξg = 2fg

for a smooth function f ∈ C∞(M) called the potential function, where £ξ is
the Lie derivative with respect to ξ. Using Koszul’s formula (cf. [D1], [DD]),
we immediately obtain the following for a vector field ξ on M :

(2.2) 2g(∇Xξ, Y ) = (£ξg)(X,Y ) + dη(X,Y ), X, Y ∈ X(M),

where η is the 1-form dual to ξ, that is, η(X) = g(X, ξ), X ∈ X(M). Define
a skew-symmetric tensor field ϕ of type (1, 1) on M by

(2.3) dη(X,Y ) = 2g(ϕX, Y ), X, Y ∈ X(M).

Then using equations (2.1)–(2.3), we immediately get

(2.4) ∇Xξ = fX + ϕX, X ∈ X(M),

and we say that ϕ is the tensor field associated to the conformal vector
field ξ.

Lemma 2.1. Let ξ be a conformal vector field on a Riemannian manifold
(M, g) with potential function f . Then

(∇ϕ)(X,Y ) = R(X, ξ)Y + Y (f)X − g(X,Y )∇f, X, Y ∈ X(M),

where (∇ϕ)(X,Y ) = ∇X(ϕY ) − ϕ(∇XY ), R is the curvature tensor field
and ∇f is the gradient of the function f .

Proof. Equation (2.4) gives

(2.5) R(X,Y )ξ = X(f)Y − Y (f)X + (∇ϕ)(X,Y )− (∇ϕ)(Y,X).

Note that the 2-form given by g(ϕX, Y ) in (2.3) is closed, whence

g((∇ϕ)(X,Y ), Z) + g((∇ϕ)(Y,Z), X) + g((∇ϕ)(Z,X), Y ) = 0,

which together with the skew-symmetry of ϕ and with (2.5) gives

g(R(X,Y )ξ + Y (f)X −X(f)Y,Z) + g((∇ϕ)(Z,X), Y ) = 0;

this proves the lemma.
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Lemma 2.2 ([D1]). Let ξ be a conformal vector field on an n-dimensional
compact Riemannian manifold (M, g) with potential function f . Then

�

M

f = 0,
�

M

g(∇f, ξ) = −n
�

M

f2,

where ∇f is the gradient of the function f .

Lemma 2.3. Let ξ be a conformal vector field on a compact Riemannian
manifold (M, g) with potential function f . Then

�

M

(
Ric(ξ, ξ)− n(n− 1)f2 − ‖ϕ‖2

)
= 0.

Proof. Since Q(ξ) =
∑
R(ξ, ei)ei, Lemma 2.1 gives

(2.6)
∑

(∇ϕ)(ei, ei) = −Q(ξ)− (n− 1)∇f.

Using (2.4), (2.6) to evaluate divϕ(ξ), we obtain

divϕ(ξ) = −
∑

g(fei + ϕei, ϕei) + Ric(ξ, ξ) + (n− 1)g(∇f, ξ)

= −‖ϕ‖2 + Ric(ξ, ξ) + (n− 1)g(∇f, ξ).

Integrating the above equation and using Lemma 2.2, we get the result.

3. A characterization of spheres. We observe that for a non-Killing
conformal vector field ξ on a Riemannian manifold (M, g), the length of ξ
cannot be a constant. Indeed, if the length ‖ξ‖ is a constant, then equa-
tion (2.4) shows that ϕ(ξ) = fξ, and so

f‖ξ‖2 = 0,

that is, either f = 0 or ξ = 0, which again by (2.4) implies that ξ is a Killing
vector field, a contradiction. Recall that the energy of the conformal vector
field ξ on a compact Riemannian manifold (M, g) is given by

e(ξ) =
�

M

‖ξ‖2.

Consider the conformal vector field ξ on Sn(c) induced by a constant
vector field Z on Rn+1 which satisfies ∇Xξ = −

√
c ρX and ∇ρ =

√
c ξ,

where the restriction of Z to Sn(c) is expressed as Z = ξ + ρN and N is
the unit normal to Sn(c). Thus the potential function satisfies f = −

√
c ρ,

and we have ∇f = −cξ and ∆f = −ncf , where ∆ is the Laplacian operator
acting on the smooth functions on Sn(c). Hence the energy of the conformal
vector field ξ is given by

e(ξ) =
1

c2

�

M

‖∇f‖2 = nc−1
�

M

f2.
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Moreover, ξ satisfies ∆ξ = −cξ. This raises a question: is a compact Rie-
mannian manifold (M, g) that admits a non-Killing conformal vector field
with ∆ξ = −cξ, and having energy satisfying the above equality for a con-
stant c, necessarily isometric to the sphere Sn(c)? In this section, we show
that the answer is affirmative and prove the following:

Theorem 3.1. An n-dimensional compact connected Riemannian man-
ifold (M, g) admits a non-Killing conformal vector field ξ with potential
function f that satisfies ∆ξ = −λξ, λ > 0, with energy

e(ξ) ≤ nλ−1
�

M

f2,

if and only if M is isometric to the n-sphere Sn(λ).

Proof. Choose a pointwise constant local orthonormal frame {e1, . . . , en}
on M and use (2.4) to get

(3.1) ∆ξ =
∑
∇ei(fei + ϕ(ei)) = ∇f +

∑
(∇ϕ)(ei, ei).

Now, by ∆ξ = −λξ and equations (2.6), (3.1), we have

Q(ξ) = −(n− 2)∇f + λξ.

Taking the inner product of the above equality with ξ and then integrating,
we get �

M

Ric(ξ, ξ) =
�

M

(−(n− 2)g(∇f, ξ) + λ‖ξ‖2),

which together with Lemma 2.2 gives�

M

Ric(ξ, ξ) =
�

M

(n(n− 2)f2 + λ‖ξ‖2).

Using Lemma 2.3 in the above equation, we get�

M

‖ϕ‖2 =
�

M

(λ‖ξ‖2 − nf2) ≤ λ
(
e(ξ)− nλ−1

�

M

f2
)
.

Thus if the energy of the vector field ξ satisfies the condition in the state-
ment, the above inequality gives ϕ = 0. In this situation, equation (3.1)
takes the form

∇f = −λξ, λ > 0.

Note that f is a non-constant function, for otherwise Lemma 2.2 would
yield f = 0, which together with equation (2.4) would imply that ξ is a
Killing vector field, contradicting the fact that ξ is a non-Killing conformal
vector field. Thus the above equation together with (2.4) gives

∇X∇f = −λfX, X ∈ X(M),

which is the Obata equation and hence M is isometric to the n-sphere Sn(λ).
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The converse is trivial as the sphere Sn(λ) admits a non-Killing confor-
mal vector field satisfying the hypothesis.

4. ϕ-analytic conformal vector fields. In this section, we define
ϕ-analytic vector fields on a Riemannian manifold and study their prop-
erties.

Definition 4.1. A conformal vector field ξ on a Riemannian manifold
(M, g) with associated tensor field ϕ is said to be a ϕ-analytic conformal
vector field if ϕ is invariant under the flow of ξ.

It follows from the above definition that a conformal vector field ξ is a
ϕ-analytic conformal vector field if and only if

(4.1) (£ξϕ)(X) = 0, X ∈ X(M).

An example of a ϕ-analytic vector field ξ is given by ξ = ψ + Jψ ∈ X(Cn),
where ψ is the position vector field and J is the complex structure on the
complex Euclidean space Cn. It is clear that ξ is the conformal vector field
with potential function f = 1 and associated tensor field ϕ = J and that
it satisfies equation (4.1), that is, ξ is indeed a ϕ-analytic vector field. Also
conformal vector fields on the unit sphere Sn induced by constant vector
fields on Rn+1 are ϕ-analytic vector fields. The following theorem provides
a characterization of ϕ-analytic vector fields.

Theorem 4.2. A conformal vector field ξ on a Riemannian manifold
(M, g) with potential function f is a ϕ-analytic conformal vector field if and
only if there exists a smooth function ρ on M such that ∇f = ρξ.

Proof. Suppose ξ is a ϕ-analytic vector field with potential function f .
Then using equations (2.4) and (4.1), we obtain

(∇ϕ)(ξ,X) = 0, X ∈ X(M),

which, in view of Lemma 2.1, gives

g(X, ξ)∇f = g(X,∇f)ξ, X ∈ X(M).

Thus, we get ∇f ∧ ξ = 0, and consequently the vector fields ∇f and ξ are
parallel. Hence, there exists a smooth function ρ on M such that ∇f = ρξ.

Conversely, assume that ∇f = ρξ. Then from (2.4) and Lemma 2.1, we
have

(£ξϕ)(X) = [ξ, ϕX]− ϕ[ξ,X] = (∇ϕ)(ξ,X) = g(X,∇f)ξ − g(X, ξ)∇f = 0,

which proves that ξ is a ϕ-analytic vector field.

If a conformal vector field ξ satisfies ϕ(ξ) = 0, we say that ξ is a null
conformal vector field . Next, we prove the following.
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Theorem 4.3. A null conformal vector field ξ with potential function
f on a Riemannian manifold (M, g) such that R(∇f, ξ; ξ,∇f) ≤ 0 is a
ϕ-analytic conformal vector field.

Proof. Lemma 2.1 gives

(∇ϕ)(∇f, ξ) = R(∇f, ξ)ξ + ξ(f)∇f − ξ(f)∇f,
which, together with ϕ(ξ) = 0, yields

(4.2) −ϕ(f∇f + ϕ(∇f)) = R(∇f, ξ)ξ.
Taking the inner product of the above equality with ∇f , we get

R(∇f, ξ; ξ,∇f) = ‖ϕ(∇f)‖2.
In view of our hypothesis, ϕ(∇f) = 0, and consequently [∇f, ξ] = f∇f −
∇ξ∇f , and equation (4.2) gives R(∇f, ξ)ξ = 0. Thus

∇∇ffξ −∇ξ(f∇f)−∇f∇fξ +∇∇ξ∇fξ = 0,

which, combined with (2.4), implies that

‖∇f‖2ξ − ξ(f)∇f + ϕ(∇ξ∇f) = 0.

Taking the inner product of the above equality with ξ, we get

g(∇f, ξ)2 = ‖∇f‖2‖ξ‖2,
that is, ∇f = ρξ for a smooth function ρ on M ; by Theorem 4.2, this proves
that ξ is a ϕ-analytic vector field.

Next, we use a specific type of ϕ-analytic vector field to find the charac-
terization of a sphere. If the function ρ appearing in the characterization of
the ϕ-analytic conformal vector field ξ in Theorem 4.2 is a constant, then
we say that ξ is a ϕ-analytic conformal vector field of constant type. Notice
that the conformal vector field ξ on Sn(c) induced by a constant vector field
Z on Rn+1 satisfies ∇Xξ = −

√
c ρX and ∇ρ =

√
c ξ, where the restriction

of Z to Sn(c) is expressed as Z = ξ+ρN and N is the unit normal to Sn(c).
Thus, as ∇f = −cξ, the conformal vector field ξ on Sn(c) is a ϕ-analytic
vector field of constant type. This raises a question: is a compact Rieman-
nian manifold that admits a ϕ-analytic conformal vector field of constant
type necessarily isometric to an n-sphere? We answer this question in the
following:

Theorem 4.4. Let ξ be a non-Killing ϕ-analytic conformal vector field
of constant type on an n-dimensional compact and connected Riemannian
manifold (M, g). Then (M, g) is isometric to the n-sphere Sn(c) for some
c > 0.

Proof. Note that ∇f = αξ, where α is a constant. Observe that α 6= 0,
for otherwise the potential function f would be constant, which by Lem-
ma 2.2 would imply f = 0, and so ξ would be a Killing vector field. Hence,
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α 6= 0 and the vector field ξ = α−1∇f is closed, which by the equation (2.3)
gives ϕ = 0. Thus taking the covariant derivatives of both sides of the
equation ∇f = αξ with respect to X ∈ X(M) and using (2.4), we get

(4.3) ∇X∇f = αfX, X ∈ X(M).

We claim that α is a negative constant. To see it, observe that (4.3)
gives ∆f = nαf , that is, f is an eigenfunction of the Laplacian operator ∆,
which being an elliptic operator on the compact Riemannian manifold has
the eigenvalue nα = 0 or nα < 0. The first option cannot occur as it implies
∆f = 0, that is, f is a constant, which is ruled out as seen above. Hence
α < 0, which implies that (4.3) is the Obata equation, proving that M is
isometric to Sn(c), c = −α.
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