# ON STABLE EQUIVALENCES OF MODULE SUBCATEGORIES over a Semiperfect noetherian ring 

BY
NORITSUGU KAMEYAMA, YUKO KIMURA and KENJI NISHIDA (Nagano)


#### Abstract

Given a semiperfect two-sided noetherian ring $\Lambda$, we study two subcategories $\mathcal{A}_{k}(\Lambda)=\left\{M \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{j}(\operatorname{Tr} M, \Lambda)=0(1 \leq j \leq k)\right\}$ and $\mathcal{B}_{k}(\Lambda)=\{N \in$ $\left.\bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{j}(N, \Lambda)=0(1 \leq j \leq k)\right\}$ of the category $\bmod \Lambda$ of finitely generated right $\Lambda$-modules, where $\operatorname{Tr} M$ is Auslander's transpose of $M$. In particular, we give another convenient description of the categories $\mathcal{A}_{k}(\Lambda)$ and $\mathcal{B}_{k}(\Lambda)$, and we study category equivalences and stable equivalences between them. Several results proved in [J. Algebra 301 (2006), 748-780] are extended to the case when $\Lambda$ is a two-sided noetherian semiperfect ring.


1. Introduction and preliminaries. Throughout this paper we assume that $\Lambda$ is a semiperfect two-sided noetherian ring. We denote by $\bmod \Lambda$ the category of finitely generated right $\Lambda$-modules. Following ABr , given an integer $k \geq 1$, we study two subcategories

$$
\begin{aligned}
& \mathcal{A}_{k}(\Lambda)=\left\{M \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{j}(\operatorname{Tr} M, \Lambda)=0(1 \leq j \leq k)\right\} \\
& \mathcal{B}_{k}(\Lambda)=\left\{N \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{j}(N, \Lambda)=0(1 \leq j \leq k)\right\}
\end{aligned}
$$

of the category $\bmod \Lambda$, where $\operatorname{Tr} M$ is Auslander's transpose of $M$ (see ASS, $[\mathrm{ABr}]$ ). Following [T] we also study the category Gproj- $\Lambda$ of G-projective $\Lambda$-modules. We recall that $\Lambda$ is semiperfect if every module in mod $\Lambda$ admits a projective cover in $\bmod \Lambda$. One of the main tools we use is the minimal approximation technique introduced by Auslander in the 1960s. We recall it in Sections 2-3 and we prove several preparatory results on approximations and the category Gproj- $\Lambda$. In particular, we extend several results of Takahashi [T] from the commutative case to the case when $\Lambda$ is a two-sided noetherian semiperfect ring.

In the second part of the paper (Sections 4-7) we study category equivalences between $\mathcal{A}_{k}(\Lambda)$ and $\mathcal{B}_{k}(\Lambda)$. In the particular case when $k=1$, we show in Theorem 5.5 that $\mathcal{A}_{1}(\Lambda)$ and $\mathcal{B}_{1}(\Lambda)$ are stably equivalent. One of the main results of the second part of the paper is a characterization of $\mathcal{A}_{k}(\Lambda)$

Key words and phrases: G-projective modules, syzygy, cosyzygy, approximation, projective cover, stable equivalence.
and $\mathcal{B}_{k}(\Lambda)$ in Proposition 5.6 and a stable equivalence result in Theorem 5.7. Moreover we prove that the following are equivalent for $M \in \bmod \Lambda:$
(a) $M \in \mathcal{A}_{k}(\Lambda) \cap \mathcal{B}_{k}(\Lambda)$;
(b) $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0=\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} M, \Lambda)$ for $1 \leq i \leq k$;
(c) $M$ admits a $k$-subcomplete resolution,
where ' $k$-subcomplete resolution' is defined in Section 6.
The reader is referred to $[\mathrm{A}]-\mathrm{AR}$ and $[\mathrm{Y}]$ for details on the minimal approximation technique and its application. Results of a similar nature on classical orders, crossed products, and Cohen-Macaulay modules are discussed in [AM], B1], B2], [C], Dr, [GN], [Si1]-[Si3], [S], and [Y].
2. Approximation and (co)syzygy. Let $\Lambda$ be a two-sided noetherian ring. Further we assume that it is semiperfect (cf. $\overline{\mathrm{AF}},[\mathrm{F}]$ ). We denote the category of finitely generated right $\Lambda$-modules by $\bmod \Lambda$ and the one of finitely generated left $\Lambda$-modules by $\bmod \Lambda^{\mathrm{op}}$.
2.1. Proj $\Lambda$-approximation. We recall from [T] the notions of approximation and minimality, and basic facts that are useful for constructing syzygies.

Definition 2.1. Let $M, N \in \bmod \Lambda$ and $\rho: M \rightarrow N$ a $\Lambda$-homomorphism.
(1) We say that $\rho$ is right minimal if any $f \in \operatorname{End}_{\Lambda}(M)$ satisfying $\rho=\rho f$ is an automorphism.
(2) We say that $\rho$ is left minimal if any $f \in \operatorname{End}_{\Lambda}(N)$ satisfying $\rho=g \rho$ is an automorphism.
Definition 2.2. Let $\mathcal{X}$ be a subcategory of $\bmod \Lambda$.
(1) Let $X \in \mathcal{X}$ and $M \in \bmod \Lambda$, and let $\varphi: X \rightarrow M$ be a homomorphism.
(a) We call $\varphi$ or $X$ a right $\mathcal{X}$-approximation of $M$ if for any homomorphism $\varphi^{\prime}: X^{\prime} \rightarrow M$ with $X^{\prime} \in \mathcal{X}$ there exists a homomor$\operatorname{phism} f: X^{\prime} \rightarrow X$ such that $\varphi^{\prime}=\varphi f$.
(b) We call $\varphi$ or $X$ a minimal right $\mathcal{X}$-approximation of $M$ if $\varphi$ is a right $\mathcal{X}$-approximation and is right minimal.
(2) Let $X \in \mathcal{X}$ and $M \in \bmod \Lambda$, and let $\varphi: M \rightarrow X$ be a homomorphism.
(a) We call $\varphi$ or $X$ a left $\mathcal{X}$-approximation of $M$ if for any homomorphism $\varphi^{\prime}: M \rightarrow X^{\prime}$ with $X^{\prime} \in \mathcal{X}$ there exists a homomorphism $f: X \rightarrow X^{\prime}$ such that $\varphi^{\prime}=f \varphi$.
(b) We call $\varphi$ or $X$ a minimal left $\mathcal{X}$-approximation of $M$ if $\varphi$ is a left $\mathcal{X}$-approximation and is left minimal.

By definition, it is easy to see that a minimal right or left $\mathcal{X}$-approximation is uniquely determined up to isomorphism, if it exists. Supposing that $\mathcal{X}$ is closed under direct summands, a $\Lambda$-module having a right (resp. left) $\mathcal{X}$-approximation also has a minimal right (resp. left) $\mathcal{X}$-approximation.
2.2. Minimal proj $\Lambda$-approximation. When one studies the noncommutative version of $T$, the following generalization of [T, Proposition 2.3] is indispensable. It provides a concrete method of constructing a minimal left proj $\Lambda$-approximation and cosyzygies, where proj $\Lambda$ is the full subcategory of $\bmod \Lambda$ consisting of all projective $\Lambda$-modules.

For $M \in \bmod \Lambda$, we denote by $\theta_{M}$ the canonical evaluation map $M \rightarrow M^{* *}$.
Proposition 2.3. Let $\Lambda$ be a semiperfect two-sided noetherian ring and let $M \in \bmod \Lambda$.
(1) If $\varphi: P \rightarrow M$ is a $\Lambda$-homomorphism with $P \in \operatorname{proj} \Lambda$, then the following two conditions are equivalent:
(a) $\varphi$ is a minimal right proj 1 -approximation of $M$;
(b) $\varphi$ is a projective cover.
(2) If $\pi: P \rightarrow M^{*}$ is a projective cover of $M^{*}$ with $P \in \operatorname{proj} \Lambda^{\text {op }}$, and $\alpha:=\pi^{*} \theta_{M}: M \rightarrow P^{*}$, then $\alpha$ is a minimal left proj $\Lambda$-approximation of $M$.
(3) If $\varphi: P \rightarrow M^{*}$ is a minimal right $\operatorname{proj} \Lambda^{\mathrm{op}}$-approximation of $M^{*}$ with $P \in \operatorname{proj} \Lambda^{\mathrm{op}}$, then $\varphi^{*} \theta_{M}$ is a minimal left proj $\Lambda$-approximation of $M$.

Proof. (1) (a) $\Rightarrow(\mathrm{b})$ : Suppose $\varphi: P \rightarrow M$ is a minimal right proj $\Lambda$ approximation of $M$ and $q: Q \rightarrow M$ a projective cover of $M$. By definition, there is a $\Lambda$-homomorphism $f: Q \rightarrow P$ such that $q=\varphi f$. Thus $\varphi$ is surjective. By [AF, Lemma 17.17], there exists a decomposition $P=P^{\prime} \oplus P^{\prime \prime}$ with $P^{\prime}, P^{\prime \prime} \in \operatorname{proj} \Lambda$ such that 1) $\left.\left.P^{\prime} \simeq Q, 2\right) P^{\prime \prime} \subset \operatorname{Ker} \varphi, 3\right)\left.\varphi\right|_{P^{\prime}}: P^{\prime} \rightarrow M$ is a projective cover for $M$. We define a homomorphism $g: P \rightarrow P$ by $g(x, y)=(x, 0)$, where $x \in P^{\prime}$ and $y \in P^{\prime \prime}$. Let $\varphi=\varphi_{1} \oplus \varphi_{2}$ with $\varphi_{1}: P^{\prime} \rightarrow M$ and $\varphi_{2}: P^{\prime \prime} \rightarrow M$. By 2), we have $\varphi(0, y)=0$. Hence

$$
\begin{aligned}
\varphi g(x, y) & =\varphi(x, 0)=\varphi_{1}(x) \\
\varphi(x, y) & =\varphi_{1}(x)+\varphi_{2}(y)=\varphi_{1}(x) .
\end{aligned}
$$

Therefore $\varphi g=\varphi$, and so $g$ is an automorphism. Hence $P^{\prime \prime}=0$, so that $P=P^{\prime}$. By 3), $\varphi$ is a projective cover.
(1) $(\mathrm{b}) \Rightarrow(\mathrm{a})$ : By assumption, $\varphi$ is a right proj $\Lambda$-approximation of $M$. It is easily shown that $\varphi$ is right minimal if it is a projective cover.
(2) Since $\alpha^{*}=\theta_{M}^{*} \pi^{* *}$, we get the following commutative diagrams:


Hence $\pi^{* *} \theta_{P}=\theta_{M^{*}} \pi$, so that $\pi^{* *}=\theta_{M^{*}} \pi \theta_{P}^{-1}$. By the definition of $\alpha$, we have $\alpha^{*}=\theta_{M}^{*} \pi^{* *}$. Hence $\alpha^{*}=\theta_{M}^{*} \theta_{M^{*}} \pi \theta_{P}^{-1}=\pi$. Take a $\Lambda$-homomorphism $h: P^{*} \rightarrow P^{*}$ with $\alpha=h \alpha$. Then $\alpha^{*}=\alpha^{*} h^{*}$, and since $\alpha^{*}=\pi$, we have $\pi=\pi h^{*}$. Since $P \cong P^{* *}$, we may think $h^{*}: P \rightarrow P$. Consider the short exact sequence $0 \rightarrow \operatorname{Ker} \pi \rightarrow P \xrightarrow{\pi} M^{*} \rightarrow 0$. It follows that $\pi\left(\operatorname{Im} h^{*}+\operatorname{Ker} \pi\right)=$ $\pi h^{*}(P)=\pi(P)$, so that $\operatorname{Im} h^{*}+\operatorname{Ker} \pi=P$. Since $\pi$ is a projective cover, we have $\operatorname{Im} h^{*}=P$. Thus $h^{*}$ is an automorphism. Hence $h=\theta_{P^{*}}^{-1} h^{* *} \theta_{P^{*}}$ is also an automorphism. This means that $\alpha$ is left minimal.

We now show that $\alpha$ is a left proj $\Lambda$-approximation of $M$. Let $Q \in \operatorname{proj} \Lambda$, and $\beta: M \rightarrow Q$ a $\Lambda$-homomorphism. Then there is $u: Q^{*} \rightarrow P^{* *}$ such that the following is commutative:


This gives the commutative diagram


Set $v:=\theta_{Q}^{-1} u^{*}: P^{*} \rightarrow Q$. Then $v \alpha=\theta_{Q}^{-1} u^{*} \pi^{*} \theta_{M}=\theta_{Q}^{-1} \beta^{* *} \theta_{M}=\beta$. This implies that $\alpha$ is a left $\operatorname{proj} \Lambda$-approximation of $M$.
(3) We first show that $\varphi^{*} \theta_{M}$ is left minimal. Take $g^{*}: P^{*} \rightarrow P^{*}$ with $\varphi^{*} \theta_{M}=g \varphi^{*} \theta_{M}$. We can write $g=f^{*}$ for $f: P \rightarrow P$. It suffices to show that $f$ is an automorphism. By assumption, we get the commutative diagram


Thus $\theta_{M}^{*} \varphi^{* *} \theta_{P} f=\theta_{M}^{*} \varphi^{* *} \theta_{P}$. It is well-known that $\varphi^{* *} \theta_{P}=\theta_{M *} \varphi$ and $\theta_{M}^{*} \theta_{M^{*}}=\mathrm{id}_{M^{*}}$. Hence $\theta_{M}^{*} \varphi^{* *} \theta_{P}=\theta_{M}^{*} \theta_{M^{*}} \varphi=\varphi$. Therefore, $\varphi f=\varphi$. By assumption, $\varphi$ is right minimal, so that $f$ is an automorphism. Hence, $f^{*}=g$ is an automorphism. Thus $\varphi^{*} \theta_{M}$ is left minimal.

Under the assumption that $\varphi$ is a minimal right proj $\Lambda^{\text {op }}$-approximation of $M^{*}$, we now show that $\varphi^{*} \theta_{M}$ is a left proj $\Lambda$-approximation of $M$. Considering (1) for $\bmod \Lambda^{\mathrm{op}}$ and since $\varphi$ is a minimal right proj $\Lambda^{\mathrm{op}}$-approximation of $M^{*}$, it follows that $\varphi$ is a projective cover of $M^{*}$. Hence $\varphi$ is surjective. For any $\psi: M \rightarrow Q^{\prime}$ with $Q^{\prime} \in \operatorname{proj} \Lambda$, we will show that there exists $\psi^{\prime}: P^{*} \rightarrow Q^{\prime}$ such that $\psi=\psi^{\prime} \varphi^{*} \theta_{M}$. For a technical reason, we set $Q^{\prime}=Q^{*}$ with $Q \in \operatorname{proj} \Lambda^{\mathrm{op}}$. Applying $(-)^{*}$ to $M \xrightarrow{\psi} Q^{*}$, we get $\psi^{*} \theta_{Q}: Q \xrightarrow{\theta_{Q}} Q^{* *} \xrightarrow{\psi^{*}} M^{*}$. Since $\varphi$ is surjective, there exists $h: Q \rightarrow P$ such that $\varphi h=\psi^{*} \theta_{Q}$. Applying $(-)^{*}$, we get $\theta_{Q}^{*} \psi^{* *}=h^{*} \varphi^{*}$. Applying ( -$)^{* *}$ to $\psi: M \rightarrow Q^{*}$, we see that $\theta_{Q^{*}} \psi=\psi^{* *} \theta_{M}$. Hence

$$
\psi=\theta_{Q^{*}}^{-1} \psi^{* *} \theta_{M}=\theta_{Q}^{*} \psi^{* *} \theta_{M}=h^{*} \varphi^{*} \theta_{M} .
$$

Set $\psi^{\prime}=h^{*}$. Then $\psi=\psi^{\prime} \varphi^{*} \theta_{M}$, so that $\varphi^{*} \theta_{M}$ is a minimal left $\operatorname{proj} \Lambda$ approximation of $M$. This proves (3).

A $\Lambda$-module $M$ is said to be torsionless if the canonical evaluation map $M \rightarrow M^{* *}$ is injective. We now state the equivalence of being torsionless and injectivity of each left proj $\Lambda$-approximation. The proof of a noncommutative version will also be given.

### 2.3. Torsionless modules

Proposition 2.4 ([T, Proposition 2,4]). Let $M \in \bmod \Lambda$. Then the following are equivalent:
(1) $M$ is torsionless;
(2) every left proj $\Lambda$-approximation of $M$ is an injective homomorphism;
(3) there exists a left proj $\Lambda$-approximation $\varphi: M \rightarrow P^{*}$ of $M$ which is injective.
Proof. (1) $\Rightarrow(2)$ : Let $\psi: M \rightarrow P^{*}$ be a left proj $\Lambda$-approximation, and suppose $\psi(m)=0$ for some $m \in M$. Take any $f \in M^{*}$. Then there exists $g: P^{*} \rightarrow \Lambda$ with $f=g \psi$. Hence $f(m)=g \psi(m)=0$. Since $f$ is arbitrary, it follows that $m \in \bigcap\left\{\operatorname{Ker} f^{\prime} \mid f^{\prime} \in M^{*}\right\}$. In general, $\operatorname{Ker} \theta_{M}=\bigcap\left\{\operatorname{Ker} f^{\prime} \mid\right.$ $\left.f^{\prime} \in M^{*}\right\}$, and hence $\operatorname{Ker} \theta_{M}=0$, so $m=0$.
$(2) \Rightarrow(3)$ : This is clear.
$(3) \Rightarrow(1)$ : Let $\psi: M \rightarrow P^{*}$ be an injective left $\operatorname{proj} \Lambda$-approximation. For $m \in M$, assume that $\theta_{M}(m)=0$. Then $f(m)=\theta_{M}(m)(f)=0$ for any $f \in M^{*}$. There is an injective $i: P^{*} \rightarrow \Lambda^{n}$ for some positive integer $n$. Let $p_{k}: \Lambda^{n} \rightarrow \Lambda(1 \leq k \leq n)$ be the projection. Then $p_{k} i \psi \in M^{*}$. Hence $p_{k} i \psi(m)=0$, so that $i \psi(m)=0$. Since $i \psi$ is injective, we see that $m=0$. Thus $M$ is torsionless.
2.4. Syzygy and cosyzygy. Following [T], we recall the definition of (co)syzygies.

Definition 2.5. Let $M \in \bmod \Lambda$ and $\pi: P \rightarrow M$ a minimal right proj $\Lambda$-approximation of $M$. The first syzygy $\Omega M=\Omega^{1} M$ of $M$ is defined as $\operatorname{Ker} \pi$, and the nth syzygy $\Omega^{n} M$ of $M$ is defined inductively: $\Omega^{n} M=$ $\Omega\left(\Omega^{n-1} M\right)$ for $n \geq 2$.

We define cosyzygies by dualizing the above.
Definition 2.6. Let $\Lambda$ be a semiperfect two-sided noetherian ring and let $M \in \bmod \Lambda$.

- Take the minimal left proj $\Lambda$-approximation $\theta: M \rightarrow P$. Then $\Omega^{-1} M$ $=\operatorname{Coker} \theta$ is called the first cosyzygy of $M$.
- For $n \geq 2$, assume that the $(n-1)$ th cosyzygy $\Omega^{-(n-1)} M$ is defined.

Then $\Omega^{-n} M:=\Omega^{-1}\left(\Omega^{-(n-1)} M\right)$ is called the nth cosyzygy of $M$.
A module $M$ is called projective free if $M$ has no nonzero projective summands. The proof of the following fact is similar to that of [T, Proposition 2.6].

Proposition 2.7. For any $\Lambda$-module $M$ and any positive integer $n$, the $n$th cosyzygy $\Omega^{-n} M$ is projective free.
2.5. A vanishing property. For a subcategory $\mathcal{X}$ of $\bmod \Lambda$, the subcategory of $\bmod \Lambda$ consisting of all the modules $M$ with $\operatorname{Ext}_{\Lambda}^{1}(X, M)=0$ (respectively, $\operatorname{Ext}_{\Lambda}^{1}(M, X)=0$ ) for all $X \in \mathcal{X}$ is denoted by $\mathcal{X}^{\llcorner }$(respectively, $\left.{ }^{\llcorner } \mathcal{X}\right)$. Usually, the following is deduced from Wakamatsu's lemma; we give a proof based on another lemma.

Proposition 2.8 ([T, Proposition 3.3(2)]). Any cosyzygy belongs to ${ }^{\llcorner }(\operatorname{proj} 1)$, that is,

$$
\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} M, \Lambda\right)=0 \quad \text { for any } M \in \bmod \Lambda .
$$

In the proof of Proposition 2.8, we need the following two lemmata.
Lemma 2.9. Let $M \in \bmod \Lambda$. Then there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} M, \Lambda) \rightarrow M \xrightarrow{\theta_{M}} M^{* *} \rightarrow \operatorname{Ext}_{\Lambda}^{2}(\operatorname{Tr} M, \Lambda) \rightarrow 0 \tag{AF}
\end{equation*}
$$

(Auslander formula).
Proof. See [ABr, Chapter 2, $\S 1$, p. 48].
Lemma 2.10. There are isomorphisms of functors on $\bmod \Lambda:$

$$
\operatorname{Tr} \Omega \cong \Omega^{-1} \operatorname{Tr}, \quad \Omega \operatorname{Tr} \cong \operatorname{Tr} \Omega^{-1}
$$

Proof. Although the proof might be known, we give it here for the convenience of the reader. Let $M \in \bmod \Lambda$ and let $f: P \rightarrow(\operatorname{Tr} M)^{*}$ be a projective cover. For a minimal projective resolution $P_{1} \rightarrow P_{0} \longrightarrow M \rightarrow 0$
of $M$, we have an exact sequence $P_{0}^{*} \rightarrow P_{1}^{*} \xrightarrow{g} \operatorname{Tr} M \rightarrow 0$, so $0 \rightarrow(\operatorname{Tr} M)^{*}$ $\xrightarrow{g^{*}} P_{1}^{* *} \rightarrow P_{0}^{* *}$ is exact. Then we get the commutative diagram

with exact top row and $h=g^{*} f$. Hence $P_{1}^{*} \xrightarrow{h^{*}} P^{*} \rightarrow \operatorname{Tr} \Omega M \rightarrow 0$ is exact. Since $h^{*}=f^{*} g^{* *}$, we get the following commutative diagram:


It follows from Proposition $2.3(2)$ that $f^{*} \theta$ is a minimal left proj $\Lambda$-approximation of $\operatorname{Tr} M$. Therefore, $\Omega^{-1} \operatorname{Tr} M=\operatorname{Coker}\left(f^{*} \theta\right)=P^{*} / \operatorname{Im}\left(f^{*} \theta\right)$. By the above diagram, $\operatorname{Im}\left(f^{*} \theta\right)=\operatorname{Im}\left(f^{*} \theta g\right)=\operatorname{Im}\left(f^{*} g^{* *}\right)=\operatorname{Im}\left(h^{*}\right)$. Hence

$$
\operatorname{Tr} \Omega M=\operatorname{Coker}\left(h^{*}\right)=P^{*} / \operatorname{Im}\left(h^{*}\right)=P^{*} / \operatorname{Im}\left(f^{*} \theta\right)=\Omega^{-1} \operatorname{Tr} M
$$

Thus we get $\operatorname{Tr} \Omega \cong \Omega^{-1} \operatorname{Tr}$ on $\underline{\bmod } \Lambda$. The other isomorphism is obtained by applying the functor Tr on the left and on the right to the first isomorphism.

Proof of Proposition 2.8. Let $M \in \bmod \Lambda$. By Lemma 2.9 we have the exact sequence

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega \operatorname{Tr} M, \Lambda) \rightarrow \Omega \operatorname{Tr} M \xrightarrow{\theta_{\Omega \operatorname{Tr} M}} & (\Omega \operatorname{Tr} M)^{* *} \\
& \operatorname{Ext}_{\Lambda}^{2}(\operatorname{Tr} \Omega \operatorname{Tr} M, \Lambda) \rightarrow 0
\end{aligned}
$$

Since $\Omega \operatorname{Tr} M$ is torsionless, $\theta_{\Omega \operatorname{Tr} M}$ is injective, so $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega \operatorname{Tr} M, \Lambda)=0$. Since Lemma 2.10 yields $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega \operatorname{Tr} M, \Lambda)=\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} \operatorname{Tr} \operatorname{Tr} M, \Lambda\right)=$ $\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} M, \Lambda\right)$, we get $\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} M, \Lambda\right)=0$.

## 3. G-projective modules

3.1. G-projective modules and G-dimension. In this section, we study the basic properties of G-projective modules in the following sense (cf. $\mathrm{ABr},[\mathrm{C}]$ ).

Definition 3.1. A $\Lambda$-module $X$ is called $G$-projective if the following three conditions hold:

- The canonical homomorphism $\theta_{X}: X \rightarrow X^{* *}$ is an isomorphism,
- $\operatorname{Ext}_{\Lambda}^{i}(X, \Lambda)=0$ for any $i>0$,
- $\operatorname{Ext}^{i}{ }_{( }\left(X^{*}, \Lambda\right)=0$ for any $i>0$.

We denote by $\operatorname{Gproj}-\Lambda$ the full subcategory of $\bmod \Lambda$ consisting of all G-projective modules. In relation with ABr , we introduce the following definition.

Definition 3.2. Let $M \in \bmod \Lambda$. If for some positive integer $n$ there exists an exact sequence

$$
0 \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

of $\Lambda$-modules with $X_{i} \in \operatorname{Gproj}-\Lambda(0 \leq i \leq n)$, then we say that $M$ has $G$-dimension at most $n$ and write G-dim $M \leq n$. If such an integer $n$ does not exist, then we say that $M$ has infinite $G$-dimension, G - $\operatorname{dim}_{\Lambda} M=\infty$.

If $M \in \bmod \Lambda$ has G -dimension at most $n$ but does not have G-dimension at most $n-1$, then we say that $M$ has $G$-dimension $n$, and write G - $\operatorname{dim}_{\Lambda} M=n$. In ABr , G-projective modules are called modules of G-dimension zero and are extensively studied.

For $M \in \bmod \Lambda$, a complex of $\Lambda$-modules

$$
P_{\bullet}=\left(\cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} P_{-1} \xrightarrow{d_{-1}} P_{-2} \xrightarrow{d_{-2}} \cdots\right)
$$

is called a complete resolution of $M$ if the following conditions are satisfied:

- $P_{i} \in \operatorname{proj} \Lambda$ for any $i \in \mathbb{Z}$,
- $\mathrm{H}_{i}\left(P_{\bullet}\right)=0=\mathrm{H}^{i}\left(\left(P_{\bullet}\right)^{*}\right)$ for any $i \in \mathbb{Z}$,
- $\operatorname{Im} d_{0}=M$.
3.2. A characterization of G-projective modules. We give the following characterization

Proposition 3.3. Let $M \in \bmod \Lambda$. Then the following are equivalent:
(a) $M$ is $G$-projective;
(b) $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0=\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} M, \Lambda)$ for any $i>0$;
(c) $M$ has a complete resolution.

Proof. The equivalence $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ is shown in $\overline{\mathrm{ABr}}$, Proposition 3.8]. To prove $(\mathrm{b}) \Leftrightarrow(\mathrm{c})$, we need the following from [ ABr , Theorem 2.17].

Proposition 3.4. The following are equivalent for any $M \in \bmod \Lambda$ and $n>0$ :

- $M$ is $n$-torsion free, that is, $\operatorname{Ext}_{A}^{i}(\operatorname{Tr} M, \Lambda)=0$ for any $1 \leq i \leq n$;
- There exists an exact sequence $0 \rightarrow M \rightarrow P_{1} \rightarrow \cdots \rightarrow P_{n}\left(P_{1}, \ldots, P_{n}\right.$ $\in \operatorname{proj} \Lambda)$ such that $P_{n}^{*} \rightarrow \cdots \rightarrow P_{1}^{*} \rightarrow M^{*} \rightarrow 0$ is also exact.

Assume (b) holds. It follows from Proposition 3.4 that there exists an exact sequence $0 \rightarrow M \rightarrow P_{-1} \rightarrow \cdots \rightarrow P_{-n} \rightarrow \cdots$ such that $\cdots \rightarrow P_{-n}^{*} \rightarrow$ $\cdots \rightarrow P_{-1}^{*} \rightarrow M^{*} \rightarrow 0$ is exact. Having a minimal projective resolution, $\cdots \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow M \rightarrow 0$, we apply $(-)^{*}$, and get an exact sequence
$0 \rightarrow M^{*} \rightarrow P_{1}^{*} \rightarrow \cdots \rightarrow P_{n}^{*} \rightarrow \cdots$. Then we get a complete resolution: $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow P_{-1} \rightarrow \cdots$ of $M$, which implies (c).

Using Proposition 3.4, we can show $(\mathrm{c}) \Rightarrow(\mathrm{b})$.
G-projective modules are invariant under some functors.
Proposition 3.5 (cf. [T, Proposition 3.3(2)]). If a module $M \in \bmod \Lambda$ is G-projective, then so are $M^{*}, \operatorname{Tr} M, \Omega M$, and $\Omega^{-1} M$.

Proof. Assume that $M$ is G-projective. Then we can easily see that $M^{*}$ and $\operatorname{Tr} M$ are G-projective. We have an exact sequence $0 \rightarrow \Omega M \rightarrow P \rightarrow$ $M \rightarrow 0(P \in \operatorname{proj} \Lambda)$. By $[\mathrm{ABr}$, Lemma 3.10], $\Omega M$ is G-projective.

Finally, we show that $\Omega^{-1} M$ is G-projective. Let $\varphi: P \rightarrow M^{*}$ be a projective cover. By Proposition $2.3(1) \&(3), \varphi^{*} \theta_{M}$ is a minimal left proj $\Lambda$ approximation of $M$. By definition, $\Omega M^{*}=\operatorname{Ker} \varphi$ and $\Omega^{-1} M=\operatorname{Coker}\left(\varphi^{*} \theta_{M}\right)$. Applying $(-)^{*}$ to the exact sequence $0 \rightarrow \Omega M^{*} \rightarrow P \xrightarrow{\varphi} M^{*} \rightarrow 0$, we have the following commutative diagram with exact rows:


Therefore, $\left(\Omega M^{*}\right)^{*} \cong \Omega^{-1} M$, so that $\Omega^{-1} M$ is also G-projective.
3.3. The category of G-projective modules. Before studying the properties of the category Gproj- $\Lambda$, we fix some notation.

Definition 3.6. A subcategory $\mathcal{X}$ of $\bmod \Lambda$ is called resolving if:

- $\mathcal{X}$ contains proj $\Lambda$,
- $\mathcal{X}$ is closed under direct summands,
- $\mathcal{X}$ is closed under extensions,
- $\mathcal{X}$ is closed under kernels of epimorphisms.

Let $\mathcal{X}$ be a subcategory of $\bmod \Lambda$. We will use several subcategories of $\bmod \Lambda$ connected with $\mathcal{X}$ (see ASS for more details). We set
$\mathcal{X}^{\perp}:=\left\{M \in \bmod \Lambda \mid \operatorname{Ext}^{i}{ }_{\Lambda}(X, M)=0\right.$ for any $X \in \mathcal{X}$ and $\left.i>0\right\}$, ${ }^{\perp} \mathcal{X}:=\left\{M \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(M, X)=0\right.$ for any $X \in \mathcal{X}$ and $\left.i>0\right\}$, $\widehat{\mathcal{X}}:=\left\{M \in \bmod \Lambda \mid\right.$ there exists $n \geq 0$ and an exact sequence $0 \rightarrow X_{n} \rightarrow$ $X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0$ with $X_{i} \in \mathcal{X}$ for $\left.0 \leq i \leq n\right\}$.
A subcategory $\mathcal{Y}$ of $\mathcal{X}$ is called Ext-injective in $\mathcal{X}$ if $\mathcal{Y}$ is contained in $\mathcal{X}^{\perp}$. A subcategory $\mathcal{Y}$ of $\mathcal{X}$ is called a cogenerator of $\mathcal{X}$ if there exists an exact sequence $0 \rightarrow X \rightarrow Y \rightarrow X^{\prime} \rightarrow 0$ with $Y \in \mathcal{Y}$ and $X^{\prime} \in \mathcal{X}$ for any $X \in \mathcal{X}$.

We recall the following result due to Auslander and Buchweitz ABu , Theorem 1.1, Proposition 3.6].

Lemma 3.7. Let $\mathcal{X}$ be a resolving subcategory of $\bmod \Lambda$ with Ext-injective cogenerator $\mathcal{W}$. Then:
(1) $\mathcal{X}$ is contravariantly finite in $\widehat{\mathcal{X}}$,
(2) $\widehat{\mathcal{W}}=\mathcal{X}^{\perp} \cap \widehat{\mathcal{X}}$.

Recall that, for subcategories $\mathcal{X} \subset \mathcal{X}^{\prime} \subset \bmod \Lambda, \mathcal{X}$ is contravariantly finite in $\mathcal{X}^{\prime}$ if any $M \in \mathcal{X}^{\prime}$ has a right $\mathcal{X}$-approximation.

Concerning the category $\operatorname{Gproj}-\Lambda$, we have
Proposition 3.8 ([T, Proposition 3.7]). The category Gproj- $\Lambda$ is a resolving subcategory of $\bmod \Lambda$ with Ext-injective cogenerator $\operatorname{proj} \Lambda$.

Proof. An easy calculation shows that Gproj- $\Lambda$ is a resolving subcategory of $\bmod \Lambda$. Since proj $\Lambda$ is contained in $(\operatorname{Gproj}-\Lambda)^{\perp}$, it is Ext-injective in Gproj- $\Lambda$. Take any $X \in \operatorname{Gproj}-\Lambda$. Then $X$ is torsionless, hence we have an exact sequence $0 \rightarrow X \rightarrow P \rightarrow \Omega^{-1} X \rightarrow 0$ with $P \in \operatorname{proj} \Lambda$ by Proposition 2.4. Since $\Omega^{-1} X \in \operatorname{Gproj}-\Lambda$, $\operatorname{proj} \Lambda$ is a cogenerator for $\operatorname{Gproj}-\Lambda$.
4. Stable categories $\mathcal{A}_{k}, \mathcal{B}_{k}$, Gproj- $\Lambda$. In this section, we study categories containing Gproj- $\bar{\Lambda}$. We follow the results in [T, §7] on stable categories. For a subcategory $\mathcal{C}$ of $\bmod \Lambda$, we denote by $\mathcal{\mathcal { C }}$ the stable category of $\mathcal{C}$, that is, the objects of $\underline{\mathcal{C}}$ are the same as those of $\mathcal{C}$, and for objects $M, N \in \mathcal{C}$, the set of morphisms from $M$ to $N$ is defined by

$$
\underline{\operatorname{Hom}}_{\Lambda}(M, N)=\operatorname{Hom}_{\Lambda}(M, N) / \mathfrak{P}_{\Lambda}(M, N),
$$

where $\mathfrak{P}_{\Lambda}(M, N)$ is the submodule of $\operatorname{Hom}_{\Lambda}(M, N)$ consisting of all homomorphisms from $M$ to $N$ factoring through some projective $\Lambda$-module.
4.1. Preliminaries. We record some elementary results for projective covers and syzygies. Let $M \in \bmod \Lambda$. Suppose that an exact sequence $0 \rightarrow$ $K^{\prime} \xrightarrow{\iota^{\prime}} P^{\prime} \xrightarrow{q} M \rightarrow 0$ with $P^{\prime} \in \operatorname{proj} \Lambda$ is given. Let $0 \rightarrow K \xrightarrow{\iota} P \xrightarrow{p} M \rightarrow 0$ be a projective cover of $M$. Then it follows from [AF, 17.17] that there exist $\alpha: P \rightarrow P^{\prime}$ and $\pi: P^{\prime} \rightarrow P$ such that $q=p \pi, \pi \alpha=\operatorname{id}_{P}$, and $P^{\prime}=\operatorname{Ker} \pi \oplus \operatorname{Im} \alpha$ with $\operatorname{Im} \alpha \cong P$. We set $P^{\prime \prime}=\operatorname{Ker} \pi \in \operatorname{proj} \Lambda$ and identify $K=\iota(K)$, respectively, $K^{\prime}=\iota^{\prime}\left(K^{\prime}\right)$. Then the following holds.

Lemma 4.1. We have $K^{\prime}=\alpha(K) \oplus P$, consequently $K^{\prime} \cong \Omega M \oplus P^{\prime \prime}$.
4.2. On syzygy functors. The functors $\Omega$ and $\Omega^{-1}$ are well-behaved on Gproj- $\Lambda$.

Proposition 4.2 ([T, Proposition 7.1]). For $M, N \in \operatorname{Gproj}-\Lambda$, the homomorphisms

$$
\left\{\begin{array}{l}
\underline{\operatorname{Hom}}_{\Lambda}(M, N) \rightarrow \underline{\operatorname{Hom}}_{\Lambda}(\Omega M, \Omega N), \\
\underline{\operatorname{Hom}}_{\Lambda}(M, N) \rightarrow \underline{\operatorname{Hom}}_{A}\left(\Omega^{-1} M, \Omega^{-1} N\right)
\end{array}\right.
$$

defined by $\Omega$ and $\Omega^{-1}$ are isomorphisms.
Proof. The first isomorphism follows from [ABr, Proposition 2.43]. To prove the second, we show that for $M \in \bmod \Lambda$ there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} M, \Lambda) \rightarrow M \rightarrow \Omega \Omega^{-1} M \oplus P \rightarrow 0 \tag{1}
\end{equation*}
$$

with some $P \in \operatorname{proj} \Lambda$.
Let $\pi: P \rightarrow M^{*}$ be a projective cover of $M^{*}$. Set $f=\pi^{*} \theta_{M}: M \rightarrow P^{*}$. It follows from Proposition 2.3 that $f$ is a minimal left proj $\Lambda$-approximation of $M$, so that $\Omega^{-1} M=$ Coker $f$. Hence, $M \xrightarrow{f} P^{*} \xrightarrow{g} \Omega^{-1} M \rightarrow 0$ is exact. Since $\operatorname{Im} \theta_{M} \cong \operatorname{Im} f=\operatorname{Ker} g$, we get an exact sequence $0 \rightarrow \operatorname{Im} \theta_{M} \rightarrow P^{*} \xrightarrow{g}$ $\Omega^{-1} M \rightarrow 0$. Since $P^{*}$ is projective, $\operatorname{Im} \theta_{M} \cong \Omega \Omega^{-1} M \oplus P$ with $P \in \operatorname{proj} \Lambda$ by Lemma 4.1. From (AF), we have an exact sequence $0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} M, \Lambda) \rightarrow$ $M \xrightarrow{\theta_{M}} M^{* *}$, which provides an exact sequence (1).

Let $M, N \in$ Gproj- $\Lambda$. Then $M \cong \Omega \Omega^{-1} M \oplus P$ and $N \cong \Omega \Omega^{-1} N \oplus Q$, $P, Q \in \operatorname{proj} \Lambda$. Since $\Omega^{-1} M, \Omega^{-1} N \in \operatorname{Gproj}-\Lambda$ by Proposition 3.5, we can apply the first isomorphism:

$$
\begin{equation*}
\underline{\operatorname{Hom}}_{\Lambda}\left(\Omega^{-1} M, \Omega^{-1} N\right) \cong \underline{\operatorname{Hom}}_{\Lambda}\left(\Omega \Omega^{-1} M, \Omega \Omega^{-1} N\right) \cong \underline{\operatorname{Hom}}_{\Lambda}(M, N) . \tag{2}
\end{equation*}
$$

Remark 4.3. The assumption in Proposition 4.2 that $M, N \in \operatorname{Gproj}-\Lambda$ is too strong. The conditions which we will find have wider applications.
4.3. Categories $\mathcal{A}_{k}$ and $\mathcal{B}_{k}$. In what follows, we write $\mathcal{A}_{k}=\mathcal{A}_{k}(\Lambda)$ and $\mathcal{B}_{k}=\mathcal{B}_{k}(\Lambda)$, for short. Note that, by Proposition 3.3, $\mathcal{A}_{\infty} \cap \mathcal{B}_{\infty}=$ Gproj- $\Lambda$. Following $\left[\mathrm{ABr}\right.$, we call modules in $\mathcal{A}_{k} k$-torsion free modules. The first isomorphism of Proposition 4.2 is valid if $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)=0$, i.e., $M \in \mathcal{B}_{1}$, due to [ ABr , Proposition 2.43]. If $M \in \mathcal{A}_{1}$, then $M \cong \Omega \Omega^{-1} M \oplus P$ for $P \in \operatorname{proj} \Lambda$ by (1) in the proof of Proposition 4.2. Due to Proposition 2.8, we have $\Omega^{-1} M \in \mathcal{B}_{1}$. Assume further $N \in \mathcal{A}_{1}$; then applying the first isomorphism to $\Omega^{-1} M$ and $\Omega^{-1} N$, we get (2) above.

Thus, we have shown that if $M \in \mathcal{A}_{1} \cap \mathcal{B}_{1}$ and $N \in \mathcal{A}_{1}$ then the two homomorphisms of Proposition 4.2 are isomorphisms.

Similarly, we can ease the assumption of [T, Lemma 7.2].
Lemma 4.4. Let $M \in \bmod \Lambda$ and $X \in \mathcal{A}_{1} \cap \mathcal{B}_{1}$. Then

$$
\underline{\operatorname{Hom}}_{\Lambda}(X, M) \cong \operatorname{Ext}_{\Lambda}^{1}(X, \Omega M) \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} X, M\right) .
$$

Proof. $X \in \mathcal{B}_{1}$ implies $\operatorname{Hom}_{\Lambda}(X, M) \cong \operatorname{Ext}_{\Lambda}^{1}(X, \Omega M)$, and $X \in \mathcal{A}_{1}$ implies $\underline{\operatorname{Hom}}_{\Lambda}(X, M) \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} X, M\right)$.
5. Category equivalence between $\mathcal{A}_{k}$ and $\mathcal{B}_{k}$. In the previous section, we have introduced the categories $\mathcal{A}_{k}$ and $\mathcal{B}_{k} \overline{\text { for }} k \geq 1$ and considered some facts on Gproj- $\Lambda$ using these categories. In this section, we prove the category equivalence $\mathcal{A}_{k}$ and $\mathcal{B}_{k}$. We expect that these equivalences can be used to generalize the category $\operatorname{Gproj}-\Lambda$. For $M, N \in \bmod \Lambda$, we write $M \sim N$ whenever $M$ and $N$ are stably isomorphic. Thus $M \sim N$ if and only if $M \oplus P \cong N \oplus Q$ for $P, Q \in \operatorname{proj} \Lambda$.

### 5.1. Category $\mathcal{A}_{1}$

THEOREM 5.1. The following are equivalent for $M \in \bmod \Lambda$ :
(1) $M \in \mathcal{A}_{1}$;
(2) $M$ is torsionless;
(3) $M \sim \Omega \Omega^{-1} M$.

Proof. We show the following lemma.
Lemma 5.2.
(1) For any $M \in \bmod \Lambda$, we have $\Omega^{-1} M \in \mathcal{B}_{1}$.
(2) For any $M \in \bmod \Lambda$, we have $\Omega M \in \mathcal{A}_{1}$.

Proof. (1) This is nothing but Proposition 2.8.
(2) $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega M, \Lambda) \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} \operatorname{Tr} M, \Lambda\right)=0$ by Lemma 2.10 and (1).

Proof of Theorem 5.1. (1) $\Leftrightarrow(2)$ : This is an easy consequence of the definitions.
$(1) \Rightarrow(3)$ : In the proof of Proposition 4.2 , we have provided the exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} M, \Lambda) \rightarrow M \rightarrow \Omega \Omega^{-1} M \oplus P \rightarrow 0
$$

with some $P \in \operatorname{proj} \Lambda$. Hence $(1) \Rightarrow(3)$ holds.
$(3) \Rightarrow(1)$ : Suppose that $M \sim \Omega \Omega^{-1} M$. Then $M \oplus P \cong \Omega \Omega^{-1} M \oplus Q$ for all $P, Q \in \operatorname{proj} \Lambda$. By Lemma 5.2, $\Omega \Omega^{-1} M \in \mathcal{A}_{1}$, so $\operatorname{Ext}_{\Lambda}^{1}\left(\operatorname{Tr}\left(\Omega \Omega^{-1} M\right), \Lambda\right)=0$. Therefore, $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} M, \Lambda)=0$. Thus $M \in \mathcal{A}_{1}$.
5.2. Category $\mathcal{B}_{1}$. We will show that the category $\mathcal{B}_{1}$ is the counterpart of $\mathcal{A}_{1}$.

THEOREM 5.3. The following are equivalent for $M \in \bmod \Lambda$ :
(1) $M \in \mathcal{B}_{1}$;
(2) $M \sim \Omega^{-1} \Omega M$.

Proof. (1) $\Rightarrow(2)$ : Let $0 \rightarrow \Omega M \xrightarrow{\varphi} P(M) \rightarrow M \rightarrow 0$ be a projective cover of $M$. Applying $(-)^{*}$, we get an exact sequence $0 \rightarrow M^{*} \rightarrow P(M)^{*} \xrightarrow{\varphi^{*}}$ $(\Omega M)^{*} \rightarrow 0$. Let $0 \rightarrow K \rightarrow P \xrightarrow{p}(\Omega M)^{*} \rightarrow 0$ be a projective cover of $(\Omega M)^{*}$. By a standard argument [ASS, 17.17], we get the diagram

where $P(M)^{*}=P \oplus P^{\prime}$ with $\pi: P(M)^{*} \rightarrow P$ such that $p \pi=\varphi^{*}$ and $\pi^{\prime}$ : $P(M)^{*} \rightarrow P^{\prime}$ by $\pi^{\prime}(x)=v_{x}$, since any $x \in P(M)^{*}$ is uniquely represented as $x=\left(u_{x}, v_{x}\right)$ with $u_{x} \in P, v_{x} \in P^{\prime}$. Let $\lambda=\left(\pi, \pi^{\prime}\right): P(M)^{*} \rightarrow P \oplus P^{\prime}$. Then $\lambda$ is an isomorphism. Let $(p, 0): P \oplus P^{\prime} \rightarrow(\Omega M)^{*}$ be $(p, 0)(u, v)=p(u)$ for $u \in P, v \in P^{\prime}$. Take $x \in P(M)^{*}$. Then

$$
\begin{aligned}
(p, 0) \circ\left(\pi, \pi^{\prime}\right)(x) & =(p, 0) \circ\left(\pi, \pi^{\prime}\right)\left(u_{x}, v_{x}\right)=(p, 0) \circ\left(\pi\left(u_{x}\right), \pi^{\prime}\left(v_{x}\right)\right) \\
& =p \pi\left(u_{x}\right)=\varphi^{*}\left(u_{x}\right) \\
& =\varphi^{*}\left(u_{x}, v_{x}\right) \quad\left(v_{x} \in P^{\prime}=\operatorname{Ker} \pi \subset \operatorname{Ker} \varphi^{*}\right) \\
& =\varphi^{*}(x)
\end{aligned}
$$

Hence $\varphi^{*}=(p, 0)\left(\pi, \pi^{\prime}\right)=\mu \lambda$, where $\mu=(p, 0)$. Applying $(-)^{*}$ to the bottom row of the diagram $(*)$, we get the following commutative diagram with exact rows:


Note that

$$
P^{*} \oplus P^{*}=\left(P \oplus P^{\prime}\right)^{*} \xrightarrow[\sim]{\lambda^{*}} P(M)^{* *} \xrightarrow[\sim]{\theta_{P(M)}^{-1}} P(M) .
$$

By calculation, we find that

$$
\begin{equation*}
\theta_{P(M)}^{-1} \lambda^{*} \mu^{*} \theta_{\Omega M}=\theta_{P(M)}^{-1} \varphi^{* *} \theta_{\Omega M}=\theta_{P(M)}^{-1} \theta_{P(M)} \varphi=\varphi \tag{***}
\end{equation*}
$$

Since $p^{*} \theta_{\Omega M}$ is a minimal left proj $\Lambda$-approximation of $\Omega M$, we see that $\operatorname{Coker}\left(\mu^{*} \theta_{\Omega M}\right)=\operatorname{Coker}\left(p^{*} \theta_{\Omega M}\right) \oplus P^{*}=\Omega^{-1} \Omega M \oplus P^{* *}$. From the exact sequence $0 \rightarrow \Omega M \xrightarrow{\varphi} P(M) \rightarrow M \rightarrow 0$ and the bottom row of $(* *)$, we get the following diagram with exact rows:


By $(* * *)$, the left square of this diagram commutes. Since $\theta_{P(M)}^{-1} \lambda^{*}$ is an isomorphism, we have $\Omega^{-1} \Omega M \oplus P^{*} \cong M$. Thus $\Omega^{-1} \Omega M \sim M$.
$(2) \Rightarrow(1)$ : This follows from Lemma 5.2 (1).
Corollary 5.4. Let $M \in \mathcal{A}_{1}$. Then there is an isomorphism of functors $\underline{\operatorname{Hom}}_{A}\left(\Omega^{-1} M,-\right) \cong \underline{\operatorname{Hom}}_{A}(M, \Omega(-))$ on $\underline{\bmod } \Lambda$.

Proof. By assumption, we have $\underline{\operatorname{Hom}}_{\Lambda}(M, \Omega N) \cong \underline{\operatorname{Hom}}_{A}\left(\Omega \Omega^{-1} M, \Omega N\right)$. By Proposition 2.8, we can apply [ABr, Proposition 2.43] to obtain $\underline{\operatorname{Hom}}_{\Lambda}\left(\Omega^{-1} M, N\right) \cong \underline{\operatorname{Hom}}_{\Lambda}\left(\Omega \Omega^{-1} M, \Omega N\right)$. Combining these isomorphisms, we get $\underline{\operatorname{Hom}}_{A}\left(\Omega^{-1} M, N\right) \cong \underline{\operatorname{Hom}}_{A}(M, \Omega N)$.
5.3. A stable equivalence for $k=1$. We summarize the above in

Theorem 5.5. The functors $\Omega^{-1}: \underline{\mathcal{A}_{1}} \rightarrow \underline{\mathcal{B}_{1}}$ and $\Omega: \underline{\mathcal{B}_{1}} \rightarrow \underline{\mathcal{A}_{1}}$ give a category equivalence between $\underline{\mathcal{A}_{1}}$ and $\underline{\mathcal{B}_{1}}$.

Proof. Take $M \in \underline{\mathcal{B}_{1}}$. Since $\Omega M \in \underline{\mathcal{A}_{1}}$, by Lemma 5.2 we see that

$$
\underline{\operatorname{Hom}}_{\Lambda}(\Omega M, \Omega N) \cong \underline{\operatorname{Hom}}_{\Lambda}\left(\Omega^{-1} \Omega M, N\right) \cong \underline{\operatorname{Hom}}_{\Lambda}(M, N)
$$

for any $N \in \mathcal{B}_{1}$ by Corollary 5.4. Thus $\Omega$ is fully faithful. It is dense by Theorem 5.1.

We denote by $\bmod _{P} \Lambda$ the full subcategory consisting of all $M \in \bmod \Lambda$ without projective direct summands. Note that, for $M, N \in \bmod _{P} \Lambda$, we have $M \sim N$ if and only if $M \cong N$.
5.4. A characterization of $\mathcal{A}_{k}$ and $\mathcal{B}_{k}$. We give the following characterization:

Proposition 5.6. Let $k \geq 1$.
(1) The following are equivalent for $M \in \bmod _{P} \Lambda$ :
(1.1) $M \in \mathcal{A}_{k}$;
(1.2) $\Omega^{-i} M \in \mathcal{A}_{1}$ for $0 \leq i \leq k-1$;
(1.3) there is an exact sequence

$$
0 \rightarrow M \rightarrow P_{-1} \rightarrow \cdots \rightarrow P_{-k} \rightarrow \Omega^{-k} M \rightarrow 0
$$

with $P_{-j} \in \operatorname{proj} \Lambda(1 \leq j \leq k)$ such that

$$
P_{-k}^{*} \rightarrow \cdots \rightarrow P_{-1}^{*} \rightarrow M^{*} \rightarrow 0
$$

is exact.
(2) The following are equivalent for $N \in \bmod _{P} \Lambda$ :
(2.1) $N \in \mathcal{B}_{k}$;
(2.2) $\Omega^{i} N \in \mathcal{B}_{1}$ for $0 \leq i \leq k-1$;
(2.3) for the projective resolution $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow N \rightarrow 0$ of $N$, the dual

$$
0 \rightarrow N^{*} \rightarrow P_{0}^{*} \rightarrow \cdots \rightarrow P_{k-1}^{*} \rightarrow\left(\Omega^{k} N\right)^{*} \rightarrow 0
$$

is exact.

Proof. (1) We have the following equivalences:

$$
\begin{aligned}
M \in \mathcal{A}_{k} & \Leftrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{i} \operatorname{Tr} M, \Lambda\right)=0,0 \leq i \leq k-1 \\
& \Leftrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\operatorname{Tr} \Omega^{-i} M, \Lambda\right)=0,0 \leq i \leq k-1 \\
& \Leftrightarrow \Omega^{-i} M \in \mathcal{A}_{1}, 0 \leq i \leq k-1 .
\end{aligned}
$$

Hence $(1.1) \Leftrightarrow(1.2)$ holds. The equivalence $(1.1) \Leftrightarrow(1.3)$ is proved in ABr , Chapter II, §3, Theorem (2.17)].
(2) We have the following equivalences:

$$
\begin{aligned}
N \in \mathcal{B}_{k} & \Leftrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{i} M, \Lambda\right)=0,0 \leq i \leq k-1 \\
& \Leftrightarrow \Omega^{i} M \in \mathcal{B}_{1}, 0 \leq i \leq k-1 .
\end{aligned}
$$

Hence (2.1) $\Leftrightarrow(2.2)$ holds. Dualizing a projective resolution of $N$

$$
\cdots \rightarrow P_{k} \xrightarrow{f_{k}} P_{k-1} \xrightarrow{f_{k-1}} P_{k-2} \rightarrow \cdots \xrightarrow{f_{1}} P_{0} \rightarrow N \rightarrow 0
$$

we get a complex

$$
0 \rightarrow N^{*} \rightarrow P_{0}^{*} \rightarrow \cdots \rightarrow P_{k-2}^{*} \xrightarrow{f_{k-1}^{*}} P_{k-1} \xrightarrow{f_{k}^{*}} P_{k}^{*} \rightarrow \cdots
$$

Dualizing the two exact sequences

$$
P_{k} \xrightarrow{h} \Omega^{k} N \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \Omega^{k} N \xrightarrow{g} P_{k-1} \rightarrow \Omega^{k-1} N \rightarrow 0,
$$

we get the exact sequences

$$
0 \rightarrow\left(\Omega^{k} N\right)^{*} \xrightarrow{h^{*}} P_{k}^{*}
$$

and
$(*) \quad 0 \rightarrow\left(\Omega^{k-1} N\right)^{*} \rightarrow P_{k-1}^{*} \xrightarrow{g^{*}}\left(\Omega^{k} N\right)^{*} \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{k-1} N, \Lambda\right) \rightarrow 0$.
Since $f_{k}^{*}=h^{*} g^{*}$, there exists a commutative diagram

$(2.1) \Rightarrow(2.3)$ : By assumption, $\operatorname{Ext}_{\Lambda}^{i}(N, \Lambda)=0(1 \leq i \leq k)$, and hence $\operatorname{Ext}_{\Lambda}^{k}(N, \Lambda)=0$ and $g^{*}$ is surjective. Since

$$
\operatorname{Im} f_{k-1}^{*}=\operatorname{Ker} f_{k}^{*}=\operatorname{Ker} h^{*} g^{*}=\operatorname{Ker} g^{*},
$$

the sequence $0 \rightarrow N^{*} \rightarrow P_{0}^{*} \rightarrow \cdots \xrightarrow{f_{k-1}^{*}} P_{k-1} \xrightarrow{g^{*}}\left(\Omega^{k} N\right)^{*} \rightarrow 0$ is exact.
$(2.3) \Rightarrow(2.1)$ : By assumption, $\operatorname{Ext}_{\Lambda}^{i}(N, \Lambda)=0(1 \leq i \leq k-2)$. We also get $\operatorname{Ext}_{\Lambda}^{k}(N, \Lambda)=0$, by assumption and $(*)$. By ( $\left.* *\right)$, we have $\operatorname{Im} f_{k-1}^{*}=$ $\operatorname{Ker} g^{*}=\operatorname{Ker} f_{k}^{*}$, so that $\operatorname{Ext}_{\Lambda}^{k-1}(N, \Lambda)=0$. Therefore, (2.1) holds.
5.5. A stable equivalence for $k \geq 1$. Now, we show that the functors $\Omega^{k}$ and $\Omega^{-k}$ define a category equivalence of $\underline{\mathcal{A}_{k}}$ to $\underline{\mathcal{B}_{k}}$ for $k \geq 1$.

Theorem 5.7. Let $k \geq 1$.
(a) If $M \in \underline{\mathcal{A}_{k}}$, then $\Omega^{-k} M \in \underline{\mathcal{B}_{k}}$ and $\Omega^{k} \Omega^{-k} M \sim M$.
(b) If $N \in \mathcal{B}_{k}$, then $\Omega^{k} N \in \mathcal{A}_{k}$ and $\Omega^{-k} \Omega^{k} N \sim N$.
(c) $\Omega^{k}$ and $\bar{\Omega}^{-k}$ define equivalences between the categories $\mathcal{A}_{k}$ and $\underline{\mathcal{B}_{k}}$, inverse to each other.

Proof. (a) Let $M \in \underline{\mathcal{A}_{k}}$. Then $\Omega^{-i+1} M \in \underline{\mathcal{A}_{1}}(1 \leq i \leq k)$, so that $\Omega^{i-1} \Omega^{-k} M \sim \Omega^{i-2}\left(\Omega \Omega^{-1}\right) \Omega^{-(k-1)} M \sim \Omega^{i-2} \Omega^{-(k-1)} M \sim \cdots \sim \Omega^{-(k-i+1)} M$.
For $1 \leq i \leq k$, we have
$\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-k} M, \Lambda\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{i-1} \Omega^{-k} M, \Lambda\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-(k-i+1)} M, \Lambda\right)=0$,
because $-(k-i+1)<0$. Thus $\Omega^{-k} M \in \underline{\mathcal{B}_{k}}$. Since $\Omega^{-i+1} M \in \underline{\mathcal{A}_{1}}(1 \leq i \leq k)$, we have

$$
\Omega^{i} \Omega^{-i} M=\Omega^{i-1}\left(\Omega \Omega^{-1}\right) \Omega^{-i+1} M \sim \Omega^{i-1} \Omega^{1-i} M
$$

by Theorem 5.1. Continuing this process, we get

$$
\Omega^{i} \Omega^{-i} M \sim \Omega \Omega^{-1} M \sim M
$$

(b) Let $X \in \bmod \Lambda$. Then $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega X, \Lambda)=0$ by Lemma 5.2. Hence $\operatorname{Ext}^{1}\left(\operatorname{Tr} \Omega^{j} X, \Lambda\right)=0$ for $j \geq 1$. Let $N \in \underline{\mathcal{B}_{k}}$. Then $\Omega^{i} N \in \underline{\mathcal{B}_{1}}$ for $0 \leq i \leq$ $k-1$, by Proposition 5.6(2).

We now show $\Omega^{-i+1} \Omega^{k} N \sim \Omega^{k-i+1} N$. Set $i=k-1$; then $\Omega^{k-1} N \in \underline{\mathcal{B}_{1}}$, so $\Omega \Omega^{k-1} N \in \underline{\mathcal{A}_{1}}$. Thus $\Omega^{-1} \Omega \Omega^{k-1} N \sim \Omega^{k-1} N$, by Theorem 5.3. Therefore,

$$
\begin{aligned}
\Omega^{-i+1} \Omega^{k} N & =\Omega^{-i+2}\left(\Omega^{-1} \Omega\right) \Omega^{k-1} N \\
& \sim \Omega^{-i+2} \Omega^{k-1} N \sim \cdots \sim \Omega^{-i+k+1} N .
\end{aligned}
$$

For $1 \leq i \leq k$, we have

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i}\left(\operatorname{Tr} \Omega^{k} N, \Lambda\right) & \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{i-1} \operatorname{Tr} \Omega^{k} N, \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{1}\left(\operatorname{Tr} \Omega^{-i+1} \Omega^{k} N, \Lambda\right) \\
& \cong \operatorname{Ext}_{\Lambda}^{1}\left(\operatorname{Tr} \Omega^{k-i+1} N, \Lambda\right)=0,
\end{aligned}
$$

since $k-i+1 \geq 1$. Hence $\Omega^{k} N \in \underline{\mathcal{A}_{k}}$. Since $\Omega^{j} N \in \underline{\mathcal{B}_{1}}$ for $0 \leq j \leq k-1$, we can prove $\Omega^{-1} \Omega^{i} N \sim \Omega^{i-1} N$ for $0 \leq i \leq k$. Indeed, we have $\Omega^{j} N \sim$ $\Omega^{-1} \Omega \Omega^{j} N \sim \Omega^{-1} \Omega^{j+1} N$ by Theorem 5.3. Thus $\Omega^{i-1} N \sim \Omega^{-1} \Omega^{i} N$ for $1 \leq i \leq k$. This holds for $i=0$ too.

Thus $\Omega^{-i} \Omega^{i} N \sim \Omega^{-i+1}\left(\Omega^{-1} \Omega^{i} N\right) \sim \Omega^{-i+1} \Omega^{i-1} N \sim \cdots \sim \Omega^{-1} \Omega^{1} N \sim N$ for $0 \leq i \leq k$. Therefore $\Omega^{-k} \Omega^{k} N \sim N$. Since (c) is a consequence of (a) and (b), the proof is complete.
6. The properties of a module in $\mathcal{A}_{k} \cap \mathcal{B}_{k}$. We finish the paper by some observations on the categories $\mathcal{A}_{k} \cap \mathcal{B}_{k}$. Following [T], we study $k$-subcomplete resolutions of $\Lambda$-modules.

Definition 6.1. Let $M \in \bmod \Lambda$ and $k \geq 1$. A complex

$$
P_{\bullet}=\left(P_{k} \rightarrow P_{k-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{d_{0}} P_{-1} \rightarrow \cdots \rightarrow P_{-k}\right)
$$

is said to be a $k$-subcomplete resolution of $M$ if:
(a) $P_{i} \in \operatorname{proj} \Lambda$ for $-k \leq i \leq k$,
(b) $\mathrm{H}_{i}\left(P_{\bullet}\right)=0=\mathrm{H}^{i}\left(\left(P_{\bullet}\right)^{*}\right)$ for $-k<i<k$,
(c) $\operatorname{Im} d_{0}=M$.

The following ' $k$-subcomplete version' of Proposition 3.3 holds.
Proposition 6.2. The following are equivalent for $M \in \bmod \Lambda$ :
(a) $M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$;
(b) $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0=\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} M, \Lambda)$ for $1 \leq i \leq k$;
(c) $M$ admits a $k$-subcomplete resolution.

Proof. Apply the arguments used in the proof of Proposition 3.3.
We now observe the behavior of $\mathcal{A}_{k} \cap \mathcal{B}_{k}$ under the action of some functors.

Lemma 6.3. Let $M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$. Then $\operatorname{Tr} M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$.
Proof. Since $\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr}(\operatorname{Tr} M), \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0$, we have $\operatorname{Tr} M \in \mathcal{A}_{k} ;$ and $\operatorname{Tr} M \in \mathcal{B}_{k}$ is obvious.

Lemma 6.4.
(a) $\Omega\left(\mathcal{A}_{k} \cap \mathcal{B}_{k}\right)=\mathcal{A}_{k+1} \cap \mathcal{B}_{k-1}$.
(b) $\Omega^{-1}\left(\mathcal{A}_{k+1} \cap \mathcal{B}_{k-1}\right)=\mathcal{A}_{k} \cap \mathcal{B}_{k}$.

Proof. Take any $M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$. We will show $\Omega M \in \mathcal{A}_{k+1} \cap \mathcal{B}_{k-1}$. Since $M \in \mathcal{A}_{1}$, we have an exact sequence $0 \rightarrow M \rightarrow P \rightarrow \Omega^{-1} M \rightarrow 0$ with $P \in \operatorname{proj} \Lambda$. The long exact sequence obtained from this short exact sequence by applying $(-)^{*}$ provides the isomorphism

$$
\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-1} M, \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{i-1}(M, \Lambda) \quad \text { for } i \geq 2
$$

Then

$$
\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} \Omega M, \Lambda)=\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-1} \operatorname{Tr} M, \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{i-1}(\operatorname{Tr} M, \Lambda)=0
$$

for $2 \leq i \leq k+1$. For $i=1$, we obtain $\operatorname{Ext}_{\Lambda}^{1}(\operatorname{Tr} \Omega M, \Lambda)=0$, by Lemma 2.10 and Proposition 2.8. Thus $\Omega M \in \mathcal{A}_{k+1}$; and showing $\Omega M \in \mathcal{B}_{k-1}$ is easy.

To prove the converse, take $N \in \mathcal{A}_{k+1} \cap \mathcal{B}_{k-1}$. For $1 \leq i \leq k$, we obtain

$$
\operatorname{Ext}_{\Lambda}^{i}\left(\operatorname{Tr} \Omega^{-1} N, \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{i}(\Omega \operatorname{Tr} N, \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i+1}(\operatorname{Tr} N, \Lambda)
$$

Since $N \in \mathcal{A}_{k+1}$, we get $\operatorname{Ext}_{\Lambda}^{j}(\operatorname{Tr} N, \Lambda)=0$ for $1 \leq j \leq k+1$. Thus $\operatorname{Ext}_{\Lambda}^{i+1}(\operatorname{Tr} N, \Lambda)=0$ for $1 \leq i+1 \leq k+1$, and hence in particular for $1 \leq i \leq k$. Thus $\operatorname{Ext}_{\Lambda}^{i}\left(\operatorname{Tr} \Omega^{-1} N, \Lambda\right)=0$ for $1 \leq i \leq k$. Hence $\Omega^{-1} N \in \mathcal{A}_{k}$. To show that $\Omega^{-1} N \in \mathcal{B}_{k}$, we note that

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-1} N, \Lambda\right)=\operatorname{Ext}_{\Lambda}^{i-1}\left(\Omega \Omega^{-1} N, \Lambda\right)=\operatorname{Ext}_{\Lambda}^{i-1}(N, \Lambda) . \tag{*}
\end{equation*}
$$

Also, $N \in \mathcal{A}_{k+1} \subset \mathcal{A}_{1}$. By assumption, $N \in \mathcal{B}_{k-1}$, so we obtain $\operatorname{Ext}^{j}(N, \Lambda)=0$ for $1 \leq j \leq k-1$. Hence, in $(*)$, $\operatorname{Ext}_{\Lambda}^{i-1}(N, \Lambda)=0$ for $1 \leq i-1 \leq k-1$, i.e., for $2 \leq i \leq k$. Hence $\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-1} N, \Lambda\right)=0$ for $2 \leq i \leq k$. Proposition 2.8 yields $\operatorname{Ext}_{\Lambda}^{1}\left(\Omega^{-1} N, \Lambda\right)=0$, and therefore $\operatorname{Ext}_{\Lambda}^{i}\left(\Omega^{-1} N, \bar{\Lambda}\right)=0$ for $1 \leq i \leq k$. Thus $\Omega^{-1} N \in \mathcal{B}_{k}$. This finishes the proof of (a). Since (b) is a consequence of (a), the proof is complete.

Now, we prove some other properties of the category $\mathcal{A}_{k} \cap \mathcal{B}_{k}$.
Proposition 6.5. Let $M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$, and

$$
P_{\bullet}=\left(P_{k} \rightarrow P_{k-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{d_{0}} P_{-1} \rightarrow \cdots \rightarrow P_{-k}\right)
$$

be a $k$-subcomplete resolution of $M$. Let $\alpha: P_{0} \rightarrow M$ be the surjective homomorphism induced by $d_{0}$, and $\beta: M \rightarrow P_{-1}$ be the inclusion map. Then $\alpha$ (respectively, $\beta$ ) is a right (respectively, left) proj 1 -approximation of $M$.

Proof. It is clear that $\alpha$ is a right $\operatorname{proj} \Lambda$-approximation. To show that $\beta$ is a left proj $\Lambda$-approximation, take a projective $\Lambda$-module $P$. Then we have the commutative diagram

$$
\left.\cdots \xrightarrow{\cdots \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{-1}, P\right) \xrightarrow{\operatorname{Hom}\left(d_{0}, P\right)} \operatorname{Hom}_{\Lambda}\left(P_{0}, P\right) \xrightarrow{\operatorname{Hom}\left(d_{1}, P\right)} \operatorname{Hom}_{\Lambda}\left(P_{1}, P\right) \longrightarrow \cdots} \xrightarrow{\operatorname{Hom}(\beta, P)}\right|^{\operatorname{Hom}_{\Lambda}(M, P)} \xrightarrow{\operatorname{Hom}(\alpha, P)} \rightarrow \cdots
$$

with exact top row. Take $f \in \operatorname{Hom}_{\Lambda}(M, P)$. Since $\alpha d_{1}=0$, we have

$$
0=\operatorname{Hom}\left(\alpha d_{1}, P\right)(f)=\operatorname{Hom}\left(d_{1}, P\right) \circ \operatorname{Hom}(\alpha, P)(f)
$$

Hence

$$
\operatorname{Hom}(\alpha, P)(f) \in \operatorname{Ker} \operatorname{Hom}\left(d_{1}, P\right)=\operatorname{Im} \operatorname{Hom}\left(d_{0}, P\right) .
$$

Therefore there exists $g \in \operatorname{Hom}_{\Lambda}\left(P_{-1}, P\right)$ such that $\operatorname{Hom}\left(d_{0}, P\right)(g)=$ $\operatorname{Hom}(\alpha, P)(f)$. We have $f \alpha=g d_{0}=g \beta \alpha$ because $d_{0}=\beta \alpha$. Since $\alpha$ is surjective, one has $f=g \beta$. Thus $\operatorname{Hom}(\beta, P)$ is surjective, which means that $\beta$ is a left $\operatorname{proj} \Lambda$-approximation of $M$.

Proposition 6.6. Let $k \geq 1$. Then:
(a) $\mathcal{A}_{k} \cap \mathcal{B}_{k}$ contains proj $\Lambda$ and Gproj- $\Lambda$,
(b) $\mathcal{A}_{k} \cap \mathcal{B}_{k}$ is closed under finite direct sums,
(c) $\mathcal{A}_{k} \cap \mathcal{B}_{k}$ is closed under direct summands.

Proof. (a) This is an easy consequence of the definitions.
(b) Let $M, N \in \bmod \Lambda$ be in $\mathcal{A}_{k} \cap \mathcal{B}_{k}$. Since $\operatorname{Ext}_{\Lambda}^{i}(M \oplus N, \Lambda) \cong \operatorname{Ext}_{A}^{i}(M, \Lambda) \oplus$ $\operatorname{Ext}_{\Lambda}^{i}(N, \Lambda)$ for all $i$, and by definition of $\mathcal{B}_{k}$, we have $\operatorname{Ext}_{\Lambda}^{i}(M \oplus N, \Lambda)=0$ for $1 \leq i \leq k$. Similarly, $\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr}(M \oplus N), \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} M, \Lambda) \oplus \operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} N, \Lambda)$ for all $i$, and we get $M \oplus N \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$.
(c) Let $M, N \in \bmod \Lambda$ with $M \oplus N \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$. Since $0=\operatorname{Ext}_{{ }_{\mathcal{B}}}^{i}(M \oplus N, \Lambda)$ $\cong \operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \oplus \operatorname{Ext}_{\Lambda}^{i}(N, \Lambda)$ for $1 \leq i \leq k$, we have $M \in \mathcal{B}_{k}$. Similarly, $0=\operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr}(M \oplus N), \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} M, \Lambda) \oplus \operatorname{Ext}_{\Lambda}^{i}(\operatorname{Tr} N, \Lambda)$ for $1 \leq i \leq k$. Thus, we have $M \in \mathcal{A}_{k}$ and hence $M \in \mathcal{A}_{k} \cap \mathcal{B}_{k}$.
7. Gorenstein dimension of a module in $\mathcal{A}_{k}$ or $\mathcal{B}_{k}$. We show that a module $M$ in $\mathcal{A}_{k}$ is G-projective whenever $\mathrm{G}-\operatorname{dim} M \leq k$, and $N \in \mathcal{B}_{k}$ is G-projective whenever G-dim $N \leq k$.

Proposition 7.1. Let $0<k<\infty$. The following conditions are equivalent for $M \in \mathcal{A}_{k}$ :
(a) G-dim $\operatorname{Tr} M \leq k$;
(b) G-dim $\operatorname{Tr} M=0$.

Proof. It is sufficient to prove that (a) implies (b), because the converse is obvious. By (a), we have G-dim $\Omega^{k}(\operatorname{Tr} M)=0$. Since Gproj- $\Lambda$ is closed under $\Omega^{-1}$, we get G-dim $\Omega^{-k} \Omega^{k}(\operatorname{Tr} M)=0$. By Lemma 2.10, we have $\Omega^{-k} \Omega^{k}(\operatorname{Tr} M) \cong \operatorname{Tr} \Omega^{k} \Omega^{-k} M$. Since $M \in \mathcal{A}_{k}$, it follows that $\Omega^{k} \Omega^{-k} M \sim M$, by Theorem 5.7. Hence G-dim $\operatorname{Tr} M=\mathrm{G}-\operatorname{dim} \operatorname{Tr} \Omega^{k} \Omega^{-k} M=0$.

Proposition 7.2. Let $0<k<\infty$. The following are equivalent for $N \in \mathcal{B}_{k}$ :
(a) $\mathrm{G}-\operatorname{dim} N \leq k$;
(b) G- $\operatorname{dim} N=0$.

Proof. (a) $\Rightarrow$ (b): Since G- $\operatorname{dim} \Omega^{k} N=0$, we see G- $\operatorname{dim} \Omega^{-k} \Omega^{k} N=0$. By assumption, we have $\Omega^{-k} \Omega^{k} N \sim N$, so that G- $-\operatorname{dim} N=0$.

Note added in proof. Our Theorems 5.1, 5.3, 5.5, 5.7 are consequences of Proposition 1.1.1 of O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), 22-50. For the convenience of the readers, we gave independent direct proofs.

Acknowledgements. The authors thank Professor Daniel Simson for a very useful suggestion.

## REFERENCES

[AF] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer, New York, 1992.
[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
[A] M. Auslander, Functors and morphisms determined by objects, in: Lecture Notes in Pure Appl. Math. 37, Dekker, 2000, 1-244.
[ABr] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, (1969).
[ABu] M. Auslander and R.-O. Buchweitz, The homological theory of maximal CohenMacaulay approximations, Mem. Soc. Math. France (N.S.) 38 (1989), 5-37.
[AR] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111-152.
[AM] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85 (2002), 393-440.
[B1] L. F. Barannyk, Finite-dimensional twisted group algebras of semi-wild representation type, Colloq. Math. 120 (2010), 277-298.
[B2] L. F. Barannyk, Finite groups of OTP projective representation type, Colloq. Math. 126 (2012), 35-51.
[C] L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math. 1747, Springer, Berlin, 2000.
[Dr] Yu. A. Drozd, Cohen-Macaulay modules and vector bundles, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 107-130.
[F] C. Faith, Algebra II. Ring Theory, Springer, Berlin, 1976.
[GN] S. Goto and K. Nishida, Towards a theory of Bass numbers with application to Gorenstein algebras, Colloq. Math. 91 (2002), 191-253.
[Si1] D. Simson, Tame three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 81 (1999), 237-262.
[Si2] D. Simson, Cohen-Macaulay modules over classical orders, in: Lecture Notes in Pure Appl. Math. 210, Dekker, 2000, 345-382.
[Si3] D. Simson, A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc. 352 (2000), 4843-4875.
[S] Ø. Sølberg, Hypersurface singularities of finite Cohen-Macaulay type, Proc. London Math. Soc. 58 (1989), 258-280.
[T] R. Takahashi, Remarks on modules approximated by G-projective modules, J. Algebra 301 (2006), 748-780.
[Y] Y. Yoshino, A functorial approach to modules of $G$-dimension zero, Illinois J. Math. 49 (2005), 345-367.

Noritsugu Kameyama, Yuko Kimura
Interdisciplinary Graduate School
of Science and Technology
Shinshu University
3-1-1 Asahi, Matsumoto
Nagano, 390-8621, Japan
E-mail: kameyama@math.shinshu-u.ac.jp
ykokimura@gmail.com
Received 8 December 2012;
revised 13 February 2014

