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Abstract. We introduce the notions of central endolength and central endolength
vector, and we study their behavior under base field extension for finite-dimensional al-
gebras over perfect fields and for almost admissible ditalgebras.

1. Introduction. In [5], for a given generically tame finite-dimensional
algebra Λ over an infinite perfect field, parametrizations were provided for
indecomposable Λ-modules with dimension less than or equal to d, for each
natural number d. It is typical of this parametrization, for a base field not
algebraically closed and not real closed, to have an infinite number of isomor-
phism classes of indecomposable modules with dimension greater than d, for
an infinite number of integers d. To see an example, consider the Kronecker
algebra

Γ = 1· ))
55 ·2

over the rational field Q and the Γ -Q[x]-bimodule

B = Q[x]
x ,,

1
22 Q[x] .

For any prime p and any natural number n we have the irreducible monic
polynomial xn − p and the indecomposable Γ -module

B ⊗Q[x] ((Q[x]/〈xn − p〉) = Mn,p
∼= Qn

An,p
**

I

44 Qn ,

where I is the identity matrix and
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76 Á. F. CAN CABRERA ET AL.

An,p =



0 0 . . . 0 p

1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0


.

Notice that Mn,p is a quasi-simple Γ -module, but dimQ(Mn,p) = 2n and
the dimension vector of Mn,p is (n, n).

Also interesting is the infiniteness assumption on the base field: there
is a strong feeling that parametrizations are also possible on generically
tame finite-dimensional algebras over finite fields, and so we have to replace
dimension by something else.

Already in [12] it was proposed to use the notion of endolength in order
to extend the concepts of wildness and tameness. Following this idea, in
[24] a parametrization was obtained for finite-dimensional modules of an
almost admissible ditalgebra (Definition 2.1) for a fixed endolength vector
(Definition 2.6) and simple group of self-extensions, and in [6] this notion of
endolength vector was used to obtain parametrizations for generically tame
finite-dimensional algebras over real closed fields.

Here we propose to use the central endolength and the central endolength
vector (Definition 2.11) when the base field is perfect; in Theorem 2.13
we prove that the central endolength is kept, for indecomposable finite-
dimensional modules, when we pass to the indecomposable direct summands
obtained through extension of the base field by algebraic closure. Moreover,
the behavior of the central endolength vector for elementary algebras and
elementary ditalgebras (Theorem 2.14) suggests that this notion is a good
generalization of the concept of dimension vector.

Then it is necessary to see if there are analogs for central endolength vec-
tors and central endolength of some usual results for dimension vectors and
dimension: in Section 3 we review classical equivalences for infinite repre-
sentation type for algebras and constructible almost admissible ditalgebras.

In Section 4 we analyze a norm (we call it the endonorm) for almost
admissible ditalgebras and its behavior for endolength vectors and cen-
tral endolength vectors under reduction functors. We also prove a ver-
sion of Brauer–Thrall I (BT-I) for almost admissible ditalgebras (Theo-
rem 4.16).

With this tool we find an equivalent condition for an almost admissible
ditalgebra A to be generically trivial (Proposition 4.14), and in Section 5
we see that the isomorphism classes of indecomposable finite-dimensional
A-modules with trivial group of self-extensions are determined by their cen-
tral endolength vectors (Theorem 5.3).
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In Section 6 we provide an example of a subcategory determined by a cen-
tral endolength vector which is covered by a finite number of one-parameter
families, and this covering is good in the sense that almost all the isomor-
phism classes of the one-parameter families have that central endolength
vector (Theorem 6.15); also the generic modules associated are algebraically
bounded and have the same central endolength vector.

We think it is possible to use a parametrization similar to the one of
the above-mentioned example in other cases, and thus get a generalized
version of tameness. Moreover, in [25] it is proved that ΛK tame is equiva-
lent to Λ being semigenerically tame; the results of Section 6 suggest that
the notion of semigeneric tameness should be close to the usual notion of
tameness.

2. Endolength vectors. Throughout the paper, k will denote a perfect
field, perhaps finite, and Λ a finite-dimensional k-algebra; K will denote an
algebraic closure of k.

Furthermore, A = (T, δ) will denote a layered triangular ditalgebra
(see [7]) with layer (R,W = W0 ⊕W1), so R is a k-algebra, W = W0 ⊕W1

as R-R-bimodules and T is the tensor algebra TR(W ) = R ⊕W ⊕W ⊗R
W ⊕ · · · ⊕W⊗n ⊕ · · · .

We say that the elements of W1 are of degree one and those of R and W0

are of degree zero. Then there is an induced structure of a graded k-algebra
over T, i.e. T =

⊕
i∈N∪{0}[T ]i as vector spaces and [T ]i[T ]j ⊂ [T ]i+j for all

i, j.

Moreover, the differential δ : T → T is a linear transformation such that:

• δ([T ]i) ⊂ [T ]i+1 for all i.
• δ(h1h2) = δ(h1)h2 + (−1)deg(h1)h1δ(h2) for all homogeneous elements
h1, h2 ∈ T .
• δ2 = 0.

The triangularity of the layer means that there are filtrations of R-R-
bimodules of W0 and W1 with good properties (see [7, Definition 5.1]).

Following [7] we write A = [T ]0 and V = [T ]1.

The objects of the category A-Mod are all the A-modules. Given M,N ∈
A-Mod, a morphism f : M → N in A-Mod is a pair f = (f0, f1), with
f0 ∈ Homk(M,N) and f1 ∈ HomA-A(V,Homk(M,N)), satisfying af0(m)−
f0(am) = f1(δ(a))(m) for any a ∈ A and m ∈M .

A-mod is the full subcategory of A-Mod of all finite-dimensional objects.

The objects of A-Mod are called A-modules.

Definition 2.1. Let A = (T, δ) be a layered triangular ditalgebra. We
say that:
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(1) A is almost admissible if R ∼= Mm1(D1) × · · · ×Mmn(Dn) for some
finite-dimensional division k-algebras D1, . . . , Dn, and the R-R-bi-
module W is finitely generated.

(2) A is admissible if it is almost admissible and R ∼= D1 × · · · ×Dn for
some finite-dimensional division k-algebras D1, . . . , Dn.

(3) A is elementary if it is admissible and R ∼= k × · · · × k.

Let us recall that Λ is elementary if Λ/rad(Λ) ∼=
∏n
i=1 k (see [3, p. 65]).

In particular, if Λ is elementary then it is basic.

Remark 2.2. An admissible ditalgebra A with W1 = 0 is a k-species
(see [26]).

We will apply the results of [7] on ditalgebras; for the benefit of the
reader we recall that for an almost admissible ditalgebra A the following
hold:

• A-Mod is an additive k-category and idempotents split in A-Mod.
• A-mod is a Krull–Schmidt category.
• Let f = (f0, f1) : M → N be a morphism in A-Mod. Then f is an

isomorphism in A-Mod if and only if f0 is an isomorphism, and if
M = N then f is nilpotent if and only if f0 is nilpotent.
• If A is finite-dimensional then A-mod has almost split sequences.

Notation. For M ∈ A-Mod (respectively M ∈ Λ-Mod) we write EM =
EndA(M)op (resp. EM = EndΛ(M)op), DM = EM/rad(EM ) and denote by
ZM the center of DM .

Definition 2.3. For M ∈ A-Mod there is a canonical structure of right
EM -module given by m · (f0, f1) = f0(m). Then, for M ∈ A-Mod (resp.
M ∈ Λ-Mod), the endolength of M, denoted by endol(M), is its length as
an EM -module. We say that M is endofinite if endol(M) <∞. We say that
M is generic if it is endofinite, indecomposable and has infinite dimension
over k.

Here, for simplicity, we do not use the term pregeneric module of [5]
because its definition is the same one we gave for generic module, and there
are several statements in this paper that are expressed for almost admissible
ditalgebras and for finite-dimensional k-algebras.

Definition 2.4. An almost admissible ditalgebra A (resp. the f.d. k-
algebra Λ) is generically trivial if there are no generic modules in A-Mod
(resp. Λ-Mod).

Definition 2.5. A nonzero idempotent is primitive if it cannot be writ-
ten as a sum of two nonzero orthogonal idempotents, and centrally primitive
if it is central and cannot be written as the sum of two nonzero orthogonal
central idempotents.
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Observe that in the case of an admissible ditalgebra A the notions of
primitive and centrally primitive coincide on R.

Definition 2.6. For an admissible ditalgebra A (resp. Λ), let M ∈
A-Mod (resp. M ∈ Λ-Mod) be endofinite and let 1R = e1 + · · · + en be
a decomposition into centrally primitive idempotents (resp. let 1Λ = e1 +
· · ·+ en be a decomposition into orthogonal idempotents such that π(ei) is
centrally primitive for each i, where π : Λ→ Λ/rad(Λ) is the canonical ring
epimorphism). Then we consider the endolength vector

`(M) = (`EM (e1M), . . . , `EM (enM)),

where `EM (ejM) is the length of ejM as a right EM -module.

Remark 2.7. Let be z1, . . . , zn a complete set of orthogonal centrally
primitive idempotents of Λ/rad(Λ), and let π : Λ→ Λ/rad(Λ) be the canoni-
cal ring epimorphism. It is known that there exist idempotents e′1, . . . , e

′
n ∈ Λ

such that π(e′j) = zj for j ∈ {1, . . . , n}. From the previous set of idempo-
tents it is possible to obtain orthogonal idempotents e1, . . . , en ∈ Λ such
that π(ej) = zj for each j (see [29, Proposition 1.1.25]). The orthogonal-
ity of e1, . . . , en implies that endol(M) = `EM (e1M) + · · · + `EM (enM) for
M ∈ Λ-Mod.

Now fix j and assume that ej , e ∈ Λ are idempotents such that e− ej =
r ∈ rad(Λ). Let M ∈ Λ-Mod and consider the homomorphisms of EM -
modules α : ejM → eM and β : eM → ejM given by α(ejm) = eejm and
β(em) = ejem for m ∈ M . Notice that βα(ejm) = (ej + ejrej)ejm. Since
ejrej belongs to the radical of ejΛej , it is quasi-invertible and so there exists
t ∈ ejΛej such that t(ej + ejrej) = ej = (ej + ejrej)t. It follows that βα is
an isomorphism of EM -modules. In a similar way we can verify that αβ is
an isomorphism, and so `EM (ejM) = `EM (eM).

Notation. For an object V with the structure of a k-vector space and F
a field extension of k we denote by V F the object V ⊗kF (see [13] and [21]).

Remark 2.8. Given Λ and F a field extension of k (recall that k is per-
fect), Λ = S⊕rad(Λ), by Wedderburn’s principal theorem (see [13, Theorem
72.19] and [29, Theorem 2.5.37]), and ΛF = SF ⊕ rad(Λ)F , where rad(Λ)F

can be identified with rad(ΛF ), by [21, Lemma 3.3(b)] (see also [13, Theorem
29.21 and Corollary 29.22]). There are similar claims for the endomorphism
ring EM of M ∈ Λ-mod (see [13, Lemma 29.5] and [21, Lemma 2.2(a)]),
and for the endomorphism ring EM of M ∈ A-mod for an almost admissible
ditalgebra A (see [5, proof of Lemma 5.1]).

Remark 2.9. Let M ∈ A-Mod for A an admissible ditalgebra and as-
sume that e = (e0, e1) ∈ EM is an idempotent. It is known (see, for example,
[7, Lemma 5.11]) that there is an isomorphism h : M →M1⊕M2 such that
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heh−1 =
((

0 0
0 1

)
, 0
)
. Then, by conjugation by h, we can identify EM2 with

e(EM )e and radEM2 with e(radEM )e, so there are canonical isomorphisms
DM2

∼= π(e)DMπ(e) and ZM2
∼= π(e)ZMπ(e), where π : EM → DM is the

canonical epimorphism. Similar claims are well known for M ∈ Λ-Mod and
e an idempotent of EM .

Remark 2.10. Let A be an admissible ditalgebra and let M ∈
A-mod (resp. M ∈ Λ-mod) be indecomposable. It is known that EM is
a finite-dimensional k-algebra (see [3, Proposition §II.1.1] and [7, p. 29])
and a local ring (see [3, Theorem §II.2.2] and [7, Lemma 5.12]), so DM is a
finite-dimensional division k-algebra; it follows that ZM is a field and DM

is finite-dimensional over ZM . Moreover, dimZM (DM ) = c2
M for a natural

number cM (see [29, Corollary 2.3.25]).

Definition 2.11. Let M ∈ A-Mod for A an almost admissible dital-
gebra (resp. M ∈ Λ-Mod) be such that DM = EM/rad(EM ) is a division
ring finite-dimensional over its center ZM , and write cM =

√
dimZM (DM ).

We define the central endolength vector of M as c-`(M) = cM`(M), and its
central endolength as c-endol(M) = cM endol(M).

Remark 2.12. If k is a finite field and M ∈ A-mod, for A an almost
admissible ditalgebra (resp. M ∈ Λ-mod), is indecomposable, then, by Wed-
derburn’s theorem on finite division rings, c-`(M) = `(M).

Theorem 2.13 (cf. [19, Lemma 5.5]). Let A be an admissible ditalgebra
and let M ∈ A-mod (resp. M ∈ Λ-mod) be indecomposable. Then there
exists a Galois field extension F of k such that:

(1) There is an isomorphism of AF -modules (resp. ΛF -modules) MF ∼=
N1 ⊕ · · · ⊕ Nt, where Ni is indecomposable and DNi

∼= F for i ∈
{1, . . . , t}. Moreover, endol(Ni) = c-endol(Ni) = c-endol(M) for
each i.

(2) Also, NK
i is an indecomposable AK-module (resp. ΛK-module) and

DNK
i

∼= K for i ∈ {1, . . . , t}, and so endol(Ni) = dimK(NK
i ) for

each i.

Proof. Let us write rM = rad(EM ).

Let {0} = M0 ≤M1 ≤ · · · ≤Mu = M be a composition series of M as a
right EM -module, hence endol(M) = u. Observe that Mj+1/Mj

∼= DM for
j ∈ {0, . . . , u− 1}.

By [18, Theorem 4.2.1] there exists a finite field extension F of ZM
such that DM ⊗ZM F ∼= McM (F ). Since k is perfect and ZM is a finite field
extension of k we can choose F to be a Galois field extension of ZM . Observe
that ZM is a simple extension of k. Then ZM ⊗k F ∼= F ×· · ·×F, where the
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number of factors is [ZM : k], and so

DM ⊗k F ∼= DM ⊗ZM ZM ⊗k F ∼= DM ⊗ZM (F × · · · × F ) ∼=
[ZM :k]
×
i=1

McM (F ).

(See, for example, [14, Lemma 2.7] or [25, Lemma 2.11].)

By Remark 2.8 we find that (EM )F ∼= EMF and (rM )F ∼= rad(EMF ),
so (DM )F ∼= EMF /(rM )F and from [29, Corollary 1.7.24] we deduce that
(ZM )F is isomorphic to the center of DMF .

Then (see [7, Lemma 20.2] and [5, proof of Lemma 5.1]) MF
0 ≤ MF

1 ≤
· · · ≤ MF

u is a series of EMF -submodules of MF such that MF
j+1/M

F
j
∼=

×[ZM :k]
i=1 McM (F ).

Consider an associated decomposition of the unit as a sum of primitive
orthogonal idempotents

1DFM
= e1,1+e1,2+· · ·+e1,cM+e2,1+· · ·+e2,cM+· · ·+e[ZM :k],1+· · ·+e[ZM :k],cM .

Applying Remark 2.9 we have MF ∼=
⊕[ZM :k]

i=1

⊕cM
j=1Ni,j , where the sum-

mand Ni,j is associated to the idempotent ei,j . We see that DNi,j
∼= F, so

Ni,j is indecomposable, and also Ni,j
∼= Ni′,j′ if and only if i = i′.

Moreover, MF
0 ei,j ≤MF

1 ei,j ≤ · · · ≤MF
u ei,j is a sequence of ei,j(E

F
M )ei,j-

modules that can be identified with a sequence of ENi,j -submodules of Ni,j .

It is immediate that MF
s+1ei,j/M

F
s ei,j

∼=
⊕cM

h=1 F ; consequently, the en-
dolength of Nei,j is cM endol(M).

By Remark 2.8 we get (DM )K ∼= (×[ZM :k]
i=1 McM (F ))K ∼= ×[ZM :k]

i=1 McM (K),
so the endomorphism ring of NK

i,j is isomorphic to K and its endolength
coincides with its dimension as a K-vector space.

We apply a similar argument when we consider Λ instead of A.

Theorem 2.14. Let A be an elementary ditalgebra (resp. let Λ be ele-
mentary) and let M ∈ A-mod (resp. M ∈ Λ-mod) be indecomposable. Then
MK ∼= N1 ⊕ · · · ⊕ Nt, where Ni is an indecomposable AK-module (resp.
ΛK-module) and c-`(M) = c-`(Ni) = dim(Ni) for each i, where dim(Ni)
denotes the dimension vector of Ni.

Proof. It is not hard to verify that AK is elementary and that there is a
canonical bijection between the primitive orthogonal idempotents of R and
those of RK . Now we only need to apply the proof of Theorem 2.13 to eM,
where e ∈ R is a centrally primitive idempotent.

The argument for Λ elementary is similar (use Remarks 2.7 and 2.8).

Remark 2.15. Example 4.7 of [21] shows that Theorem 2.14 is not true
for Λ not elementary. However, next we see that we can associate to Λ a
closely related elementary finite-dimensional algebra.
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Proposition 2.16. Given Λ there exists a Galois field extension F of k,
and a finite-dimensional elementary F -algebra Λ0, such that ΛF is Morita
equivalent to Λ0.

Proof. It is known that Λ/rad(Λ) ∼=
∏n
i=1Mmi(Di), where Di is a finite-

dimensional division k-algebra for each i.

As in the proof of Theorem 2.13 there exist finite field extensions Ei
of Zi such that Di ⊗Zi Ei ∼= Mci(Ei). So there exists a Galois extension F
of k that contains Ei as an intermediate field for each i, and then

Di ⊗k F ∼= Di ⊗Zi Zi ⊗k F ∼=
[Zi:k]
×
j=1

Di ⊗Zi F ∼=
[Zi:k]
×
j=1

Mci(F ).

The functor of [3, Proposition §II.2.5] determines an elementary finite-
dimensional F -algebra Λ0 and a Morita equivalence HomΛF (P,−) : ΛF -Mod
→ Λ0-Mod, where P1, . . . , Pt is a complete set of representatives of indecom-
posable projective ΛF -modules, P =

⊕t
i=1 Pi and Λ0 = EndΛ(P )op.

Now we want to calculate the effect of the Morita equivalence of the
previous proposition on endolength vectors, and so on central endolength
vectors, using a proof communicated to us by R. Bautista.

Proposition 2.17. Let Γ be the reduced form of Λ (see [3, p. 35]) and
H : Γ -Mod → Λ-Mod the corresponding Morita equivalence. Then N ∈
Γ -Mod is endofinite if and only if H(N) is endofinite. Moreover, there are
fixed positive integers m1, . . . ,mn such that `(H(N)) = (m1d1, . . . ,mndn)
(resp. c-`(H(N)) = (m1d1, . . . ,mndn) when N is indecomposable and DN is
finite-dimensional overZN ) where `(N)=(d1, . . . , dn) (c-`(N)=(d1, . . . , dn)).

Proof. Let Λ = Q1⊕ · · · ⊕Qn, where Qi = Pi,1⊕ · · · ⊕Pi,mi , each Pi,j is
indecomposable and Pi,j ∼= Pi′,j′ if and only if i = i′.

Let {e1,1, . . . , e1,m1 , . . . , en,1, . . . , en,mn} be the associated set of primitive
orthogonal idempotents given by Λei,j = Pi,j . Observe that Qi = Λêi, where
êi = ei,1 + · · ·+ ei,mi .

We choose P = P1,1 ⊕ P2,1 ⊕ · · · ⊕ Pn,1 and Γ = EndΛ(P )op. Then there
are equivalences HomΛ(P,−) : Λ-Mod → Γ -Mod and P ⊗Γ − : Γ -Mod →
Λ-Mod.

Given M ∈ Λ-Mod it is easy to verify that HomΛ(Qi,M) and êiM are
isomorphic as right EM -modules.

Now, for each i, let fi : P → P be the idempotent induced by the
identity on Pi,1. As before, for N ∈ Γ -Mod we have `EN (HomΓ (Γfi, N)) =
`EN (fiN).

The isomorphism of vector spaces

α : HomΓ (Γfi, N)→ HomΛ(P ⊗Γ Γfi, P ⊗Γ N)
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is also an isomorphism of right EN -modules, because we can identify EN
with EP⊗ΓN . Having in mind that P ⊗Γ Γfi ∼= Pfi = Pi,1 and writing
M = P ⊗Γ N we have the identities

`EM (êiM) = mi`EM (HomΛ(Pi,1,M)) = mi`EM (HomΓ (Γfi, N))

= mi`EN (fiN),

and the claim for endolength vectors follows.

For central endolength vectors we only need to observe that cN = cH(N),
because H is an equivalence of categories.

3. Infinite representation type: equivalences

Definition 3.1. Let us recall that an almost admissible ditalgebra A
(resp. Λ) is of finite representation type if there are a finite number of iso-
morphism classes of indecomposable modules in A-mod (resp. Λ-mod), and
of infinite representation type otherwise.

We make a slight adaptation of some notions in [11], and we say that
A (resp. Λ) is c-unbounded if for any natural number d there exists an in-
decomposable M ∈ A-mod (resp. M ∈ Λ-mod) such that c-endol(M) ≥ d,
and c-strongly unbounded if there is a sequence of natural numbers d1 <
d2 < · · · such that for any j there are an infinite number of isomorphism
classes of indecomposables M ∈ A-mod (resp. M ∈ Λ-mod) such that
c-endol(M) = dj .

Now we prove a result very similar to one of [12].

Theorem 3.2 (cf. [12, Theorem of p. 156]). Recall that k is a perfect
field and Λ is a finite-dimensional k-algebra. The following are equivalent:

(1) Λ is of infinite representation type.
(2) Λ is c-unbounded.
(3) Λ is c-strongly unbounded.
(4) Λ is not generically trivial.

Proof. By [1, Corollary 4.8], or [2, Theorem A], if Λ (or ΛK) is of finite
representation type then it is generically trivial. The converse follows by [12,
Theorem, p. 156].

By [20, Theorem 3.3] (see also [21]), Λ is of infinite representation type
if and only if ΛK is of infinite representation type.

If M ∈ ΛK-mod is indecomposable then DM
∼= K, and so for ΛK the

notions of c-unbounded and c-strongly unbounded are equivalent to the
usual concepts of unbounded and strongly unbounded.

Now, the equivalence between (1), (2) and (3) is known for ΛK : these
are the Brauer–Thrall conjectures (see, for example, [3, pp. 221 and 222]).
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By [21, Lemma 2.5] we see, for L,M ∈ Λ-mod indecomposables, that LK

and MK have a common direct summand if and only if L ∼= M ; by Theorem
2.13 we conclude that Λ is c-unbounded (resp. c-strongly unbounded) if and
only if ΛK is unbounded (resp. strongly unbounded).

Observe, by [22, Lemmas 3.3, 4.1 and 4.2] and Theorem 2.13 and Propo-
sitions 2.16 and 2.17, that it was enough to prove Theorem 3.2 for Λ ele-
mentary.

Definition 3.3. Let A be an almost admissible ditalgebra. We say
that A (resp. Λ) is limited if there exist a finite list {D1, . . . , Dt} of finite-
dimensional k-division rings such that for any M ∈ A-mod (resp. M ∈
Λ-mod) indecomposable there exists jM ∈ {1, . . . , t} with DM

∼= DjM .

The next result follows straightforwardly from Theorem 3.2.

Corollary 3.4. Let k be a finite field. Then Λ is of finite representation
type if and only if Λ is limited.

4. Reduction functors, endolength vectors and a norm. We are
assuming the notation and results of [4] and [7] for reduction functors (see
also [24]).

Recall that, for an almost admissible ditalgebra A = (T, δ) with layer
(R,W0⊕W1), δ is a homomorphism of R-R-bimodules (see e.g. [7, Definition
4.5]). Then, for 1R = e1 + · · ·+ en a decomposition into centrally primitive
idempotents and e = ei1 + · · · + eit , where {i1, . . . , it} is a non-empty and
proper subset of {1, . . . , n}, there is an associated almost admissible ditalge-
bra Ae with layer (eR, eW0e⊕ eW1e) and a reduction functor Fe : Ae-Mod
→ A-Mod, called idempotent deletion, which is full and faithful, and is dense
in the subcategory of A-Mod of all objects M such that (1− e)M = 0.

Recall k is a perfect field, so R ⊗k R is a semisimple finite-dimensional
k-algebra. Therefore W0 = Ker(δ|W0

) ⊕ U0 and W1 = δ(U0) ⊕ U1 as R-R-
bimodules.

If U0 6= 0, then there is an almost admissible ditalgebra Ar with layer
(R,Ker(δ|W0

)⊕ U1) and a reduction functor Fr : Ar-Mod→ A-Mod, which
we are going to call regularization, which is an equivalence of categories. The
usual notion of regularization functor is more general (see [7]), but the one
above is good enough for our purposes.

When U0 = 0 and Ker(δ|W0
) 6= 0 we can use a reduction functor, just

denoted by FX : AX -Mod→ A-Mod, which in the notation of [4] is a combi-
nation of absorption and reduction by an admissible bimodule. This functor
includes both Edge Reduction and Unraveling a Loop of [11]. In the terminol-
ogy of [7] the layer (R,W ′0), whereW ′0 is a direct R-R-summand of Ker(δ|W0

),
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determines an initial subalgebra, and in our context we can identify it with
the (tensor) k-algebra Γ = TR(W ′0) = R⊕W ′0 ⊕W ′0 ⊗RW ′0 ⊕ · · · .

Depending on the objects of A-Mod that we want to study, we choose a
Γ -module X with appropriate properties (see e.g. [7, Sections 12–14]) which
is in general finite-dimensional and such that X =

⊕t
i=1Xi, where Xi is

indecomposable for each i, and i 6= j implies Xi � Xj . Then AX has a
layer (S,X∗ ⊗R W ′′0 ⊗X ⊕WX

1 ), where S ∼= EndΓ (X)op/rad(EndΓ (X)op),
W0 = W ′0 ⊕W ′′0 as R-R-bimodules and X∗ = Homk-S(X,S).

Let res : A-Mod→ Γ -Mod be the restriction functor.

The functor FX is full and faithful, and it is dense in the subcategory of
A-Mod of all objects M such that res(M) ∈ addX.

Let fj be the idempotent in S induced by the identity on Xj , for j ∈
{1, . . . , t}. Then for N ∈ AX -mod we observe that res(FX(N)) ∼= a1X1 ⊕
· · · ⊕ atXt as Γ -modules, where N ∼= a1Sf1 ⊕ · · · ⊕ atSft as S-modules.

Definition 4.1. Recall (see [5, Definition 4.2]) that an almost admis-
sible ditalgebra A is constructible if there is a finite sequence of reduction
functors, restricted to those called idempotent deletion, regularization or
type FX ,

Dt-Mod
Ft−→ Dt−1-Mod

Ft−1−−−→ · · · F2−→ D1-Mod
F1−→ D0-Mod = DΛ-Mod,

where DΛ is the Drozd ditalgebra of Λ, and there is an isomorphism of
layered ditalgebras A ∼= Dt.

Corollary 4.2. Let A be a constructible ditalgebra. Then the following
are equivalent:

(1) A is of infinite representation type.
(2) A is c-unbounded.
(3) A is c-strongly unbounded.
(4) A is not generically trivial.

Proof. Let us assume the notation of Definition 4.1. By [5, Lemma 4.4,
items 3 and 4], [5, Corollary 4.5] and Theorem 3.2, the statement is true for
DΛ-Mod. By [7, Lemmas 25.2, 25.3, 25.4 and 25.7], the statement is true for
Dj-Mod for each j.

The next proposition was proved in [24] for admissible ditalgebras and
in [7, main part of Lemma 25.7] for seminested ditalgebras.

Proposition 4.3. Let A be an almost admissible ditalgebra, let F :
Az-Mod → A-Mod be a reduction functor and let M ∈ Az-Mod be inde-
composable and endofinite. In the following cases there is a fixed matrix tF
such that `(F (M))t = tF (`(M)t):
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(1) If F = Fr is the regularization functor, then tF is the identity matrix.
(2) If F = Fe is the idempotent deletion functor, then after a suitable

numbering of the idempotents, tF is a matrix with (tF )i,j = 1 if i = j,
and (tF )i,j = 0 if i 6= j.

(3) If F = FX , and 1R = e1+· · ·+en is the canonical decomposition into
centrally primitive orthogonal idempotents, and 1S = f1 + · · ·+ fs is
the canonical decomposition into central primitive orthogonal idem-
potents, then (tFX )i,j is the rank of eiXfj over Sfj.

Proof. Claims (1) and (2) are immediate from the definitions. For the
third claim we can adapt the argument of [7, Lemma 25.7].

Now we see an analogue of Proposition 2.17.

Corollary 4.4. Let A be an almost admissible ditalgebra, and let Ab
be its basification (see [5, Proposition 3.3]), which is obtained through the
initial subalgebra given by the layer (R, 0) and X = L1 ⊕ · · · ⊕ Ln, where
1R = e1 + · · · + en is a decomposition into centrally primitive idempotents
and Li is a simple Rei-module, and FX : Ab-Mod → A-Mod is the associ-
ated reduction functor. Then there are fixed integers m1, . . . ,mn such that,
for M ∈ Ab-Mod endofinite and indecomposable with `(M) = (d1, . . . , dn)
(resp. c-`(M) = (d1, . . . , dn)) we have `(FX(M)) = (m1d1, . . . ,mndn) (resp.
c-`(FX(M)) = (m1d1, . . . ,mndn)).

Proof. We use the notation of Proposition 4.3. It is clear that eiXfj = 0
for i 6= j and that eiXfi = Li. Moreover, the rank of Li over Si =
EndR(Li)

op is mi, where Rei ∼= Mmi(Di).

The functor FX : Ab-Mod → A-Mod of the previous corollary is an
equivalence of categories, so for most results, we only need to develop proofs
for admissible ditalgebras; however, we would rather have definitions for
almost admissible ditalgebras.

Definition 4.5. We will work with the partial order on Zn given by
(d1, . . . , dn) ≥ (d′1, . . . , d

′
n) iff di ≥ d′i for i ∈ {1, . . . , n}.

Remark 4.6. The matrices tF of Proposition 4.3 preserve order strictly,
i.e. if d and d′ are integer vectors of appropriate size and d > d′, then
tF (d)t > tF (d′)t.

The next definition is closely related to the norm used in [24]; notice
that the endonorm is different from the norm of [7, 25.1 and 28.1].

Definition 4.7. Let A be an almost admissible ditalgebra, where 1R =
e1 + · · · + en is a decomposition into centrally primitive orthogonal idem-
potents. For M ∈ A-Mod endofinite with endolength vector `(M) we define
the endonorm of M, denoted by ‖M‖, as the number `(M)W (`(M))t, where
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W = (wi,j) is an n× n matrix with

wi,j =
dimk(eiW0ej)

dimk(Rei) dimk(Rej)
.

Remark 4.8. For A an admissible ditalgebra and M ∈ A-mod inde-
composable, ‖M‖(dimk(DM ))2 is equal to the norm defined in [5, 7.1].

Remark 4.9. For A an admissible ditalgebra and M ∈ A-Mod in-
decomposable, if ‖M‖ = 0 then M has to be indecomposable as an R-
module. Also EM ∼= EndR(M) ⊕ HomR(W1 ⊗R M,M) as k-vector spaces
and HomR(W1 ⊗RM,M) ⊂ rad(EM ).

Proposition 4.10 (cf. [5, Lemma 7.2]). Let A be an admissible ditalge-
bra and 1R = e1+· · ·+en a decomposition into centrally primitive orthogonal
idempotents. Let M ∈ A-Mod be indecomposable and endofinite, and assume
that `(M) has m > 1 nonzero coordinates. Then

endol(M) ≤ mb

m− 1
‖M‖,

where b is the least common multiple of dimk(Re1), . . . , dimk(Ren).

Proof. Without loss of generality we can assume (d1, . . . , dm, 0, . . . , 0) =
`(M), where d1, . . . , dm are nonzero. Since M is indecomposable, there are
pairs {dhi,1 , dhi,2}, for i ∈ {1, . . . ,m − 1}, such that hi,j ∈ {1, . . . ,m},
the sets {d1, . . . , dm} and {{dh1,1 , dh1,2}, . . . , {dhm−1,1 , dhm−1,2}} form a con-
nected graph, and whi,1,hi,2 6= 0.

Using induction we can prove that
m

m− 1
(dh1,1dh1,2 + · · ·+ dhm−1,1dhm−1,2) ≥ d1 + · · ·+ dm.

Finally, notice that bwi,j is an integer for all i and j, so mb
m−1‖M‖ ≥

m
m−1(dh1,1dh1,2 + · · ·+ dhm−1,1dhm−1,2).

Remark 4.11. Suppose that A is an admissible ditalgebra with layer
(R,W0 ⊕W1), 1R = e1 + · · · + en a decomposition into centrally primitive
orthogonal idempotents, FX : AX → A a reduction functor, W0,0 a direct
R-R-summand of W0, L the matrix with (i, j) entry

dimk(eiW0,0ej)

dimk(Rei) dimk(Rej)
,

and LX the matrix with (a, b) entry

dimk(faX
∗ ⊗RW0,0 ⊗R Xfb)

dimk(Sfa) dimk(Sfb)
,

where (S,WX) is the layer of AX and 1S = f1 +· · ·+ft a decomposition into
centrally primitive orthogonal idempotents. It is easy to show that LX =
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(tFX )tLtFX , where tFX is the matrix of Proposition 4.3(3), and therefore it
is easy to prove the next result.

Lemma 4.12. Let A be an admissible ditalgebra, let F : Az-Mod →
A-Mod be any of the reduction functors analyzed in Proposition 4.3, and let
N ∈ Az-Mod. Then N is endofinite if and only if F (N) = M is endofinite,
and in that case:

(1) if F is idempotent deletion, then ‖N‖ = ‖M‖,
(2) if F is regularization and `(M) has nonzero coordinates, then ‖N‖ <
‖M‖,

(3) if F = FX and `(M) has nonzero coordinates, then ‖N‖ < ‖M‖.
Proof. Computations similar to those of [7, Section 25] or [5, Lemma

7.3].

The endonorm of an endofinite object may be a rational number, but
we still have situations where we can apply the usual induction arguments
(see [6]).

Definition 4.13. Let A be an almost admissible ditalgebra. If d is an
endolength vector we denote by indA(d) the full subcategory of A-mod of
indecomposable modules M with `(M) = d. We say that indA(d) is finite
if it contains a finite number of isomorphism classes, otherwise it is infinite.
In a similar way we denote by c-indA(d) the full subcategory of A-mod
of indecomposable modules M with c-`(M) = d, where now d is a central
endolength vector, and we call this subcategory finite or infinite depending
on the number of isomorphism classes contained in c-indA(d).

Observe that ‖M1‖ = ‖M2‖ for any M1,M2 ∈ indA(d), so we can asso-
ciate to indA(d) the number ‖d‖ = ‖M‖ for any M ∈ indA(d).

Proposition 4.14. Let A be an almost admissible ditalgebra. The fol-
lowing are equivalent:

(1) indA(d) is finite for each d.
(2) c-indA(d) is finite for each d.
(3) A is generically trivial.

Proof. It is clear that (1) implies (2).
Now assume (2); we will prove (3) by induction on the endonorm. By

Corollary 4.4 we can assume that A is admissible with R ∼= D1 × · · · ×Dn.
Let b be the least common multiple of dimk(D1), . . . , dimk(Dn). Then

for any M ∈ A-Mod endofinite and indecomposable the number ‖M‖ is in
b−1N ∪ {0}.

By Remark 4.9 there is no generic module G∈A-Mod such that ‖G‖=0.
Assume that for an admissible ditalgebra A′ fulfilling (2) there is no generic
module G′ ∈ A′-Mod such that ‖G′‖ ∈ {0, 1/b, . . . ,m/b}.
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Let d be an endolength vector such that ‖d‖ = (m+ 1)/b.
If F : Az → A is idempotent deletion or regularization then, by Propo-

sition 4.3, there is a unique endolength vector d′ such that F induces an
equivalence between indAz(d′) and indA(d). Also we see for N ∈ indAz(d′)
that ‖N‖ ∈ b−1N ∪ {0}.

Then, by Lemma 4.12, we can assume that d has nonzero coordinates.
If we use regularization then we can apply the induction hypothesis.
So it only remains to analyze the effect of a suitable functor FX :

AX → A. Recall that the associated initial subalgebra is a hereditary finite-
dimensional k-algebra, which we denote by Γ .

By Theorem 3.2 we see that Γ is of finite representation type, and so
we choose X = X1 ⊕ · · · ⊕ Xr, where {X1, . . . , Xr} is a complete set of
representatives of isomorphism classes of indecomposable Γ -modules (i 6= i′

implies Xi � Xi′).
Then we have, thanks to Proposition 4.3, a finite number of vectors

d′1, . . . , d
′
t such that F induces an equivalence between

⋃t
j=1 indAX(d′j) and

indA(d).
As Γ is of finite representation type, it is known that there is a function

σ : {1, . . . , r} → {1, . . . , n} such that DXi
∼= Dσ(i) (see, for example, [3]).

Then, by Remark 4.11, we get ‖d′j‖ ∈ b−1N ∪ {0} for j ∈ {1, . . . , t}.
By Lemma 4.12 and the induction hypothesis there is no generic module

G′ ∈ AX such that `(G′) ∈ {d′1, . . . , d′t}, so there is no generic module
G ∈ A-Mod such that `(G) = d.

The proof that (3) implies (1) is very similar to that for the previous
implication.

With a similar argument to the one in the proof of the proposition above,
and applying Corollary 3.4, we get the next result.

Proposition 4.15. Let A be an almost admissible ditalagebra over the
finite field k. Then A is generically trivial if and only if it is limited.

The next theorem is a version of BT-I.

Theorem 4.16. Let A be an almost admissible ditalgebra. Then A is of
infinite representation type if and only if it is c-unbounded.

Proof. It is clear that if A is of finite representation type then it is not
c-unbounded.

Now assume that A is of infinite representation type. If c-indA(d) is
finite for each d, then A is c-unbounded.

On the other hand, if there is a d such that c-indA(d) is infinite, we
can use an inductive argument similar to the proof of Proposition 4.14,
changing endolength vectors to central endolength vectors; in some step we
have to apply a reduction functor FX associated to a k-algebra of infinite
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representation type, and by Theorem 3.2, this algebra is c-unbounded, thus
A is c-unbounded.

5. Trivial group of self-extensions. Now we see that the endonorm
defined in the previous section also deals very well with finite-dimensional
modules with trivial group of self-extensions.

Definition 5.1. We say that Γ is a k-triangular matrix algebra if

Γ =

(
D1 0

B D2

)
,

where D1 and D2 are finite-dimensional k-algebras and division rings over k,
and B is a D2-D1-bimodule of finite dimension as a k-vector space with k
acting centrally over B. We associate to M = (V1, V2, φ : B ⊗D1 V1 → V2)
∈ Γ -mod the quotient dimD1(V1)/dimD2(V2). We denote this map as q :
Γ -mod→ [0,∞].

Lemma 5.2. Let Γ be a k-triangular matrix algebra.

(1) Let Γ be of finite representation type, A ∈ Γ -mod indecomposable and
τ the Auslander–Reiten translation. Then q(A) < q(τ−1(A)) when
A is not injective, and q(τ(A)) < q(A) when A is not projective.

(2) Let Λ be of infinite representation type, L a regular Γ -module, A a
preprojective Γ -module, C a preinjective Γ -module and τ the Auslan-
der–Reiten translation. Then q(A)<q(L)<q(C), q(A)<q(τ−1(A))
and q(τ(C)) < q(C).

(3) Let M ∈ Γ -mod be such that ExtΓ (M,M) = 0 and M ∼= X1 ⊕
· · · ⊕Xn, where Xi is indecomposable for each i. Then all elements
of {X1, . . . , Xn} are preprojective or preinjective. Moreover the set
{X1, . . . , Xn} has one or two isomorphism classes. In the latter case,
these isomorphism classes are connected by one arrow in the Auslan-
der–Reiten quiver.

(4) Assume M,N ∈ Γ -mod such that ExtΓ (M,M) = 0 and ExtΓ (N,N)
= 0. If q(M) = q(N) then there are positive integers m,n such that⊕m

i=1M
∼=
⊕n

j=1N . Moreover, M ∼= N as Γ -modules if and only if
M ∼= N as D1 ×D2-modules.

Proof. This lemma is well known: it follows for example from [28, pp. 362
and 363]. For a detailed proof see [17].

Theorem 5.3. Let A be an almost admissible ditalgebra, and let M,N ∈
A-mod be such that ExtA(M,M) = 0 and ExtA(N,N) = 0.

(1) M ∼= N as A-modules if and only if M ∼= N as R-modules.
(2) If M and N are indecomposable and `(M) = `(N) then M ∼= N .
(3) If M and N are indecomposable and c-`(M) = c-`(N) then M ∼= N .
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Proof. By Proposition 4.4 we can assume that A is admissible.
For (1) we can assume, without loss of generality, that ‖M‖ ≥ ‖N‖, and

we will prove the claim by induction on ‖M‖.
One implication is well known, so assume that M ∼= N as R-modules;

then there exists a rational number r such that r`(M) = `(N), thus ‖M‖ = 0
implies ‖N‖ = 0. Also, for ‖M‖ = 0 it is easy to see that the structure of
A-module of M is just its structure as an R-module, thus ‖M‖ = 0 and
M ∼= N as R-modules implies M ∼= N as A-modules.

Let b be as in Proposition 4.14 and so b‖M‖ is an integer.
Now assume that (1) is true for any admissible ditalgebra B with layer

(S,WB), and L1, L2 ∈ B-mod satisfy ExtB(L1, L1) = 0, ExtB(L2, L2) = 0,
L1
∼= L2 as S-modules, ‖L2‖ ≤ ‖L1‖ < ‖M‖, and b‖L1‖ and b‖L2‖ are

integers.
Applying idempotent deletion we can assume that the vector `(M) has

only positive coordinates.
Now we have two cases:

Case 1. We use the regularization functor Fr : Ar-Mod → A-Mod of
Proposition 4.3. If L1, L2 ∈ Ar-mod are such that Fr(L1) ∼= M and Fr(L2) ∼=
N then, by [4, Proposition 11.5], we can apply the induction hypothesis to
L1 and L2, so that M ∼= N in A-Mod.

Case 2. We can choose a direct R-R-summand W ′0 of W0 such that
δ(W ′0) = 0, and central orthogonal primitive idempotents of R, ei0 , ej0 , such
that W ′0 is a simple ej0R-ei0R-bimodule.

Let Γ = TR(W ′0) = R0 × TRei0×Rej0 (W ′0) = R0 × Γ0. By [4, Proposition
9.5] there is an epimorphism πX : ExtA(X,X) → ExtΓ (X,X) for each
X ∈ A-Mod, so ExtΓ0((ei0 + ej0)M, (ei0 + ej0)M) = 0 and ExtΓ0((ei0 +
ej0)N, (ei0 + ej0)N) = 0. It follows that i0 6= j0, i.e., W ′0 is not a loop
(see, for example, [8, Lemma 6.3]). By Lemma 5.2 we have (ei0 + ej0)M ∼=
(ei0 + ej0)N as Γ0-modules, and so M ∼= N as Γ -modules. It follows, for
L1, L2 ∈ AX -Mod such that FX(L1) ∼= M and FX(L2) ∼= N, that L1

∼=
L2 as S-modules, where (S,WX) is the layer of AX . By [4, Lemma 10.5]
we have ExtAX (L1, L1) = 0 and ExtAX (L2, L2) = 0. By Lemma 4.12 we
get ‖L1‖, ‖L2‖ < ‖M‖. By the identity ExtΓ (M,M) = 0 we see that any
indecomposable direct summand H of M has trivial group of self-extensions,
i.e. H is a preprojective or a preinjective Γ -module, thus DH is isomorphic
to some Di, where R ∼= D1×· · ·×Dn; then, by Remark 4.11, we deduce that
b‖L1‖ and b‖L2‖ are integers. The induction hypothesis implies L1

∼= L2 in
AX -Mod and so M ∼= N in A-Mod.

Claims (2) and (3) can be proved in a similar way: first we observe that
the identity `(M) = `(N) (resp. c-`(M) = c-`(N)) implies that ‖M‖ = 0 if
and only if ‖N‖ = 0, and so M ∼= N in A-mod in the first stage of induction.
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In the induction step everything works in the same way when using the
regularization functor.

When we deal with the FX functor and consider M and N as Γ -
modules, we observe that `(M) = `(N) (resp. c-`(M) = c-`(N)) implies
that q(ei0 + ej0M) = q(ei0 + ej0M) and then, by Lemma 5.2(4), there are

integers a and a′ such that
⊕a

u=1(1− ei0 − ej0)M ∼=
⊕a′

v=1(1− ei0 − ej0)N .

Notice that the vector `(M) is obtained by dividing the k-dimension of
eiM by the k-dimension of DM for each i.

By the previous two paragraphs we get
⊕a

u=1M
∼=
⊕a′

v=1N as Γ -
modules.

Furthermore, it follows that dimk(DN )/dimk(DM ) = a/a′ (resp.
(dimk(DN )cM )/(dimk(DM )cN ) = a/a′): since FX is a full faithful functor,
we can deduce that dimk(DL2)/dimk(DL1) = a/a′ (resp. (dimk(DL2)cL1)/
(dimk(DL1)cL2) = a/a′).

The isomorphism
⊕a

u=1M
∼=
⊕a′

v=1N as Γ -modules implies
⊕a

u=1 L1
∼=⊕a′

v=1 L2 as S-modules; then, using the previous identities, we conclude that
`(L1) = `(L2) (resp. c-`(L1) = c-`(L2)).

6. One-parameter families

Definition 6.1. Let A be an almost admissible ditalgebra. A generic
module G ∈ A-Mod (resp. G ∈ Λ-Mod) is algebraically rigid if for any
algebraic field extension L/k the ΛL-module GL is generic. We say that
the generic module G is algebraically bounded if there exists a finite field
extension L/k and a natural number t such that GL ∼= G1⊕ · · ·⊕Gt, where
Gi is algebraically rigid for i ∈ {1, . . . , t}.

For the next result we recall that for a connected f.d. hereditary algebra
Γ there is a bilinear form defined on the Grothendieck group which induces
a quadratic form qΓ (see [26, pp. 269 and 270], and also [12, 8.3]).

Proposition 6.2. Let Γ be a k-triangular matrix algebra. If Γ has a
positive semidefinite quadratic form then the only generic Γ -module, up to
isomorphism, is algebraically bounded.

Proof. The existence and uniqueness, up to isomorphism, of the generic
Γ -module G, is known: see [27] and [28].

Also it it is known that the generic module associated to some of the

Euclidean diagrams, namely Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8, has a ring of endomor-
phisms isomorphic to k(x).

Then, applying [22, Lemma 3.2(a), Lemma 4.1 and Theorem 4.3] we
deduce that there exists a finite field extension F of k such thatGF is a direct
sum of a finite number of algebraically rigid ΛF -modules, all of them with
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endolength invariant under base field extension, and so G is algebraically
bounded.

Definition 6.3. Let A be an almost admissible ditalgebra and let H1

and H2 be full subcategories of A-mod. We say that H1 covers H2 if all but
a finite number of iso-classes of objects of H2 intersect H1.

Remark 6.4. Let us consider the tensor k-algebra A = TD(B), where
D is a finite-dimensional k-algebra and a division ring, and B is a D-
D-bimodule such that it is simple as a left D-module. If we identify B
with D as left D-modules then there exists an isomorphism of (unitary)
rings and a k-linear transformation τ : D → D determined by the identity
1D · d = τ(d), where d ∈ D and − · d denotes the right action of D over
B. Then A is isomorphic to the twisted polynomial ring D[x; τ ]. We will
call the k-algebra A a twisted tensor algebra. Also there is a functor H :
D[x; τ ]-Mod→ Γ -Mod which is full and faithful, where Γ =

(
D 0

D⊕B D

)
(see

[26] and [27]; in [14] there are detailed arguments and computations related
to the previous facts). Then H sends indecomposable f.g. A-modules to reg-
ular Γ -modules, and the image of the set of simple D[x; τ ]-modules covers
the subcategory of quasi-simple Γ -modules.

By the previous remark, Proposition 6.2 and Theorem 3.2 we have the
next claim.

Corollary 6.5. A twisted tensor algebra is of infinite representation
type, c-unbounded and c-strongly unbounded. Moreover, it has one generic
module up to isomorphism, and it is algebraically bounded.

Remark 6.6. The proof of Proposition 6.2 shows that k-triangular ma-
trix algebras of tame representation type and twisted tensor algebras are
semigenerically tame in the sense of [25].

For a ring A we denote by As the localization of A at the element s. We
are going to localize at central elements.

Remark 6.7. Let Γ be a k-triangular algebra of tame representation
type (and infinite representation type) or a twisted tensor algebra. It is
known that up to isomorphism there is a unique generic Γ -module G, and
also an associated Γ -O-bimodule B, such that B is finitely generated as an
O-module and O is a bounded principal ideal domain ([15] and [10]). Also
B ⊗O − is full and faithful. Moreover, for each height h, the subcategory of
regular modules with height ≤ h is covered by the Γ -modules of the form
B ⊗O N, where N is an indecomposable in O-mod of length bounded from
above by dh, with d fixed (use [10, Proposition 5.2(3)]). Also, for Q the skew
ring of fractions of O, we have B ⊗O Q ∼= G (see [27], [28] and [10]).
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Definition 6.8. Consider the context of Remark 6.7. We will call Q a
tame division ring. Let w be an element in the center of O; we say that Ow
is a tame PID.

Proposition 6.9. Let B be an associated Γ -O-bimodule as in Remark
6.7. Then there exists an element w in the center of O such that c-`(G) =
c-`(B⊗OL), where G is a generic Γ -module and L is any simple Ow-module.

Proof. Let 1R = e1 + · · ·+en be a decomposition into centrally primitive
orthogonal idempotents.

Since O is bounded, for Z the center of O and K the classical field of
fractions of Z, we get Q ∼= O ⊗Z K.

Since eiB is finitely generated over O for i ∈ {1, . . . , n}, and O is a
bounded PID, there exists an element w0 ∈ Z such that eiB ⊗O Ow0 is free
and finitely generated over Ow0 for each i.

Since G is a generic module of a k-triangular matrix algebra or a twisted
tensor algebra, there are integers mi such that eiB ⊗O Q ∼= Qmi as right
Q-modules for each i, so the rank of eiB ⊗O Ow0 over Ow0 is mi.

By [27, p. 560] there exists an element w1 in the Formanek center of Ow0

such that Ow0w1 is an Azumaya algebra over Zw0w1 . Then w1 ∈ Zw0 (see
[29, Definition 6.1.14 and p. 446]) and Ow0w1 is free over Zw0w1 .

It is known (see for example [29, Proposition 1.10.12]) that the center
of Ow0w1 is Zw0w1 , and that the center of Q is K; hence the rank of Ow0w1

over Zw0w1 is equal to dimK(Q) = c2, where c is a positive integer.

Observe that c-`(G) = c(m1, . . . ,mn).

Now Ow0w1 is an Azumaya algebra and so there is a bijective corre-
spondence between the ideals of Zw0w1 and the ideals of Ow0w1 , given by
sending I to IOw0w1 , with inverse sending J to J ∩ Zw0w1 (see [29, Corol-
lary 5.3.25]). It follows that for each maximal ideal m of Ow0w1 we have a
canonical isomorphism Ow0w1/m

∼= Ow0w1 ⊗Zw0w1
(Zw0w1/m ∩ Zw0w1), and

so dimZw0w1/m∩Zw0w1
(Ow0w1/m) = c2.

For L a simple Ow0w1-module with annihilator m, we have Ow0w1/m
∼=

Ma(D). Let dimZ(D)(D) = b2 where Z(D) is the center of D; by the previous

paragraph we get c2 = a2b2.

We observe that endol(L) = a; then, by [7, Lemma 31.4] and the fact
that B⊗O− is full and faithful, we find for L′ = B⊗OOw0w1 ⊗Ow0w1

L that
`(L′) = a(m1, . . . ,mn) and so c-`(L′) = ba(m1, . . . ,mn) = c-`(G).

Notation. We recall that there is a canonical embedding LA :
A-Mod → A-Mod (see the beginning of Section 2 and [7, Remark 2.5]).
We say that B is an A-O-bimodule if B is an A-O-bimodule, and for any
O-module N we will denote the A-module LA(B ⊗O N) just by B ⊗O N .
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Definition 6.10. Let C and D be additive k-categories and H : C → D
a k-functor (see [3, p. 28]). We say that H is sharp if it preserves indecom-
posability and reflects isomorphism classes, and if for any indecomposable
M ∈ C we have H(radEM ) ⊂ radEH(M) and the induced morphism of
k-algebras EM/radEM → EH(M)/radEH(M) is a bijection.

Definition 6.11. Consider an almost admissible ditalgebra A (resp. Λ).
Let O be a tame PID and B aA-O-bimodule (resp. Λ-O-bimodule) such that
it is free and finitely generated as O-module and B⊗O− is a sharp functor.
Then we say that B is a parametric module. Let {Si}i∈I be a complete list
of representatives of isomorphism classes of simple O-modules. We say that
{B ⊗O Si}i∈I is a one-parameter family.

Lemma 6.12. Let A be an almost admissible ditalgebra and F z : Az-Mod
→ A-Mod a reduction functor as in Proposition 4.3. If B is a parametric
module in Az then F z(B) is a parametric module in A.

Proof. The claim is immediate for idempotent deletion and regulariza-
tion. For FX we can use [4, Corollary 5.4] to prove that FX(B) is an A-O-
bimodule; the rest follows by the properties of this functor.

Theorem 6.13. Let

At-Mod
Ft−→ At−1-Mod

Ft−1−−−→ · · · F2−→ A1-Mod
F1−→ A-Mod

be a sequence of reductions like those of Proposition 4.3, where A is an
almost admissible ditalgebra, and At = (T, δ) is an admisible ditalgebra with
layer (S,W0 ⊕W1), such that TS(W0) = Γ is a k-triangular matrix algebra
of tame representation type or a twisted tensor algebra, and δ(W0) = 0. Let
H = F1 . . . Ft. Let B be an associated Γ -O-bimodule with O a tame PID
and Q the corresponding tame division ring. There exists an element w in
the center of O such that c-`(H(B⊗OQ)) = c-`(H(B⊗O S)) for any simple
Ow-module S. Also, for the generic A-module G = H(B ⊗O Q), we have
EG = D ⊕ radEG, where D ∼= Q.

Proof. B is a parametric module by [25, Lemma 4.4].
By Lemma 6.12 we see that H(B) is a parametric module.
By Propositions 4.3 and 6.9 we get the identity for central endolength

vectors.
It is known, for G′ = B ⊗O Q, that EG′ = D′ ⊕ radEG′ , where D ∼= Q;

the reduction functors under consideration are full and faithful and so the
final part of the claim follows.

Definition 6.14. Let A be an almost admissible ditalgebra and d a
central endolength vector. We say that d is minimal of infinite representation
type (m.i.r.t.) if c-indA(d) is of infinite representation type and if d′ < d
then c-indA(d′) is of finite representation type.
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Theorem 6.15. Let A be an almost admissible ditalgebra such that AK
is tame, and let d be a central endolength vector m.i.r.t. Then c-indA(d) is
covered by the union of a finite number of one-parameter families, and this
union is covered by c-indA(d). With each of those one-parameter families
there is associated a generic module G with endomorphism ring EG, where
EG = DG ⊕ radEG and DG is a tame division ring.

Proof. We can repeat part of the argument for Proposition 4.14 in order
to see that in some step of the reduction process we have to use a functor FX ,
where the initial subalgebra associated with Γ is of infinite representation
type: otherwise c-indA(d) would be finite.

So, using Remark 4.6, let FX : AX1 -Mod → A1-Mod where c-indA(d1)
is m.i.r.t., and F : A1-Mod → A-Mod a composition of reduction functors
such that F (c-indA(d1)) ⊂ c-indA(d).

Thanks to idempotent deletion we can assume that d1 has no zero coor-
dinates.

Let Γ = TR(W ′0) = R0×Γ0 be as in Case 2 of the proof of Theorem 5.3.
We see that Γ0 is not wild because AK is not wild, so indA1 is generically
tame, and the last admissible ditalgebra is not generically trivial because
c-indA(d1) is infinite. Then Γ0 is a skew tensor algebra (i0 = j0) or it
is a k-triangular matrix algebra of tame representation type and infinite
representation type.

We can assume that there is at least one M ∈ c-indA(d1) such that
(ei0 + ej0)M in the case i0 6= j0, or ei0M if i0 = j0, is not annihilated by
the bimodule B: otherwise we just reduce the norm and keep going forward
with the reduction functors.

Then (ei0 + ej0)M is a regular module of height one (resp. ei0M is a
simple module) and so, for an infinite number of isomorphism classes N of
quasi-simple modules in Γ0 (simple modules if Γ is a skew tensor algebra) we
have c-`(N) ≤ c-`(M); consequently, Γ = Γ0 and c-indA(d1) is covered by
the full subcategory of quasi-simple (or simple) Γ -modules. Thus c-indA(d1)
is a one-parameter family.

Then, by Lemma 6.12 and Theorem 6.13, c-indA(d) is covered by the
union of a finite number of one-parameter families, and to each of these
families there is associated a generic module as described in the statement.

By Theorem 6.13 the union of the one-parameter families is covered by
c-indA(d).

We think that the previous result should be true for a more general case,
as suggested by the following corollary, based on [21] and [22].

Corollary 6.16. If ΛK is tame then, for any natural number d, all but
a finite number of isomorphism classes of indecomposable finite-dimensional
Λ-modules of central endolength equal to d lie in homogeneous tubes.
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Proof. By [9, Corollary E], it is known that almost all the isomorphism
classes of indecomposable finite-dimensional ΛK-modules of dimension d lie
in homogeneous tubes.

By the proof of [21, Proposition 4.13], for L ∈ ΛK-mod indecomposable
with dimK(L) = d, there exists M ∈ Λ-mod such that L is a direct summand
of MK . By Theorem 2.13 we have c-endol(M) = d.

Now we can repeat the remaining part of the proof of [22, Corollary 5.3]
and, applying [21, Theorem 3.8 and Proposition 4.2], verify the statement.
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[6] R. Bautista, E. Pérez and L. Salmerón, Generic modules of tame algebras over real
closed fields, J. Algebra, to appear.

[7] R. Bautista, L. Salmerón and R. Zuazua, Differential Tensor Algebras and Their
Module Categories, London Math. Soc. Lecture Note Ser. 362, Cambridge Univ.
Press, Cambridge, 2009.

[8] R. Bautista and R. Zuazua, Exact structures for lift categories, in: Fields Inst.
Comm. 45, Amer. Math. Soc., Providence, RI, 2005, 37–56.

[9] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. (3)
56 (1988), 451–483.

[10] W. W. Crawley-Boevey, Regular modules for tame hereditary algebras, Proc. London
Math. Soc. (3) 62 (1991), 490–508.

[11] W. W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math.
Soc. (3) 63 (1991), 241–265.

[12] W. W. Crawley-Boevey, Modules of finite length over their endomorphism rings,
in: Representations of Algebras and Related Topics, H. Tachikawa and S. Brenner

http://dx.doi.org/10.1080/00927877409412807
http://dx.doi.org/10.1016/j.aim.2012.04.029
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