A NOTE ON ARC-DISJOINT CYCLES IN TOURNAMENTS

BY
JAN FLOREK (Wrocław)
Abstract. We prove that every vertex v of a tournament T belongs to at least
$\max \left\{\min \left\{\delta^{+}(T), 2 \delta^{+}(T)-d_{T}^{+}(v)+1\right\}, \min \left\{\delta^{-}(T), 2 \delta^{-}(T)-d_{T}^{-}(v)+1\right\}\right\}$
arc-disjoint cycles, where $\delta^{+}(T)$ (or $\delta^{-}(T)$) is the minimum out-degree (resp. minimum in-degree) of T, and $d_{T}^{+}(v)$ (or $d_{T}^{-}(v)$) is the out-degree (resp. in-degree) of v.

1. Introduction. Notation used in this paper is consistent with BangJensen and Gutin [1]. Cycles are always directed. A tournament is an orientation of a complete graph. The out-degree (resp. in-degree) $d_{T}^{+}(v)$ (resp. $\left.d_{T}^{-}(v)\right)$ of a vertex v of a tournament T is the number of arcs with tail at v (resp. with head at v). We denote by $\delta^{+}(T)\left(\right.$ resp. $\left.\Delta^{+}(T)\right)$ the minimum out-degree (resp. maximum out-degree) of T. Moreover, we denote by $\delta^{-}(T)$ (resp. $\left.\Delta^{-}(T)\right)$ the minimum in-degree (resp. maximum in-degree) of T.

Landau [2] proved that in every tournament T, if a vertex v has the minimum out-degree, then it belongs to $\delta^{+}(T)$ different 3 -cycles. In this article, we prove that in every tournament T, every vertex v belongs to at least $C_{T}(v)$ arc-disjoint cycles, where $C_{T}(v)$ is equal to

$$
\max \left\{\min \left\{\delta^{+}(T), 2 \delta^{+}(T)-d_{T}^{+}(v)+1\right\}, \min \left\{\delta^{-}(T), 2 \delta^{-}(T)-d_{T}^{-}(v)+1\right\}\right\}
$$

This implies that v belongs to at least $C_{T}(v)$ different 3 -cycles. Moreover, if either $\Delta^{+}(T) \leq 2 \delta^{+}(T)$, or $\Delta^{-}(T) \leq 2 \delta^{-}(T)$, then every vertex of $T \neq K_{1}$ belongs to a 3 -cycle.

Note that for every tournament T which has a vertex v such that the tournament $T-v$ is regular, the lower bound $C_{T}(v)$ is the best possible. Indeed, $d_{T}^{+}(v)+d_{T}^{-}(v)=2 \delta^{+}(T-v)+1$. Thus, if $d_{T}^{+}(v) \leq \delta^{+}(T-v)$, then

$$
\min \left\{d_{T}^{+}(v), d_{T}^{-}(v)\right\}=d_{T}^{+}(v)=\delta^{+}(T) \leq 2 \delta^{+}(T)-d_{T}^{+}(v)+1
$$

If $d_{T}^{+}(v)>\delta^{+}(T-v)$, then

$$
\min \left\{d_{T}^{+}(v), d_{T}^{-}(v)\right\}=d_{T}^{-}(v)=2 \delta^{+}(T)-d_{T}^{+}(v)+1 \leq \delta^{+}(T)
$$

Hence,

$$
\min \left\{d_{T}^{+}(v), d_{T}^{-}(v)\right\}=\min \left\{\delta^{+}(T), 2 \delta^{+}(T)-d_{T}^{+}(v)+1\right\}
$$

2010 Mathematics Subject Classification: 05C20, 05C35, 05C38.
Key words and phrases: tournament, arc-disjoint cycles, Landau's theorem.

Similarly, from $d_{T}^{+}(v)+d_{T}^{-}(v)=2 \delta^{-}(T-v)+1$, it follows that

$$
\min \left\{d_{T}^{+}(v), d_{T}^{-}(v)\right\}=\min \left\{\delta^{-}(T), 2 \delta^{-}(T)-d_{T}^{-}(v)+1\right\}
$$

2. Arc-disjoint cycles through a vertex in a tournament. Let $T=(V, A)$ be a tournament with vertex set V and arc set A. For an arc $x y \in A$ the first vertex x is its tail and the second vertex y is its head. For a vertex v in T we use the following notation:

$$
N^{+}(v)=\{u \in V \backslash\{v\}: v u \in A\}, \quad N^{-}(v)=\{u \in V \backslash\{v\}: u v \in A\}
$$

For a pair X, Y of vertex sets in T we define

$$
(X, Y)=\{x y \in A: x \in X, y \in Y\}
$$

Theorem 2.1. Every vertex v of a tournament T belongs to at least

$$
\max \left\{\min \left\{\delta^{+}(T), 2 \delta^{+}(T)-d_{T}^{+}(v)+1\right\}, \min \left\{\delta^{-}(T), 2 \delta^{-}(T)-d_{T}^{-}(v)+1\right\}\right\}
$$

arc-disjoint cycles.
Proof. For a vertex v of a tournament T, let $\Gamma=\left\{\gamma^{1}, \ldots, \gamma^{m}\right\}$ be a maximum family of arc-disjoint cycles through v. Let $\gamma^{i}=v v_{1}^{i} \ldots v_{n(i)}^{i} v$ for $i=1, \ldots, m$. By Menger's theorem (see [1]) there exists a set Ω of $m \operatorname{arcs}$ covering all cycles containing the vertex v. Suppose that k is the number of arcs in Ω with head v. If $k>0$, we can assume that the arc $v_{n(i)}^{i} v$ is in Ω for $1 \leq i \leq k$. Let us denote $K=\left\{v_{1}^{i}: 1 \leq i \leq k\right\}, L=\left\{v_{1}^{i}: k<i \leq m\right\}$, $M=N^{+}(v) \backslash K \backslash L, X=\left\{v_{n(i)}^{i}: 1 \leq i \leq k\right\}$ (if $k=0$ we set $K=X=\emptyset$), and $Y=N^{-}(v) \backslash X$.

First we prove that

$$
\begin{equation*}
|(K \cup X \cup M, Y)| \leq|(L, K \cup X \cup M)| \tag{1}
\end{equation*}
$$

Assume that an arc $w y$ belongs to $(K \cup X \cup M, Y)$. Notice that $y v \notin \Omega$. If $w \in K \cup M$, then the arc $w y$ of the cycle vwyv belongs to $\Omega \backslash\left\{v_{n(i)}^{i} v: i \leq k\right\}$. If $w \in X$, then $w=v_{n(i)}^{i}$ for some $i \leq k$. Hence, the $\operatorname{arc} w y=v_{n(i)}^{i} y$ of the cycle $v v_{1}^{i} \ldots v_{n(i)}^{i} y v$ belongs to $\Omega \backslash\left\{v_{n(i)}^{i} v: i \leq k\right\}$. Thus, $w y$ is an arc of the cycle γ^{i}, for some $i>k$. Suppose that v_{l}^{i} is the first vertex of the cycle γ^{i} which does not belong to L. Notice that $w y$ is the only arc of γ^{i} which belongs to Ω, because Ω and Γ have the same number of elements. Hence, the vertex v_{l}^{i} does not belong to Y. Otherwise, the cycle $v v_{1}^{i} \ldots v_{l-1}^{i} v_{l}^{i} v$ would not be covered by Ω. Thus the edge $v_{l-1}^{i} v_{l}^{i}$ of the cycle γ^{i} belongs to $(L, K \cup X \cup M)$. Accordingly, to every arc in $(K \cup X \cup M, Y)$ we can assign an arc in $(L, K \cup X \cup M)$ such that the two arcs belong to the same cycle γ^{i}, for some $i>k$. The above assignment is injective, because Ω and Γ have the same number of elements, and Γ is a family of arc-disjoint cycles. Hence, (1) holds.

By (1) we obtain

$$
\begin{aligned}
|K \cup X \cup M|(|V|-1)= & |(V \backslash L, K \cup X \cup M)|+|(L, K \cup X \cup M)| \\
& +|(K \cup X \cup M, V)| \\
\geq & |(V \backslash L, K \cup X \cup M)|+|(K \cup X \cup M, Y)| \\
& +|(K \cup X \cup M, V)| \\
= & |(K \cup X \cup M, K \cup X \cup M)| \\
& +|(\{v\}, K \cup X \cup M)|+|(Y, K \cup X \cup M)| \\
& +|(K \cup X \cup M, Y)|+|(K \cup X \cup M, V)| \\
\geq & |K \cup X \cup M| \cdot \frac{|K \cup X \cup M|-1}{2}+|K|+|M| \\
& +|K \cup X \cup M||Y|+(|K|+|X|+M \mid) \delta^{+}(T) .
\end{aligned}
$$

Since $|V|-1=d_{T}^{+}(v)+|X|+|Y|$ and $|K|=|X|$, we have

$$
(2|K|+|M|) d_{T}^{+}(v) \geq(2|K|+|M|) \frac{|M|}{2}+\frac{|M|}{2}+(2|K|+M \mid) \delta^{+}(T)
$$

Thus, either $|M|=0$, or $d_{T}^{+}(v)>|M| / 2+\delta^{+}(T)$. Hence, either $|M|=0$, or

$$
d_{T}^{+}(v)-|M|>2 \delta^{+}(T)-d_{T}^{+}(v)
$$

Accordingly, the vertex v belongs to at least

$$
\min \left\{\delta^{+}(T), 2 \delta^{+}(T)-d_{T}^{+}(v)+1\right\}
$$

arc-disjoint cycles. By considering the tournament obtained from T by reversing the directions of the arcs of A, we conclude in a similar fashion that the vertex v belongs to at least $\min \left\{\delta^{-}(T), 2 \delta^{-}(T)-d_{T}^{-}(v)+1\right\}$ arc-disjoint cycles.

REMARK 1. There exists a regular tournament R with a vertex which does not belong to $\delta^{+}(R)$ arc-disjoint 3 -cycles. For example, let R be the

Fig. 1. A regular tournament $R .(\{h, i, j\},\{a, b, c\}) \cup(\{k\},\{a, b, c, d, e\}) \cup\{c a, g d, j h\}$ is the set of all backward arcs with respect to the ordering $a, b, c, d, e, f, g, h, i, j, k$ of vertices in R.
tournament in Fig. 1. Let $k v_{1} v_{2}$ be a 3 -cycle through the vertex k. Notice that, if $v_{1} \in\{a, b, c\}$, then $v_{2} \in\{f, g\}$. Hence, the vertex k does not belong to $\delta^{+}(R)$ arc-disjoint 3 -cycles.

REFERENCES

[1] J. Bang-Jensen and G. Z. Gutin, Digraphs, 2nd ed., Springer Monogr. Math., Springer, 2010.
[2] H. G. Landau, On dominance relations and the structure of animal societies III. The condition for a score structure, Bull. Math. Biophys. 15 (1953), 143-148.

Jan Florek
Institute of Mathematics and Cybernetics
University of Economics
Komandorska 118/120
53-345 Wrocław, Poland
E-mail: jan.florek@ue.wroc.pl

