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Abstract. Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and
N a finitely generated R-module. It is shown that the R-modules TorRi (N,M) are I-cofinite
for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies
that if I has dimension one (i.e., dimR/I = 1) then the R-modules TorRi (N,Hj

I (M)) are
I-cofinite for all i, j ≥ 0. Also, we prove that if R is local, then the R-modules TorRi (N,M)
are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3.
Finally, it is shown that the R-modules TorRi (N,Hj

I (M)) are I-weakly cofinite for all
i, j ≥ 0 whenever dimR/I ≤ 2.

1. Introduction. Throughout this paper, let R denote a commutative
Noetherian ring (with identity) and I an ideal of R. For an R-module M ,
the ith local cohomology module of M with respect to I is defined as

H i
I(M) = lim−→

n≥1
ExtiR(R/In,M).

We refer the reader to [3] for more details about local cohomology. In [8]
Grothendieck conjectured that for any ideal I of R and any finitely gener-
ated R-module M , the module HomR(R/I,H i

I(M)) is finitely generated
for all i. Two years later, Hartshorne [9] provided a counterexample to
Grothendieck’s conjecture. He defined an R-module M to be I-cofinite if
Supp(M) ⊆ V (I) and ExtjR(R/I,M) is finitely generated for all j and asked:

• For which rings R and ideals I are the modules H i
I(M) I-cofinite for

all i and all finitely generated modules M?

Concerning this question, Hartshorne [9] showed that if R is a com-
plete regular local ring and I is a prime ideal such that dimR/I = 1, then
H i

I(M) is I-cofinite for any finitely generated R-module M . This result was
later extended to more general Noetherian rings and one-dimensional ideals.
Huneke and Koh [10, Theorem 4.1] proved that if R is a complete Goren-
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stein local domain and I is an ideal of R such that dimR/I = 1, then

ExtjR(N,H i
I(M)) is finitely generated for any finitely generated R-modules

M,N such that Supp(N) ⊆ V (I) and for all i, j. Furthermore, using [10,
Theorem 4.1], Delfino [4] proved that if R is a complete local domain un-
der some mild conditions then the analogous results hold. Also, Delfino and
Marley [5, Theorem 1] and Yoshida [18, Theorem 1.1] eliminated the com-
pleteness hypothesis entirely. Recently, in a slightly different line of research,
Bahmanpour and Naghipour [1, Theorem 2.6] have removed the locality as-
sumption on R.

In this paper we continue the study of modules cofinite with respect
to an ideal in a Noetherian ring. Melkersson [16, Theorem 2.1] showed the
striking result that cofiniteness of a module M with respect to an ideal I
in a Noetherian ring R is actually equivalent to the finiteness of the R-
modules TorRi (R/I,M) for all i. The purpose of this paper is to study the
I-cofiniteness and the I-weak cofiniteness of the R-modules TorRi (N,M) for
all i and for certain R-modules N and M .

In Section 2, we study the I-cofiniteness of the R-modules TorRi (N,M).
As the main result in that section, we show that TorRi (N,M) is an I-cofinite
R-module for all i if M is I-cofinite and N is finitely generated and we
have dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. More precisely, we prove the
following:

Theorem 1.1. Let I denote an ideal of a Noetherian ring R. Let M be
an I-cofinite and N be a finitely generated R-module. Then the R-modules
TorRi (N,M) are I-cofinite for all i ≥ 0 whenever

dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2.

As an application, we derive the following result:

Corollary 1.2. Let I denote an ideal of a Noetherian ring R and
M a finitely generated R-module such that dim Supp(M/IM) ≤ 1 (e.g.,
dimR/I ≤ 1). Then for each finitely generated R-module N , the R-modules

TorRi (N,Hj
I (M)) are I-cofinite for all i, j ≥ 0.

An R-module M is said to be skinny or weakly Laskerian if the set of
associated primes of any quotient module of M is finite (see [6] and [17]).
Also, if I is an ideal of R, then an R-module T is said to be I-weakly cofinite
if Supp(T ) ⊆ V (I) and ExtiR(R/I, T ) is weakly Laskerian for all i ≥ 0
(see [7]).

In Section 3, we study the I-weak cofiniteness of TorRi (N,M) over a local
ring R. As the main results in that section, by using the observations from
Section 2, we derive the following results:

Theorem 1.3. Let I denote an ideal of a Noetherian local ring R. Let M
be an I-cofinite and N be a finitely generated R-module. Then the R-modules
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TorRi (N,M) are I-weakly cofinite for all i ≥ 0 whenever

dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3.

Corollary 1.4. Let (R,m) be a Noetherian local ring, I an ideal of R,
and M a finitely generated R-module such that dim Supp(M/IM) ≤ 2 (e.g.,
dimR/I ≤ 2). Then for each finitely generated R-module N , the R-modules

TorRi (N,Hj
I (M)) are I-weakly cofinite for all i, j ≥ 0.

Finally, in Section 4 we construct two examples which show that Corol-
laries 1.2 and 1.4 are not true for ideals of dimensions 3 and 5.

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and I will be an ideal of R. We shall use Max(R) to
denote the set of all maximal ideals of R. An R-module T is said to be a
minimax module if there is a finitely generated submodule N of T such that
T/N is Artinian. It is clear that the class of minimax modules includes all
finitely generated and all Artinian modules. For any unexplained notation
and terminology we refer the reader to [3] and [14].

2. Cofiniteness. In this section, we study the I-cofiniteness of R-mod-
ules TorRi (N,M). The main result of this section is Theorem 2.4. Proposi-
tion 2.3 will serve to shorten the proof of that theorem. In order to prove
Proposition 2.3, we need the following fundamental two lemmas.

Lemma 2.1. Let R be a Noetherian ring and I an ideal of R. Then for
an R-module T , the following conditions are equivalent:

(i) TorRn (R/I, T ) is a finitely generated R-module for all n ≥ 0.
(ii) ExtnR(N,T ) is a finitely generated R-module for all n ≥ 0.

(iii) ExtnR(R/I, T ) is a finitely generated R-module for any finitely gen-
erated R-module N with support in V (I) and for all n ≥ 0.

(iv) TorRn (N,T ) is a finitely generated R-module for any finitely gener-
ated R-module N with support in V (I) and for all n ≥ 0.

Proof. The equivalence of (i)–(iii) has been proved in [16, Theorem
2.1] and [10, Lemma 4.2]. Also, the implication (iv)⇒(i) is clear, because
Supp(R/I) = V (I). Thus, we only need to show that (i)⇒(iv). Using a
prime filtration of N (see [14, Theorem 6.4]) and induction on the length
of this filtration, it is enough to show that TorRn (R/p, T ) is a finitely gener-
ated R-module for all n ≥ 0, where p ∈ Supp(N). To this end, we use [16,
Theorem 2.1] and the proof of [10, Lemma 4.2].

Lemma 2.2. Let R be a Noetherian ring, I an ideal of R, and M an
I-cofinite R-module. Then for each non-zero R-module N of finite length,
the R-modules TorRi (N,M) are of finite length for all i ≥ 0.



224 R. NAGHIPOUR ET AL.

Proof. Since N is a non-zero R-module of finite length, the set Supp(N)
is a finite non-empty subset of Max(R). Let Supp(N) := {m1, . . . ,mn} and
J := m1 · · ·mn. Since Supp(N) = V (J), in view of Lemma 2.1, it is enough to
show that the R-modules TorRi (R/J,M) are of finite length for all i ≥ 0. To
do this, since R/J ∼=

⊕n
j=1R/mj , we may assume n=1, and hence J=m1.

Now, let i ≥ 0 be an integer such that TorRi (R/m1,M) 6= 0. Then it is easy
to see that m1 ∈ Supp(M) ⊆ V (I). Therefore, in view of Lemma 2.1, the
R-module TorRi (R/m1,M) is finitely generated of zero dimension, and hence
is of finite length.

We are now ready to prove the next result, to be used in the proof of
the main theorem in this section.

Proposition 2.3. Let R be a Noetherian ring, I an ideal of R, and
M an I-cofinite R-module. Let N be a finitely generated R-module such
that dim Supp(N) = 1. Then the R-modules TorRi (N,M) are I-cofinite and
minimax for all i ≥ 0.

Proof. Set T := ΓI(N). Then as Supp(T ) ⊆ V (I), it follows from Lemma
2.1 that the R-module TorRi (T,M) is finitely generated for all i ≥ 0. Hence,
using the exact sequence

0→ T → N → N/T → 0

and Lemma 2.2, it is enough to show that the R-module TorRi (N/T,M) is
finitely generated for all i ≥ 0. Since N/T is I-torsion-free, we can addition-
ally assume that N is I-torsion-free. Then, by [3, Lemma 2.1.1],

I *
⋃

p∈AssR N

p.

Therefore, there exists an x ∈ I such that x 6∈
⋃

p∈AssR N p. Now, the exact
sequence

0→ N
x→ N → N/xN → 0

induces an exact sequence

TorRj+1(N/xN,M)→ (0 :TorRj (N,M) x)→ 0.

Since the R-module N/xN is of finite length, it follows from the above
exact sequence and Lemma 2.2 that the R-module (0 :TorRj (N,M) x) is of

finite length for all j ≥ 0. Hence the R-module (0 :TorRj (N,M) I) has the

same property (note that x ∈ I). On the other hand, as

Supp(TorRj (N,M)) ⊆ Supp(M) ⊆ V (I),

it follows that the R-module TorRj (N,M) is I-torsion. Hence, Melkerssons’

theorem [15, Theorem 1.3] implies that the R-module TorRj (N,M) is Ar-
tinian and hence minimax. Now it follows from [16, Proposition 4.3] that
TorRj (N,M) is also I-cofinite for all j ≥ 0, as required.
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We are now ready to state and prove the main theorem of this section.

Theorem 2.4. Let R be a Noetherian ring, I an ideal of R, and M
an I-cofinite R-module. Let N be a finitely generated R-module such that
dim Supp(N) = 2. Then the R-modules TorRi (N,M) are I-cofinite for all
i ≥ 0.

Proof. In view of the proof of Proposition 2.3, we may assume that N
is an I-torsion-free R-module and dim Supp(N) = 2. Then, by [3, Lemma
2.1.1], I*

⋃
p∈AssR N p. Therefore, there exists x∈I such that x /∈

⋃
p∈AssR N p.

Now, the exact sequence

0→ N
x→ N → N/xN → 0

induces an exact sequence

TorRj+1(N/xN,M)→ TorRj (N,M)
x→ TorRj (N,M)→ TorRj (N/xN,M)

for all j ≥ 0. Consequently, using Proposition 2.3, Lemma 2.2 and [16,
Corollary 4.4], we deduce that the R-modules

(0 :TorRj (N,M) x) and TorRj (N,M)/xTorRj (N,M)

are I-cofinite for all j ≥ 0. Therefore it follows from [16, Corollary 3.4] that
TorRj (N,M) is I-cofinite for all j ≥ 0.

3. Weak cofiniteness. In this section, we use the results of Section 2
to study the I-weak cofiniteness of TorRi (N,M) over a local ring R. Recall
that an R-module M is said to be weakly Laskerian or skinny if the set of
associated primes of any quotient module of M is finite. Also, if I is an ideal
of R, then an R-module T is said to be I-weakly cofinite if Supp(T ) ⊆ V (I)
and ExtiR(R/I, T ) is weakly Laskerian for all i ≥ 0. The following lemma is
needed in the proof of the main results of this section.

Lemma 3.1. Let R be a Noetherian ring, I an ideal of R, and M an
R-module. Then the following statements are equivalent:

(i) TorRn (R/I,M) is a weakly Laskerian R-module for all n ≥ 0.
(ii) ExtnR(N,M) is a weakly Laskerian R-module for all n ≥ 0.

Proof. The proof is the same as that of [16, Theorem 2.1].

Theorem 3.2. Let (R,m) be a local (Noetherian) ring, I an ideal of R
and M an I-cofinite R-module. Let N be a finitely generated R-module such
that dim Supp(N) = 3. Then the R-modules TorRi (N,M) are I-weakly cofi-
nite for all i ≥ 0.

Proof. In view of Lemma 3.1, it is enough to show that, for all i, j ≥ 0,
the R-modules TorRj (R/I,TorRi (N,M)) are weakly Laskerian. To this end,

let Φ denote the set of all modules TorRj (R/I,TorRi (N,M)) where i, j ≥ 0.
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Let L ∈ Φ and let L′ be a submodule of L. In view of the definition, it
is enough to show that AssR L/L

′ is finite. To this end, according to [14,
Ex. 7.7] and [12, Lemma 2.1], without loss of generality, we may assume
that R is complete. Now, suppose that AssR L/L

′ is infinite. Then it has
a countably infinite subset {pk}∞k=1 none of whose elements is equal to m.
Then, by [13, Lemma 3.2], m 6⊆

⋃∞
k=1 pk. Let S be the multiplicatively closed

subset R \
⋃∞

k=1 pk. Since S−1N has dimension at most 2, it follows from
Lemma 2.2, Proposition 2.3 and Theorem 2.4 that S−1L/S−1L′ is a finitely
generated S−1R-module, and so AssS−1R S

−1L/S−1L′ is a finite set. But

S−1pk ∈ AssS−1R S
−1L/S−1L′ for all k = 1, 2, . . . ,

which is a contradiction.

Lemma 3.3. Let R be a Noetherian ring, I an ideal of R, and M an
I-cofinite R-module such that dim Supp(M) ≤ 1. Then for each non-zero
finitely generated R-module N , the R-modules TorRi (N,M) are I-cofinite
for all i ≥ 0.

Proof. As R is Noetherian and N is finitely generated, it follows that N
has a free resolution

F• : · · · → Fn → Fn−1 → · · · → F1 → F0 → 0,

where all the free modules Fi have finite ranks. Thus TorRi (N,M) =
Hi(F•⊗RN)) is a subquotient of a direct sum of finitely many copies of M .
Now, the assertion follows easily from [2, Theorem 2.7].

Corollary 3.4. Let I be an ideal of R and M a non-zero finitely gen-
erated R-module such that dim Supp(M/IM) ≤ 1 (e.g., dimR/I ≤ 1). Then

for each finitely generated R-module N , the R-modules TorRi (N,Hj
I (M)) are

I-cofinite for all i, j ≥ 0.

Proof. As Supp(H i
I(M)) ⊆ Supp(M/IM) and dim Supp(M/IM) ≤ 1,

we see that
dim Supp(H i

I(M)) ≤ 1.

Now the assertion follows from [1, Corollary 2.7] and Lemma 3.3.

Corollary 3.5. Let (R,m) be a local (Noetherian) ring, I an ideal of R
and M a finitely generated R-module such that dim Supp(M/IM) ≤ 2 (e.g.,
dimR/I ≤ 2). Then for each finitely generated R-module N , the R-modules

TorRi (N,Hj
I (M)) are I-weakly cofinite for all i, j ≥ 0.

Proof. In view of Lemma 3.1, it is enough to show that, for all i, j ≥ 0,
the R-modules TorRj (R/I,TorRi (N,Hj

I (M))) are weakly Laskerian. To this

end, let Φ denote the set of all R-modules TorRk (R/I,TorRi (N,Hj
I (M))),

where i, j, k ≥ 0. Let L ∈ Φ and let L′ be a submodule of L. In view of the
definition, it is enough to show that the set AssR L/L

′ is finite. To this end,
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according to [3, Theorem 4.3.2], [14, Ex. 7.7] and [12, Lemma 2.1], without
loss of generality, we may assume that R is complete. Now, suppose that
AssR L/L

′ is infinite. Then it has a countably infinite subset {pt}∞t=1 none
of whose elements is equal to m. Then, by [13, Lemma 3.2], m 6⊆

⋃∞
t=1 pt.

Let S be the multiplicatively closed subset R \
⋃∞

t=1 pt. Then it follows from
Corollary 3.4 that S−1L/S−1L′ is a finitely generated S−1R-module, and so
AssS−1R S

−1L/S−1L′ is a finite set. But S−1pt ∈ AssS−1R S
−1L/S−1L′ for

all t = 1, 2, . . . , which is a contradiction.

Finally, the following result is a generalization of Corollary 3.4 over local
rings.

Theorem 3.6. Let (R,m) be a local (Noetherian) ring, I an ideal of R,
and M an I-cofinite R-module such that dim Supp(M) ≤ 2. Then for each
non-zero finitely generated R-module N , the R-modules TorRi (N,M) are
I-weakly cofinite for all i ≥ 0.

Proof. The proof is analogous to that of Theorem 3.2; it uses Lemma
3.3.

4. Two examples. In this section we construct two examples of a Noethe-
rian local ring R, an ideal I of R, and a finitely generated R-module N , with
the property that H2

I (R) is I-cofinite, but the R-modules Ext0R(N,H2
I (R))

and TorR0 (N,H2
I (R)) are not I-weakly cofinite. The following lemma, which

is a consequence of the definition, will be used several times in the proof of
Examples 4.2 and 4.3.

Lemma 4.1. Let R be a Noetherian ring and I an ideal of R. If

0→M ′ →M →M ′′ → 0

is exact and two of the modules in the sequence are I-cofinite or I-weakly
cofinite, then so is the third one.

Proof. The assertion follows immediately from the definition of I-cofinite-
ness and I-weakly cofiniteness.

Example 4.2. Let k be a field and let R = k[[x, y, z, u]]/(xy − zu). Set
I = (x, u) and f = xy − zu. Then:

(i) The R-module H2
I (R) is I-cofinite.

(ii) The R-module R/Rf ⊗R H
2
I (R) is not I-cofinite.

(iii) The R-module HomR(R/Rf,H2
I (R)) is not I-cofinite.

Proof. Applying the functor H0
I (−) to the exact sequence

0→ R
f→ R→ R/Rf → 0,
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we obtain the exact sequence

· · · → H2
I (R)

f→ H2
I (R)→ H2

I (R/Rf)→ 0.

Since H i
I(R) = 0 for all i 6= 2, one can show that

ExtiR(R/I,H2
I (R)) ∼= Exti+2

R (R/I,R)

for all i. Thus, H2
I (R) is I-cofinite. However,

coker f = R/Rf ⊗R H
2
I (R) = H2

I (R/Rf)

is not I-cofinite [9] (note that dimR/Rf = 3). This proves (i) and (ii).

In order to prove (iii), suppose that the contrary is true. Then it follows
from Lemma 4.1 and the exact sequence

0→ HomR(R/Rf,H2
I (R))→ H2

I (R)→ fH2
I (R)→ 0

that the R-module fH2
I (R) is also I-cofinite. Again using Lemma 4.1 and

the exact sequence

0→ fH2
I (R))→ H2

I (R)→ H2
I (R)/fH2

I (R)→ 0,

we deduce that the R-module H2
I (R)/fH2

I (R) is I-cofinite, which is a con-
tradiction.

Example 4.3. Let k be a field,

S = k[x, y, s, t, u, v] and m = (x, y, s, t, u, v).

Set R = Sm, I = (u, v)R and f = sx2v2 + (t+ s)xyuv + ty2u2 ∈ R. Then:

(i) The R-module H2
I (R) is I-cofinite.

(ii) The R-module R/Rf ⊗R H
2
I (R) is not I-weakly cofinite.

(iii) The R-module HomR(R/Rf,H2
I (R)) is not I-weakly cofinite.

Proof. Analogously to the proof of Example 4.2 we see that H2
I (R) is

I-cofinite and H2
I (R)/fH2

I (R) ∼= H2
I (R/fR). In view of [11], the R-module

H2
I (R/fR) has infinitely many associated primes, and so the R-module

R/Rf ⊗R H
2
I (R) is not I-weakly cofinite (note that dimR/Rf = 5). Thus

(i) and (ii) hold.

In order to prove (iii), suppose that the contrary is true. Then it follows
from Lemma 4.1 and the exact sequence

0→ HomR(R/Rf,H2
I (R))→ H2

I (R)→ fH2
I (R)→ 0

that the R-module fH2
I (R) is also I-weakly cofinite. Hence Lemma 4.1 and

the exact sequence

0→ fH2
I (R))→ H2

I (R)→ H2
I (R)/fH2

I (R)→ 0

imply that the R-module H2
I (R)/fH2

I (R) is I-weakly cofinite, which is a
contradiction.
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