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ON STABLE EQUIVALENCES OF MODULE SUBCATEGORIES
OVER A SEMIPERFECT NOETHERIAN RING

BY

NORITSUGU KAMEYAMA, YUKO KIMURA and KENJI NISHIDA (Nagano)

Abstract. Given a semiperfect two-sided noetherian ring Λ, we study two subcat-
egories Ak(Λ) = {M ∈ mod Λ | ExtjΛ(TrM,Λ) = 0 (1 ≤ j ≤ k)} and Bk(Λ) = {N ∈
mod Λ | ExtjΛ(N,Λ) = 0 (1 ≤ j ≤ k)} of the category modΛ of finitely generated right
Λ-modules, where TrM is Auslander’s transpose of M . In particular, we give another
convenient description of the categories Ak(Λ) and Bk(Λ), and we study category equiv-
alences and stable equivalences between them. Several results proved in [J. Algebra 301
(2006), 748–780] are extended to the case when Λ is a two-sided noetherian semiperfect
ring.

1. Introduction and preliminaries. Throughout this paper we as-
sume that Λ is a semiperfect two-sided noetherian ring. We denote by modΛ
the category of finitely generated right Λ-modules. Following [ABr], given
an integer k ≥ 1, we study two subcategories

Ak(Λ) = {M ∈ modΛ | ExtjΛ(TrM,Λ) = 0 (1 ≤ j ≤ k)},
Bk(Λ) = {N ∈ modΛ | ExtjΛ(N,Λ) = 0 (1 ≤ j ≤ k)}

of the category mod Λ, where TrM is Auslander’s transpose of M (see [ASS],
[ABr]). Following [T] we also study the category Gproj-Λ of G-projective
Λ-modules. We recall that Λ is semiperfect if every module in mod Λ admits
a projective cover in modΛ. One of the main tools we use is the minimal
approximation technique introduced by Auslander in the 1960s. We recall
it in Sections 2–3 and we prove several preparatory results on approxima-
tions and the category Gproj-Λ. In particular, we extend several results of
Takahashi [T] from the commutative case to the case when Λ is a two-sided
noetherian semiperfect ring.

In the second part of the paper (Sections 4–7) we study category equiv-
alences between Ak(Λ) and Bk(Λ). In the particular case when k = 1, we
show in Theorem 5.5 that A1(Λ) and B1(Λ) are stably equivalent. One of the
main results of the second part of the paper is a characterization of Ak(Λ)
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and Bk(Λ) in Proposition 5.6 and a stable equivalence result in Theorem 5.7.
Moreover we prove that the following are equivalent for M ∈ mod Λ:

(a) M ∈ Ak(Λ) ∩ Bk(Λ);
(b) ExtiΛ(M,Λ) = 0 = ExtiΛ(TrM,Λ) for 1 ≤ i ≤ k;
(c) M admits a k-subcomplete resolution,

where ‘k-subcomplete resolution’ is defined in Section 6.
The reader is referred to [A]–[AR] and [Y] for details on the minimal

approximation technique and its application. Results of a similar nature on
classical orders, crossed products, and Cohen–Macaulay modules are dis-
cussed in [AM], [B1], [B2], [C], [Dr], [GN], [Si1]–[Si3], [S], and [Y].

2. Approximation and (co)syzygy. Let Λ be a two-sided noetherian
ring. Further we assume that it is semiperfect (cf. [AF], [F]). We denote
the category of finitely generated right Λ-modules by mod Λ and the one of
finitely generated left Λ-modules by modΛop.

2.1. Proj Λ-approximation. We recall from [T] the notions of ap-
proximation and minimality, and basic facts that are useful for constructing
syzygies.

Definition 2.1. Let M,N ∈modΛ and ρ : M→N a Λ-homomorphism.

(1) We say that ρ is right minimal if any f ∈ EndΛ(M) satisfying ρ = ρf
is an automorphism.

(2) We say that ρ is left minimal if any f ∈ EndΛ(N) satisfying ρ = gρ
is an automorphism.

Definition 2.2. Let X be a subcategory of mod Λ.

(1) Let X ∈ X and M ∈ modΛ, and let ϕ : X → M be a homomor-
phism.

(a) We call ϕ or X a right X -approximation of M if for any homo-
morphism ϕ′ : X ′ → M with X ′ ∈ X there exists a homomor-
phism f : X ′ → X such that ϕ′ = ϕf .

(b) We call ϕ or X a minimal right X -approximation of M if ϕ is a
right X -approximation and is right minimal.

(2) Let X ∈ X and M ∈ modΛ, and let ϕ : M → X be a homomor-
phism.

(a) We call ϕ or X a left X -approximation of M if for any homomor-
phism ϕ′ : M → X ′ with X ′ ∈ X there exists a homomorphism
f : X → X ′ such that ϕ′ = fϕ.

(b) We call ϕ or X a minimal left X -approximation of M if ϕ is a
left X -approximation and is left minimal.
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By definition, it is easy to see that a minimal right or left X -approxima-
tion is uniquely determined up to isomorphism, if it exists. Supposing that
X is closed under direct summands, a Λ-module having a right (resp. left)
X -approximation also has a minimal right (resp. left) X -approximation.

2.2. Minimal proj Λ-approximation. When one studies the noncom-
mutative version of [T], the following generalization of [T, Proposition 2.3] is
indispensable. It provides a concrete method of constructing a minimal left
projΛ-approximation and cosyzygies, where projΛ is the full subcategory
of modΛ consisting of all projective Λ-modules.

ForM ∈modΛ, we denote by θM the canonical evaluation mapM→M∗∗.

Proposition 2.3. Let Λ be a semiperfect two-sided noetherian ring and
let M ∈ mod Λ.

(1) If ϕ : P → M is a Λ-homomorphism with P ∈ projΛ, then the
following two conditions are equivalent:

(a) ϕ is a minimal right projΛ-approximation of M ;
(b) ϕ is a projective cover.

(2) If π : P → M∗ is a projective cover of M∗ with P ∈ projΛop, and
α := π∗θM : M → P ∗, then α is a minimal left projΛ-approximation
of M .

(3) If ϕ : P → M∗ is a minimal right projΛop-approximation of M∗

with P ∈ projΛop, then ϕ∗θM is a minimal left projΛ-approximation
of M .

Proof. (1) (a)⇒(b): Suppose ϕ : P → M is a minimal right projΛ-
approximation of M and q : Q→M a projective cover of M . By definition,
there is a Λ-homomorphism f : Q → P such that q = ϕf . Thus ϕ is
surjective. By [AF, Lemma 17.17], there exists a decomposition P = P ′⊕P ′′
with P ′, P ′′ ∈ projΛ such that 1) P ′ ' Q, 2) P ′′ ⊂ Kerϕ, 3) ϕ|P ′ : P ′ →M
is a projective cover for M . We define a homomorphism g : P → P by
g(x, y) = (x, 0), where x ∈ P ′ and y∈P ′′. Let ϕ = ϕ1⊕ϕ2 with ϕ1 : P ′→M
and ϕ2 : P ′′ →M . By 2), we have ϕ(0, y) = 0. Hence

ϕg(x, y) = ϕ(x, 0) = ϕ1(x),

ϕ(x, y) = ϕ1(x) + ϕ2(y) = ϕ1(x).

Therefore ϕg = ϕ, and so g is an automorphism. Hence P ′′ = 0, so that
P = P ′. By 3), ϕ is a projective cover.

(1) (b)⇒(a): By assumption, ϕ is a right projΛ-approximation of M . It
is easily shown that ϕ is right minimal if it is a projective cover.
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(2) Since α∗ = θ∗Mπ
∗∗, we get the following commutative diagrams:

P ∗∗

α∗ ##

π∗∗ //M∗∗∗

θ∗M
��

M∗

P ∗∗
π∗∗ //M∗∗∗

P

θP

OO

π //M∗

θM∗

OO

Hence π∗∗θP = θM∗π, so that π∗∗ = θM∗πθ
−1
P . By the definition of α, we

have α∗ = θ∗Mπ
∗∗. Hence α∗ = θ∗MθM∗πθ

−1
P = π. Take a Λ-homomorphism

h : P ∗ → P ∗ with α = hα. Then α∗ = α∗h∗, and since α∗ = π, we have
π = πh∗. Since P ∼= P ∗∗, we may think h∗ : P → P . Consider the short exact
sequence 0 → Kerπ → P

π−→ M∗ → 0. It follows that π(Imh∗ + Kerπ) =
πh∗(P ) = π(P ), so that Imh∗ + Kerπ = P . Since π is a projective cover,
we have Imh∗ = P . Thus h∗ is an automorphism. Hence h = θ−1P ∗h

∗∗θP ∗ is
also an automorphism. This means that α is left minimal.

We now show that α is a left projΛ-approximation of M . Let Q ∈ projΛ,
and β : M → Q a Λ-homomorphism. Then there is u : Q∗ → P ∗∗ such that
the following is commutative:

Q∗

β∗

��

∃u

zz
P = P ∗∗

α∗=π //M∗ // 0

This gives the commutative diagram

Q∗∗
θ−1
Q

∼
// Q

P ∗

u∗
<<

M∗∗

β∗∗

OO

π∗oo M
θMoo

β

OO

Set v := θ−1Q u∗ : P ∗ → Q. Then vα = θ−1Q u∗π∗θM = θ−1Q β∗∗θM = β. This
implies that α is a left projΛ-approximation of M .

(3) We first show that ϕ∗θM is left minimal. Take g∗ : P ∗ → P ∗ with
ϕ∗θM = gϕ∗θM . We can write g = f∗ for f : P → P . It suffices to show that
f is an automorphism. By assumption, we get the commutative diagram

M∗ P ∗∗
θ∗Mϕ

∗∗
oo P∼

θPoo

P ∗∗

f∗∗

OO

θ∗Mϕ
∗∗

bb

P∼
θPoo

f

OO

Thus θ∗Mϕ
∗∗θP f = θ∗Mϕ

∗∗θP . It is well-known that ϕ∗∗θP = θM∗ϕ and
θ∗MθM∗ = idM∗ . Hence θ∗Mϕ

∗∗θP = θ∗MθM∗ϕ = ϕ. Therefore, ϕf = ϕ. By
assumption, ϕ is right minimal, so that f is an automorphism. Hence, f∗ = g
is an automorphism. Thus ϕ∗θM is left minimal.
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Under the assumption that ϕ is a minimal right proj Λop-approximation
of M∗, we now show that ϕ∗θM is a left proj Λ-approximation of M . Consid-
ering (1) for modΛop and since ϕ is a minimal right proj Λop-approximation
of M∗, it follows that ϕ is a projective cover of M∗. Hence ϕ is surjec-
tive. For any ψ : M → Q′ with Q′ ∈ projΛ, we will show that there
exists ψ′ : P ∗ → Q′ such that ψ = ψ′ϕ∗θM . For a technical reason, we

set Q′ = Q∗ with Q ∈ projΛop. Applying (−)∗ to M
ψ→ Q∗, we get

ψ∗θQ : Q
θQ→ Q∗∗

ψ∗→ M∗. Since ϕ is surjective, there exists h : Q → P
such that ϕh = ψ∗θQ. Applying (−)∗, we get θ∗Qψ

∗∗ = h∗ϕ∗. Applying (−)∗∗

to ψ : M → Q∗, we see that θQ∗ψ = ψ∗∗θM . Hence

ψ = θ−1Q∗ψ
∗∗θM = θ∗Qψ

∗∗θM = h∗ϕ∗θM .

Set ψ′ = h∗. Then ψ = ψ′ϕ∗θM , so that ϕ∗θM is a minimal left projΛ-
approximation of M . This proves (3).

A Λ-module M is said to be torsionless if the canonical evaluation map
M →M∗∗ is injective. We now state the equivalence of being torsionless and
injectivity of each left projΛ-approximation. The proof of a noncommutative
version will also be given.

2.3. Torsionless modules

Proposition 2.4 ([T, Proposition 2,4]). Let M ∈ modΛ. Then the
following are equivalent:

(1) M is torsionless;
(2) every left projΛ-approximation of M is an injective homomorphism;
(3) there exists a left projΛ-approximation ϕ : M → P ∗ of M which is

injective.

Proof. (1)⇒(2): Let ψ : M → P ∗ be a left projΛ-approximation, and
suppose ψ(m) = 0 for some m ∈ M . Take any f ∈ M∗. Then there exists
g : P ∗ → Λ with f = gψ. Hence f(m) = gψ(m) = 0. Since f is arbitrary,
it follows that m ∈

⋂
{Ker f ′ | f ′ ∈ M∗}. In general, Ker θM =

⋂
{Ker f ′ |

f ′ ∈M∗}, and hence Ker θM = 0, so m = 0.
(2)⇒(3): This is clear.
(3)⇒(1): Let ψ : M → P ∗ be an injective left projΛ-approximation.

For m ∈ M , assume that θM (m) = 0. Then f(m) = θM (m)(f) = 0 for
any f ∈ M∗. There is an injective i : P ∗ → Λn for some positive integer n.
Let pk : Λn → Λ (1 ≤ k ≤ n) be the projection. Then pkiψ ∈ M∗. Hence
pkiψ(m) = 0, so that iψ(m) = 0. Since iψ is injective, we see that m = 0.
Thus M is torsionless.

2.4. Syzygy and cosyzygy. Following [T], we recall the definition of
(co)syzygies.
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Definition 2.5. Let M ∈ modΛ and π : P → M a minimal right
projΛ-approximation of M . The first syzygy ΩM = Ω1M of M is defined
as Kerπ, and the nth syzygy ΩnM of M is defined inductively: ΩnM =
Ω(Ωn−1M) for n ≥ 2.

We define cosyzygies by dualizing the above.

Definition 2.6. Let Λ be a semiperfect two-sided noetherian ring and
let M ∈ modΛ.

• Take the minimal left projΛ-approximation θ : M → P . Then Ω−1M
= Coker θ is called the first cosyzygy of M .
• For n ≥ 2, assume that the (n− 1)th cosyzygy Ω−(n−1)M is defined.

Then Ω−nM := Ω−1(Ω−(n−1)M) is called the nth cosyzygy of M .

A module M is called projective free if M has no nonzero projective
summands. The proof of the following fact is similar to that of [T, Proposi-
tion 2.6].

Proposition 2.7. For any Λ-module M and any positive integer n, the
nth cosyzygy Ω−nM is projective free.

2.5. A vanishing property. For a subcategory X of mod Λ, the sub-
category of modΛ consisting of all the modules M with Ext1Λ(X,M) = 0
(respectively, Ext1Λ(M,X) = 0) for all X ∈ X is denoted by X x (respec-
tively, xX ). Usually, the following is deduced from Wakamatsu’s lemma; we
give a proof based on another lemma.

Proposition 2.8 ([T, Proposition 3.3(2)]). Any cosyzygy belongs to
x(projΛ), that is,

Ext1Λ(Ω−1M,Λ) = 0 for any M ∈ modΛ.

In the proof of Proposition 2.8, we need the following two lemmata.

Lemma 2.9. Let M ∈ modΛ. Then there is an exact sequence

(AF) 0→ Ext1Λ(TrM,Λ)→M
θM−−→M∗∗ → Ext2Λ(TrM,Λ)→ 0

(Auslander formula).

Proof. See [ABr, Chapter 2, §1, p. 48].

Lemma 2.10. There are isomorphisms of functors on mod Λ:

TrΩ ∼= Ω−1 Tr, ΩTr ∼= TrΩ−1.

Proof. Although the proof might be known, we give it here for the con-
venience of the reader. Let M ∈ modΛ and let f : P → (TrM)∗ be a
projective cover. For a minimal projective resolution P1 → P0 −→ M → 0
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of M , we have an exact sequence P ∗0 → P ∗1
g−→ TrM → 0, so 0 → (TrM)∗

g∗−→ P ∗∗1 → P ∗∗0 is exact. Then we get the commutative diagram

P
h //

f ##

P1

$$

// P0
//M // 0

(TrM)∗

g∗

OO

ΩM

OO

with exact top row and h = g∗f . Hence P ∗1
h∗−→ P ∗ → TrΩM → 0 is exact.

Since h∗ = f∗g∗∗, we get the following commutative diagram:

TrM
θ // (TrM)∗∗

f∗ // P ∗

P ∗1

g

OO

P ∗∗∗1

g∗∗

OO

h∗

::

It follows from Proposition 2.3(2) that f∗θ is a minimal left projΛ-approxi-
mation of TrM . Therefore, Ω−1 TrM = Coker(f∗θ) = P ∗/Im(f∗θ). By the
above diagram, Im(f∗θ) = Im(f∗θg) = Im(f∗g∗∗) = Im(h∗). Hence

TrΩM = Coker(h∗) = P ∗/Im(h∗) = P ∗/Im(f∗θ) = Ω−1 TrM.

Thus we get TrΩ ∼= Ω−1 Tr on modΛ. The other isomorphism is obtained
by applying the functor Tr on the left and on the right to the first isomor-
phism.

Proof of Proposition 2.8. Let M ∈ modΛ. By Lemma 2.9 we have the
exact sequence

0→ Ext1Λ(TrΩ TrM,Λ)→ Ω TrM
θΩTrM−−−−→ (Ω TrM)∗∗

→ Ext2Λ(TrΩ TrM,Λ)→ 0.

Since Ω TrM is torsionless, θΩTrM is injective, so Ext1Λ(TrΩ TrM,Λ) = 0.
Since Lemma 2.10 yields Ext1Λ(TrΩ TrM,Λ) = Ext1Λ(Ω−1 Tr TrM,Λ) =
Ext1Λ(Ω−1M,Λ), we get Ext1Λ(Ω−1M,Λ) = 0.

3. G-projective modules

3.1. G-projective modules and G-dimension. In this section, we
study the basic properties of G-projective modules in the following sense
(cf. [ABr], [C]).

Definition 3.1. A Λ-module X is called G-projective if the following
three conditions hold:

• The canonical homomorphism θX : X → X∗∗ is an isomorphism,
• ExtiΛ(X,Λ) = 0 for any i > 0,
• ExtiΛ(X∗, Λ) = 0 for any i > 0.
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We denote by Gproj-Λ the full subcategory of modΛ consisting of all
G-projective modules. In relation with [ABr], we introduce the following
definition.

Definition 3.2. Let M ∈ modΛ. If for some positive integer n there
exists an exact sequence

0→ Xn → Xn−1 → · · · → X1 → X0 →M → 0

of Λ-modules with Xi ∈ Gproj-Λ (0 ≤ i ≤ n), then we say that M has
G-dimension at most n and write G-dimΛM ≤ n. If such an integer n does
not exist, then we say that M has infinite G-dimension, G-dimΛM =∞.

If M ∈modΛ has G-dimension at most n but does not have G-dimension
at most n−1, then we say thatM hasG-dimension n, and writeG-dimΛM=n.
In [ABr], G-projective modules are called modules of G-dimension zero and
are extensively studied.

For M ∈ modΛ, a complex of Λ-modules

P• = (· · · d2−→ P1
d1−→ P0

d0−→ P−1
d−1−−→ P−2

d−2−−→ · · ·)
is called a complete resolution of M if the following conditions are satisfied:

• Pi ∈ proj Λ for any i ∈ Z,
• Hi(P•) = 0 = Hi((P•)

∗) for any i ∈ Z,
• Im d0 = M .

3.2. A characterization of G-projective modules. We give the fol-
lowing characterization

Proposition 3.3. Let M ∈ modΛ. Then the following are equivalent:

(a) M is G-projective;
(b) ExtiΛ(M,Λ) = 0 = ExtiΛ(TrM,Λ) for any i > 0;
(c) M has a complete resolution.

Proof. The equivalence (a)⇔(b) is shown in [ABr, Proposition 3.8]. To
prove (b)⇔(c), we need the following from [ABr, Theorem 2.17].

Proposition 3.4. The following are equivalent for any M ∈ modΛ and
n > 0:

• M is n-torsion free, that is, ExtiΛ(TrM,Λ) = 0 for any 1 ≤ i ≤ n;
• There exists an exact sequence 0→ M → P1 → · · · → Pn (P1, . . . , Pn
∈ projΛ) such that P ∗n → · · · → P ∗1 →M∗ → 0 is also exact.

Assume (b) holds. It follows from Proposition 3.4 that there exists an
exact sequence 0→ M → P−1 → · · · → P−n → · · · such that · · · → P ∗−n →
· · · → P ∗−1 → M∗ → 0 is exact. Having a minimal projective resolution,
· · · → Pn → · · · → P1 →M → 0, we apply (−)∗, and get an exact sequence
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0 → M∗ → P ∗1 → · · · → P ∗n → · · · . Then we get a complete resolution:
· · · → P1 → P0 → P−1 → · · · of M , which implies (c).

Using Proposition 3.4, we can show (c)⇒(b).

G-projective modules are invariant under some functors.

Proposition 3.5 (cf. [T, Proposition 3.3(2)]). If a module M ∈ modΛ
is G-projective, then so are M∗, TrM , ΩM , and Ω−1M .

Proof. Assume that M is G-projective. Then we can easily see that M∗

and TrM are G-projective. We have an exact sequence 0 → ΩM → P →
M → 0 (P ∈ projΛ). By [ABr, Lemma 3.10], ΩM is G-projective.

Finally, we show that Ω−1M is G-projective. Let ϕ : P → M∗ be a
projective cover. By Proposition 2.3(1)&(3), ϕ∗θM is a minimal left projΛ-
approximation ofM. By definition,ΩM∗= Kerϕ andΩ−1M= Coker(ϕ∗θM ).
Applying (−)∗ to the exact sequence 0 → ΩM∗ → P

ϕ−→ M∗ → 0, we have
the following commutative diagram with exact rows:

0 //M
ϕ∗θM //

θM o
��

P ∗ // Ω−1M // 0

0 //M∗∗
ϕ∗ // P ∗ // (ΩM∗)∗ // 0

Therefore, (ΩM∗)∗ ∼= Ω−1M , so that Ω−1M is also G-projective.

3.3. The category of G-projective modules. Before studying the
properties of the category Gproj-Λ, we fix some notation.

Definition 3.6. A subcategory X of mod Λ is called resolving if:

• X contains projΛ,
• X is closed under direct summands,
• X is closed under extensions,
• X is closed under kernels of epimorphisms.

Let X be a subcategory of modΛ. We will use several subcategories of
modΛ connected with X (see [ASS] for more details). We set

X⊥ := {M ∈ modΛ | ExtiΛ(X,M) = 0 for any X ∈ X and i > 0},
⊥X := {M ∈ modΛ | ExtiΛ(M,X) = 0 for any X ∈ X and i > 0},
X̂ := {M ∈ modΛ | there exists n ≥ 0 and an exact sequence 0→ Xn →

Xn−1 → · · · → X1 → X0 →M → 0 with Xi ∈ X for 0 ≤ i ≤ n}.

A subcategory Y of X is called Ext-injective in X if Y is contained in X⊥.
A subcategory Y of X is called a cogenerator of X if there exists an exact
sequence 0→ X → Y → X ′ → 0 with Y ∈ Y and X ′ ∈ X for any X ∈ X .
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We recall the following result due to Auslander and Buchweitz [ABu,
Theorem 1.1, Proposition 3.6].

Lemma 3.7. Let X be a resolving subcategory of modΛ with Ext-injective
cogenerator W. Then:

(1) X is contravariantly finite in X̂ ,

(2) Ŵ = X⊥ ∩ X̂ .

Recall that, for subcategories X ⊂ X ′ ⊂ modΛ, X is contravariantly
finite in X ′ if any M ∈ X ′ has a right X -approximation.

Concerning the category Gproj-Λ, we have

Proposition 3.8 ([T, Proposition 3.7]). The category Gproj-Λ is a re-
solving subcategory of mod Λ with Ext-injective cogenerator projΛ.

Proof. An easy calculation shows that Gproj-Λ is a resolving subcate-
gory of modΛ. Since projΛ is contained in (Gproj-Λ)⊥, it is Ext-injective
in Gproj-Λ. Take any X ∈ Gproj-Λ. Then X is torsionless, hence we have
an exact sequence 0 → X → P → Ω−1X → 0 with P ∈ projΛ by Proposi-
tion 2.4. Since Ω−1X ∈ Gproj-Λ, projΛ is a cogenerator for Gproj-Λ.

4. Stable categories Ak, Bk, Gproj-Λ. In this section, we study cat-
egories containing Gproj-Λ. We follow the results in [T, §7] on stable cat-
egories. For a subcategory C of mod Λ, we denote by C the stable category
of C, that is, the objects of C are the same as those of C, and for objects
M,N ∈ C, the set of morphisms from M to N is defined by

HomΛ(M,N) = HomΛ(M,N)/PΛ(M,N),

where PΛ(M,N) is the submodule of HomΛ(M,N) consisting of all homo-
morphisms from M to N factoring through some projective Λ-module.

4.1. Preliminaries. We record some elementary results for projective
covers and syzygies. Let M ∈ modΛ. Suppose that an exact sequence 0 →
K ′

ι′−→ P ′
q−→ M → 0 with P ′ ∈ projΛ is given. Let 0 → K

ι−→ P
p−→ M → 0

be a projective cover of M . Then it follows from [AF, 17.17] that there
exist α : P → P ′ and π : P ′ → P such that q = pπ, πα = idP , and
P ′ = Kerπ⊕ Imα with Imα ∼= P . We set P ′′ = Kerπ ∈ projΛ and identify
K = ι(K), respectively, K ′ = ι′(K ′). Then the following holds.

Lemma 4.1. We have K ′ = α(K)⊕ P , consequently K ′ ∼= ΩM ⊕ P ′′.

4.2. On syzygy functors. The functors Ω and Ω−1 are well-behaved
on Gproj-Λ.
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Proposition 4.2 ([T, Proposition 7.1]). For M,N ∈ Gproj-Λ, the ho-
momorphisms {

HomΛ(M,N)→ HomΛ(ΩM,ΩN),

HomΛ(M,N)→ HomΛ(Ω−1M,Ω−1N)

defined by Ω and Ω−1 are isomorphisms.

Proof. The first isomorphism follows from [ABr, Proposition 2.43]. To
prove the second, we show that for M ∈ modΛ there is an exact sequence

(1) 0→ Ext1Λ(TrM,Λ)→M → ΩΩ−1M ⊕ P → 0

with some P ∈ projΛ.
Let π : P → M∗ be a projective cover of M∗. Set f = π∗θM : M → P ∗.

It follows from Proposition 2.3 that f is a minimal left projΛ-approximation

of M , so that Ω−1M = Coker f . Hence, M
f−→ P ∗

g−→ Ω−1M → 0 is exact.

Since Im θM ∼= Im f = Ker g, we get an exact sequence 0→ Im θM → P ∗
g−→

Ω−1M → 0. Since P ∗ is projective, Im θM ∼= ΩΩ−1M ⊕ P with P ∈ projΛ
by Lemma 4.1. From (AF), we have an exact sequence 0→ Ext1Λ(TrM,Λ)→
M

θM−−→M∗∗, which provides an exact sequence (1).
Let M,N ∈ Gproj-Λ. Then M ∼= ΩΩ−1M ⊕ P and N ∼= ΩΩ−1N ⊕ Q,

P,Q ∈ projΛ. Since Ω−1M,Ω−1N ∈ Gproj-Λ by Proposition 3.5, we can
apply the first isomorphism:

(2) HomΛ(Ω−1M,Ω−1N) ∼= HomΛ(ΩΩ−1M,ΩΩ−1N) ∼= HomΛ(M,N).

Remark 4.3. The assumption in Proposition 4.2 that M,N ∈ Gproj-Λ
is too strong. The conditions which we will find have wider applications.

4.3. Categories Ak and Bk. In what follows, we write Ak = Ak(Λ)
and Bk = Bk(Λ), for short. Note that, by Proposition 3.3, A∞ ∩ B∞ =
Gproj-Λ. Following [ABr], we call modules in Ak k-torsion free modules.
The first isomorphism of Proposition 4.2 is valid if Ext1Λ(M,Λ) = 0, i.e.,
M ∈ B1, due to [ABr, Proposition 2.43]. If M ∈ A1, then M ∼= ΩΩ−1M⊕P
for P ∈ projΛ by (1) in the proof of Proposition 4.2. Due to Proposition
2.8, we have Ω−1M ∈ B1. Assume further N ∈ A1; then applying the first
isomorphism to Ω−1M and Ω−1N , we get (2) above.

Thus, we have shown that if M ∈ A1 ∩ B1 and N ∈ A1 then the two
homomorphisms of Proposition 4.2 are isomorphisms.

Similarly, we can ease the assumption of [T, Lemma 7.2].

Lemma 4.4. Let M ∈ modΛ and X ∈ A1 ∩ B1. Then

HomΛ(X,M) ∼= Ext1Λ(X,ΩM) ∼= Ext1Λ(Ω−1X,M).

Proof. X ∈ B1 implies HomΛ(X,M) ∼= Ext1Λ(X,ΩM), and X ∈ A1

implies HomΛ(X,M) ∼= Ext1Λ(Ω−1X,M).
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5. Category equivalence between Ak and Bk. In the previous sec-
tion, we have introduced the categories Ak and Bk for k ≥ 1 and considered
some facts on Gproj-Λ using these categories. In this section, we prove the
category equivalence Ak and Bk. We expect that these equivalences can
be used to generalize the category Gproj-Λ. For M,N ∈ modΛ, we write
M ∼ N whenever M and N are stably isomorphic. Thus M ∼ N if and
only if M ⊕ P ∼= N ⊕Q for P,Q ∈ projΛ.

5.1. Category A1

Theorem 5.1. The following are equivalent for M ∈ modΛ:

(1) M ∈ A1;
(2) M is torsionless;
(3) M ∼ ΩΩ−1M .

Proof. We show the following lemma.

Lemma 5.2.

(1) For any M ∈ modΛ, we have Ω−1M ∈ B1.

(2) For any M ∈ modΛ, we have ΩM ∈ A1.

Proof. (1) This is nothing but Proposition 2.8.

(2) Ext1Λ(TrΩM,Λ)∼=Ext1Λ(Ω−1 TrM,Λ)=0 by Lemma 2.10 and (1).

Proof of Theorem 5.1. (1)⇔(2): This is an easy consequence of the def-
initions.

(1)⇒(3): In the proof of Proposition 4.2, we have provided the exact
sequence

0→ Ext1Λ(TrM,Λ)→M → ΩΩ−1M ⊕ P → 0,

with some P ∈ projΛ. Hence (1)⇒(3) holds.

(3)⇒(1): Suppose that M ∼ΩΩ−1M . Then M⊕P ∼=ΩΩ−1M⊕Q for all
P,Q∈ projΛ. By Lemma 5.2, ΩΩ−1M ∈ A1, so Ext1Λ(Tr(ΩΩ−1M), Λ) = 0.
Therefore, Ext1Λ(TrM,Λ) = 0. Thus M ∈ A1.

5.2. Category B1. We will show that the category B1 is the counterpart
of A1.

Theorem 5.3. The following are equivalent for M ∈ modΛ:

(1) M ∈ B1;
(2) M ∼ Ω−1ΩM .

Proof. (1)⇒(2): Let 0→ ΩM
ϕ−→ P (M)→M → 0 be a projective cover

of M . Applying (−)∗, we get an exact sequence 0 → M∗ → P (M)∗
ϕ∗−→

(ΩM)∗ → 0. Let 0 → K → P
p−→ (ΩM)∗ → 0 be a projective cover of

(ΩM)∗. By a standard argument [ASS, 17.17], we get the diagram
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(∗)
P (M)∗

ϕ∗ //

π
��
π′

��

(ΩM)∗

P ⊕ P ′
(p,0) // (ΩM)∗

where P (M)∗ = P ⊕ P ′ with π : P (M)∗ → P such that pπ = ϕ∗ and π′ :
P (M)∗ → P ′ by π′(x) = vx, since any x ∈ P (M)∗ is uniquely represented as
x = (ux, vx) with ux ∈ P , vx ∈ P ′. Let λ = (π, π′) : P (M)∗ → P ⊕P ′. Then
λ is an isomorphism. Let (p, 0) : P ⊕ P ′ → (ΩM)∗ be (p, 0)(u, v) = p(u) for
u ∈ P, v ∈ P ′. Take x ∈ P (M)∗. Then

(p, 0) ◦ (π, π′)(x) = (p, 0) ◦ (π, π′)(ux, vx) = (p, 0) ◦ (π(ux), π′(vx))

= pπ(ux) = ϕ∗(ux)

= ϕ∗(ux, vx) (vx ∈ P ′ = Kerπ ⊂ Kerϕ∗)

= ϕ∗(x).

Hence ϕ∗ = (p, 0)(π, π′) = µλ, where µ = (p, 0). Applying (−)∗ to the
bottom row of the diagram (∗), we get the following commutative diagram
with exact rows:

(∗∗)
0 // (ΩM)∗∗

µ∗ // (P ⊕ P ′)∗

0 // ΩM
µ∗θΩM //

θΩM

OO

(P ⊕ P ′)∗ // Coker(µ∗θΩM ) // 0

Note that

P ∗ ⊕ P ′∗ = (P ⊕ P ′)∗ λ∗−→∼ P (M)∗∗
θ−1
P (M)−−−−→∼ P (M).

By calculation, we find that

(∗∗∗) θ−1P (M)λ
∗µ∗θΩM = θ−1P (M)ϕ

∗∗θΩM = θ−1P (M)θP (M)ϕ = ϕ.

Since p∗θΩM is a minimal left projΛ-approximation of ΩM , we see that
Coker(µ∗θΩM ) = Coker(p∗θΩM ) ⊕ P ′∗ = Ω−1ΩM ⊕ P ′∗. From the exact

sequence 0→ ΩM
ϕ−→ P (M)→M → 0 and the bottom row of (∗∗), we get

the following diagram with exact rows:

0 // ΩM
µ∗θΩM // P ∗ ⊕ P ′∗ //

θ−1
P (M)

λ∗

��

Ω−1ΩM ⊕ P ′∗ // 0

0 // ΩM
ϕ // P (M) //M // 0

By (∗∗∗), the left square of this diagram commutes. Since θ−1P (M)λ
∗ is an

isomorphism, we have Ω−1ΩM ⊕ P ′∗ ∼= M . Thus Ω−1ΩM ∼M .
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(2)⇒(1): This follows from Lemma 5.2(1).

Corollary 5.4. Let M ∈ A1. Then there is an isomorphism of functors
HomΛ(Ω−1M,−) ∼= HomΛ(M,Ω(−)) on mod Λ.

Proof. By assumption, we have HomΛ(M,ΩN) ∼= HomΛ(ΩΩ−1M,ΩN).
By Proposition 2.8, we can apply [ABr, Proposition 2.43] to obtain
HomΛ(Ω−1M,N) ∼= HomΛ(ΩΩ−1M,ΩN). Combining these isomorphisms,
we get HomΛ(Ω−1M,N) ∼= HomΛ(M,ΩN).

5.3. A stable equivalence for k = 1. We summarize the above in

Theorem 5.5. The functors Ω−1 : A1 → B1 and Ω : B1 → A1 give a
category equivalence between A1 and B1.

Proof. Take M ∈ B1. Since ΩM ∈ A1, by Lemma 5.2 we see that

HomΛ(ΩM,ΩN) ∼= HomΛ(Ω−1ΩM,N) ∼= HomΛ(M,N)

for any N ∈ B1 by Corollary 5.4. Thus Ω is fully faithful. It is dense by
Theorem 5.1.

We denote by modP Λ the full subcategory consisting of all M ∈ modΛ
without projective direct summands. Note that, for M,N ∈ modP Λ, we
have M ∼ N if and only if M ∼= N .

5.4. A characterization of Ak and Bk. We give the following char-
acterization:

Proposition 5.6. Let k ≥ 1.

(1) The following are equivalent for M ∈ modP Λ:

(1.1) M ∈ Ak;
(1.2) Ω−iM ∈ A1 for 0 ≤ i ≤ k − 1;
(1.3) there is an exact sequence

0→M → P−1 → · · · → P−k → Ω−kM → 0

with P−j ∈ projΛ (1 ≤ j ≤ k) such that

P ∗−k → · · · → P ∗−1 →M∗ → 0

is exact.

(2) The following are equivalent for N ∈ modP Λ:

(2.1) N ∈ Bk;
(2.2) ΩiN ∈ B1 for 0 ≤ i ≤ k − 1;
(2.3) for the projective resolution · · · → P1 → P0 → N → 0 of N ,

the dual

0→ N∗ → P ∗0 → · · · → P ∗k−1 → (ΩkN)∗ → 0

is exact.
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Proof. (1) We have the following equivalences:

M ∈ Ak ⇔ Ext1Λ(Ωi TrM,Λ) = 0, 0 ≤ i ≤ k − 1

⇔ Ext1Λ(TrΩ−iM,Λ) = 0, 0 ≤ i ≤ k − 1

⇔ Ω−iM ∈ A1, 0 ≤ i ≤ k − 1.

Hence (1.1)⇔(1.2) holds. The equivalence (1.1)⇔(1.3) is proved in [ABr,
Chapter II, §3, Theorem (2.17)].

(2) We have the following equivalences:

N ∈ Bk ⇔ Ext1Λ(ΩiM,Λ) = 0, 0 ≤ i ≤ k − 1

⇔ ΩiM ∈ B1, 0 ≤ i ≤ k − 1.

Hence (2.1)⇔(2.2) holds. Dualizing a projective resolution of N

· · · → Pk
fk−→ Pk−1

fk−1−−−→ Pk−2 → · · ·
f1−→ P0 → N → 0,

we get a complex

0→ N∗ → P ∗0 → · · · → P ∗k−2
f∗k−1−−−→ Pk−1

f∗k−→ P ∗k → · · · .
Dualizing the two exact sequences

Pk
h−→ ΩkN → 0 and 0→ ΩkN

g−→ Pk−1 → Ωk−1N → 0,

we get the exact sequences

0→ (ΩkN)∗
h∗−→ P ∗k

and

(∗) 0→ (Ωk−1N)∗ → P ∗k−1
g∗−→ (ΩkN)∗ → Ext1Λ(Ωk−1N,Λ)→ 0.

Since f∗k = h∗g∗, there exists a commutative diagram

(∗∗)

f∗k−1 // P ∗k−1
f∗k //

g∗

��

P ∗k

(ΩkN)∗
h∗

88

// ExtkΛ(N,Λ) // 0

(2.1)⇒(2.3): By assumption, ExtiΛ(N,Λ) = 0 (1 ≤ i ≤ k), and hence
ExtkΛ(N,Λ) = 0 and g∗ is surjective. Since

Im f∗k−1 = Ker f∗k = Kerh∗g∗ = Ker g∗,

the sequence 0→ N∗ → P ∗0 → · · ·
f∗k−1−−−→ Pk−1

g∗−→ (ΩkN)∗ → 0 is exact.

(2.3)⇒(2.1): By assumption, ExtiΛ(N,Λ) = 0 (1 ≤ i ≤ k − 2). We also
get ExtkΛ(N,Λ) = 0, by assumption and (∗). By (∗∗), we have Im f∗k−1 =

Ker g∗ = Ker f∗k , so that Extk−1Λ (N,Λ) = 0. Therefore, (2.1) holds.
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5.5. A stable equivalence for k ≥ 1. Now, we show that the functors
Ωk and Ω−k define a category equivalence of Ak to Bk for k ≥ 1.

Theorem 5.7. Let k ≥ 1.

(a) If M ∈ Ak, then Ω−kM ∈ Bk and ΩkΩ−kM ∼M .

(b) If N ∈ Bk, then ΩkN ∈ Ak and Ω−kΩkN ∼ N .

(c) Ωk and Ω−k define equivalences between the categories Ak and Bk,
inverse to each other.

Proof. (a) Let M ∈ Ak. Then Ω−i+1M ∈ A1 (1 ≤ i ≤ k), so that

Ωi−1Ω−kM∼Ωi−2(ΩΩ−1)Ω−(k−1)M∼Ωi−2Ω−(k−1)M ∼ · · · ∼Ω−(k−i+1)M.

For 1 ≤ i ≤ k, we have

ExtiΛ(Ω−kM,Λ) = Ext1Λ(Ωi−1Ω−kM,Λ) = Ext1Λ(Ω−(k−i+1)M,Λ) = 0,

because−(k−i+1) < 0. ThusΩ−kM ∈ Bk. SinceΩ−i+1M ∈ A1 (1 ≤ i ≤ k),
we have

ΩiΩ−iM = Ωi−1(ΩΩ−1)Ω−i+1M ∼ Ωi−1Ω1−iM,

by Theorem 5.1. Continuing this process, we get

ΩiΩ−iM ∼ ΩΩ−1M ∼M.

(b) Let X ∈ modΛ. Then Ext1Λ(TrΩX,Λ) = 0 by Lemma 5.2. Hence
Ext1Λ(TrΩjX,Λ) = 0 for j ≥ 1. Let N ∈ Bk. Then ΩiN ∈ B1 for 0 ≤ i ≤
k − 1, by Proposition 5.6(2).

We now show Ω−i+1ΩkN ∼ Ωk−i+1N . Set i = k− 1; then Ωk−1N ∈ B1,
so ΩΩk−1N ∈A1. Thus Ω−1ΩΩk−1N ∼Ωk−1N , by Theorem 5.3. Therefore,

Ω−i+1ΩkN = Ω−i+2(Ω−1Ω)Ωk−1N

∼ Ω−i+2Ωk−1N ∼ · · · ∼ Ω−i+k+1N.

For 1 ≤ i ≤ k, we have

ExtiΛ(TrΩkN,Λ) ∼= Ext1Λ(Ωi−1 TrΩkN,Λ) ∼= Ext1Λ(TrΩ−i+1ΩkN,Λ)

∼= Ext1Λ(TrΩk−i+1N,Λ) = 0,

since k − i + 1 ≥ 1. Hence ΩkN ∈ Ak. Since ΩjN ∈ B1 for 0 ≤ j ≤ k − 1,

we can prove Ω−1ΩiN ∼ Ωi−1N for 0 ≤ i ≤ k. Indeed, we have ΩjN ∼
Ω−1ΩΩjN ∼ Ω−1Ωj+1N by Theorem 5.3. Thus Ωi−1N ∼ Ω−1ΩiN for
1 ≤ i ≤ k. This holds for i = 0 too.

Thus Ω−iΩiN ∼Ω−i+1(Ω−1ΩiN)∼Ω−i+1Ωi−1N ∼ · · · ∼Ω−1Ω1N ∼N
for 0 ≤ i ≤ k. Therefore Ω−kΩkN ∼ N . Since (c) is a consequence of (a)
and (b), the proof is complete.
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6. The properties of a module in Ak ∩ Bk. We finish the paper
by some observations on the categories Ak ∩ Bk. Following [T], we study
k-subcomplete resolutions of Λ-modules.

Definition 6.1. Let M ∈ modΛ and k ≥ 1. A complex

P• = (Pk → Pk−1 → · · · → P1 → P0
d0−→ P−1 → · · · → P−k)

is said to be a k-subcomplete resolution of M if:

(a) Pi ∈ projΛ for −k ≤ i ≤ k,
(b) Hi(P•) = 0 = Hi((P•)

∗) for −k < i < k,
(c) Im d0 = M .

The following ‘k-subcomplete version’ of Proposition 3.3 holds.

Proposition 6.2. The following are equivalent for M ∈ modΛ:

(a) M ∈ Ak ∩ Bk;
(b) ExtiΛ(M,Λ) = 0 = ExtiΛ(TrM,Λ) for 1 ≤ i ≤ k;
(c) M admits a k-subcomplete resolution.

Proof. Apply the arguments used in the proof of Proposition 3.3.

We now observe the behavior of Ak ∩Bk under the action of some func-
tors.

Lemma 6.3. Let M ∈ Ak ∩ Bk. Then TrM ∈ Ak ∩ Bk.

Proof. Since ExtiΛ(Tr(TrM), Λ) ∼= ExtiΛ(M,Λ) = 0, we have TrM ∈ Ak;
and TrM ∈ Bk is obvious.

Lemma 6.4.

(a) Ω(Ak ∩ Bk) = Ak+1 ∩ Bk−1.
(b) Ω−1(Ak+1 ∩ Bk−1) = Ak ∩ Bk.

Proof. Take any M ∈ Ak ∩ Bk. We will show ΩM ∈ Ak+1 ∩ Bk−1.
Since M ∈ A1, we have an exact sequence 0 → M → P → Ω−1M → 0
with P ∈ projΛ. The long exact sequence obtained from this short exact
sequence by applying (−)∗ provides the isomorphism

ExtiΛ(Ω−1M,Λ) ∼= Exti−1Λ (M,Λ) for i ≥ 2.

Then

ExtiΛ(TrΩM,Λ) = ExtiΛ(Ω−1 TrM,Λ) ∼= Exti−1Λ (TrM,Λ) = 0

for 2 ≤ i ≤ k+1. For i = 1, we obtain Ext1Λ(TrΩM,Λ) = 0, by Lemma 2.10
and Proposition 2.8. Thus ΩM ∈ Ak+1; and showing ΩM ∈ Bk−1 is easy.

To prove the converse, take N ∈ Ak+1 ∩ Bk−1. For 1 ≤ i ≤ k, we obtain

ExtiΛ(TrΩ−1N,Λ) ∼= ExtiΛ(Ω TrN,Λ) ∼= Exti+1
Λ (TrN,Λ).
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Since N ∈ Ak+1, we get ExtjΛ(TrN,Λ) = 0 for 1 ≤ j ≤ k + 1. Thus

Exti+1
Λ (TrN,Λ) = 0 for 1 ≤ i + 1 ≤ k + 1, and hence in particular for

1 ≤ i ≤ k. Thus ExtiΛ(TrΩ−1N,Λ) = 0 for 1 ≤ i ≤ k. Hence Ω−1N ∈ Ak.
To show that Ω−1N ∈ Bk, we note that

(∗) ExtiΛ(Ω−1N,Λ) = Exti−1Λ (ΩΩ−1N,Λ) = Exti−1Λ (N,Λ).

Also, N ∈Ak+1⊂A1. By assumption, N ∈Bk−1, so we obtain ExtjΛ(N,Λ)=0

for 1 ≤ j ≤ k − 1. Hence, in (∗), Exti−1Λ (N,Λ) = 0 for 1 ≤ i − 1 ≤ k − 1,
i.e., for 2 ≤ i ≤ k. Hence ExtiΛ(Ω−1N,Λ) = 0 for 2 ≤ i ≤ k. Proposition 2.8
yields Ext1Λ(Ω−1N,Λ) = 0, and therefore ExtiΛ(Ω−1N,Λ) = 0 for 1 ≤ i ≤ k.
Thus Ω−1N ∈ Bk. This finishes the proof of (a). Since (b) is a consequence
of (a), the proof is complete.

Now, we prove some other properties of the category Ak ∩ Bk.
Proposition 6.5. Let M ∈ Ak ∩ Bk, and

P• = (Pk → Pk−1 → · · · → P1 → P0
d0−→ P−1 → · · · → P−k)

be a k-subcomplete resolution of M . Let α : P0 →M be the surjective homo-
morphism induced by d0, and β : M → P−1 be the inclusion map. Then α
(respectively, β) is a right (respectively, left) projΛ-approximation of M .

Proof. It is clear that α is a right projΛ-approximation. To show that β
is a left projΛ-approximation, take a projective Λ-module P . Then we have
the commutative diagram

· · · // HomΛ(P−1, P )
Hom(d0,P )//

Hom(β,P )
��

HomΛ(P0, P )
Hom(d1,P )// HomΛ(P1, P ) // · · ·

HomΛ(M,P )
Hom(α,P )

55

with exact top row. Take f ∈ HomΛ(M,P ). Since αd1 = 0, we have

0 = Hom(αd1, P )(f) = Hom(d1, P ) ◦Hom(α, P )(f).

Hence
Hom(α, P )(f) ∈ Ker Hom(d1, P ) = Im Hom(d0, P ).

Therefore there exists g ∈ HomΛ(P−1, P ) such that Hom(d0, P )(g) =
Hom(α, P )(f). We have fα = gd0 = gβα because d0 = βα. Since α is
surjective, one has f = gβ. Thus Hom(β, P ) is surjective, which means that
β is a left projΛ-approximation of M .

Proposition 6.6. Let k ≥ 1. Then:

(a) Ak ∩ Bk contains projΛ and Gproj-Λ,
(b) Ak ∩ Bk is closed under finite direct sums,
(c) Ak ∩ Bk is closed under direct summands.
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Proof. (a) This is an easy consequence of the definitions.

(b) LetM,N ∈modΛbe inAk∩Bk. SinceExtiΛ(M⊕N,Λ)∼=ExtiΛ(M,Λ)⊕
ExtiΛ(N,Λ) for all i, and by definition of Bk, we have ExtiΛ(M⊕N,Λ) = 0 for
1 ≤ i ≤ k. Similarly, ExtiΛ(Tr(M ⊕N), Λ) ∼= ExtiΛ(TrM,Λ)⊕ExtiΛ(TrN,Λ)
for all i, and we get M ⊕N ∈ Ak ∩ Bk.

(c) Let M,N ∈modΛ with M ⊕N ∈Ak ∩Bk. Since 0 = ExtiΛ(M ⊕N,Λ)
∼= ExtiΛ(M,Λ) ⊕ ExtiΛ(N,Λ) for 1 ≤ i ≤ k, we have M ∈ Bk. Similarly,
0 = ExtiΛ(Tr(M ⊕ N), Λ) ∼= ExtiΛ(TrM,Λ) ⊕ ExtiΛ(TrN,Λ) for 1 ≤ i ≤ k.
Thus, we have M ∈ Ak and hence M ∈ Ak ∩ Bk.

7. Gorenstein dimension of a module in Ak or Bk. We show that
a module M in Ak is G-projective whenever G-dimM ≤ k, and N ∈ Bk is
G-projective whenever G-dimN ≤ k.

Proposition 7.1. Let 0 < k < ∞. The following conditions are equiv-
alent for M ∈ Ak:

(a) G-dim TrM ≤ k;

(b) G-dim TrM = 0.

Proof. It is sufficient to prove that (a) implies (b), because the converse
is obvious. By (a), we have G-dimΩk(TrM) = 0. Since Gproj-Λ is closed
under Ω−1, we get G-dimΩ−kΩk(TrM) = 0. By Lemma 2.10, we have
Ω−kΩk(TrM)∼=TrΩkΩ−kM . Since M ∈Ak, it follows that ΩkΩ−kM ∼M ,
by Theorem 5.7. Hence G-dim TrM = G- dim TrΩkΩ−kM = 0.

Proposition 7.2. Let 0<k<∞.The following are equivalent for N ∈Bk:

(a) G-dimN ≤ k;
(b) G-dimN = 0.

Proof. (a)⇒(b): Since G-dimΩkN = 0, we see G-dimΩ−kΩkN = 0. By
assumption, we have Ω−kΩkN ∼ N , so that G-dimN = 0.

Note added in proof. Our Theorems 5.1, 5.3, 5.5, 5.7 are consequences of
Proposition 1.1.1 of O. Iyama, Higher-dimensional Auslander–Reiten theory
on maximal orthogonal subcategories, Adv. Math. 210 (2007), 22–50. For the
convenience of the readers, we gave independent direct proofs.
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