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WIENER’S INVERSION THEOREM FOR A CERTAIN
CLASS OF ∗-ALGEBRAS

BY

TOBIAS BLENDEK (Hamburg)

Abstract. We generalize Wiener’s inversion theorem for Fourier transforms on closed
subsets of the dual group of a locally compact abelian group to cosets of ideals in a class
of non-commutative ∗-algebras having specified properties, which are all fulfilled in the
case of the group algebra of any locally compact abelian group.

Introduction. Let G be a locally compact abelian group with dual
group Γ , and let E be a closed subset of Γ . Furthermore, let A(Γ ) denote

the set of all Fourier transforms f̂ of integrable complex-valued functions
f ∈ L1(G). If E is compact and Z(f̂) ∩ E = ∅ for some f̂ ∈ A(Γ ), where

Z(f̂) denotes the zero set of f̂ , then Wiener’s inversion theorem (see e.g.
[2, Proposition 1.1.5(b)]) says that there exists a ĝ ∈ A(Γ ) such that ĝ(γ) =

1/f̂(γ) for all γ ∈ E.

A first step towards a generalization of Wiener’s inversion theorem is to
note that C0(Γ ), which consists of all continuous complex-valued functions
on Γ vanishing at infinity, is the enveloping C∗-algebra of A(Γ ). Now, in
the non-commutative situation, we replace A(Γ ) by an arbitrary ∗-algebra
A equipped with the Gelfand–Năımark seminorm γA. Then A is called a
G∗-algebra, and we may construct the enveloping C∗-algebra C∗(A) of A.
For simplicity, we will always assume that A is reduced , which means that
the ∗-radical of A, i.e., the intersection of the kernels of all ∗-representations
of A on a Hilbert space, is trivial.

As a second step, we notice that spectral synthesis holds in C0(Γ ), giving
a one-to-one correspondence between the closed subsets E of Γ and the
closed ideals in C0(Γ ), whose common zero set is equal to E. Hence, we
may replace, in the case of an arbitrary G∗-algebra A, a given closed subset
E of Γ by a closed two-sided ideal in C∗(A), which we will also denote by E.
In particular, we replace the zero set of a function in A(Γ ) by the closed
two-sided ideal in C∗(A) generated by a given element a in A, which will be
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denoted by Z(a). Now, we consider the subset

k(E) := {f̂ ∈ A(Γ ) : E ⊆ Z(f̂)}
of A(Γ ), which is the largest closed ideal in A(Γ ) such that its common zero
set is equal to E, i.e., Z(k(E)) = E. Its importance stems from the fact that
elements of the quotient Banach algebra A(Γ )/k(E) may be identified with
the restrictions of functions in A(Γ ) to E. In our abstract framework, the
closed ideal k(E) in A(Γ ) then becomes the ∗-ideal {a ∈ A : Z(a) ⊆ E} in A,
which we will also denote by k(E). We show in Lemma 2.7 that k(E) = E∩A.

In fact, in order to generalize Wiener’s inversion theorem, we have to
impose additional conditions on the reduced G∗-algebra A. We need the
concept of ∗-regularity of A, saying that the structure space of C∗(A),
which consists of all primitive ideals in C∗(A), is homeomorphic to the
∗-structure space of A consisting of all kernels of topologically irreducible
∗-representations of A on a Hilbert space, where both spaces are equipped
with the hull-kernel topology. This notion is due to H. Leptin et al. [6]. Since
the ∗-representation theory of G∗-algebras may be poorly behaved, we are
led to the subclass of the so-called BG∗-algebras, having essentially all of
the features of the ∗-representation theory of Banach ∗-algebras. Actually,
every Banach ∗-algebra is a BG∗-algebra. It is shown by B. A. Barnes [1]
that a reduced BG∗-algebra A is ∗-regular if and only if E ∩A is dense in E
for each closed two-sided ideal E in C∗(A). Applying this characterization,
we are able to prove in Theorem 2.11 that A/k(E) is unital if and only if
C∗(A)/E is unital.

In addition, for the investigation of invertible elements in A/k(E), we
need to assume that the Gelfand–Năımark seminorm γA satisfies a certain
spectral condition. The class of G∗-algebras having this property forms the
so-called γS∗-algebras. They generalize the notion of hermitian Banach ∗-
algebras, constituting a class which has already played an important part
in C. E. Rickart’s [19, 20] in connection with invertibility questions.

Now, we arrive at our announced generalization of Wiener’s inversion
theorem. For that purpose, let A be simultaneously a ∗-regular reduced BG∗-
algebra and a γS∗-algebra. If we further assume the existence of an identity
element in either A/k(E) or C∗(A)/E for any fixed closed two-sided ideal
E in C∗(A), we prove in Theorem 2.14 that a coset a+ k(E) for any given
a ∈ A is invertible in A/k(E) if and only if the coset a + E is invertible
in C∗(A)/E. In fact, in the commutative situation of a locally compact
abelian group G with dual group Γ , the Fourier algebra A(Γ ) is a ∗-regular,
hermitian, reduced Banach ∗-algebra. An application of the above-mentioned
possibility of spectral synthesis in C0(Γ ) shows that an arbitrary closed ideal
in C0(Γ ) may be identified with a closed subset E of Γ . Furthermore, E is
compact if and only if A(Γ )/k(E) is unital. Hence, we get Wiener’s classical
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inversion theorem by regarding elements of A(Γ )/k(E) as the restrictions
of functions in A(Γ ) to E.

1. Preliminaries. In this section, we briefly recall basic definitions and
facts that we need. For a comprehensive exposition of the general theory of
∗-algebras, we refer to [17, 18].

Let A be an algebra, which is always assumed to be associative and
complex. A two-sided ideal P in A is called primitive if P is equal to the
kernel of an algebraically irreducible representation of A on a vector space.
Then ΠA denotes the set of all primitive ideals in A. Let S be a subset
of A. Then the set hΠ(S) := {P ∈ ΠA : S ⊂ P} is called the hull of S
with respect to ΠA. A subset of ΠA having the form hΠ(S) with a subset
S of A is called a hull in ΠA. Let B be a subset of ΠA. Then the set
kΠ(B) :=

⋂
{P ∈ ΠA : P ∈ B} is called the kernel of B. The family

{ΠA \H : H is a hull in ΠA} of complements of all hulls in ΠA is called the
hull-kernel topology or the Jacobson topology on ΠA. Equipped with this
topology, ΠA is said to be the structure space of A.

A two-sided ideal I in A is called regular in A if the quotient algebra
A/I is unital. The spectrum specA(a) of a ∈ A is defined by

specA(a) := specA1(a) := {λ ∈ C : λ1− a is not invertible in A1},
where A1 := A ⊕ C denotes the unitization of A with identity 1 and C the
complex numbers. Let a ∈ A. Then ρ(a) := sup{|λ| : λ ∈ specA(a)} is called
the spectral radius of a. An algebra seminorm q on A is called spectral if
q(a) ≥ ρ(a) for all a ∈ A, and A is called spectral if it has a spectral algebra
seminorm.

Now, let A be an algebra with an involution, i.e., let A be a ∗-algebra.
The ∗-radical AR of A is defined by

AR :=
⋂
π

kerπ,

where π runs through all ∗-representations of A on a Hilbert space. If
AR = {0}, then A is called reduced or ∗-semisimple. In particular, if G is
an arbitrary locally compact group, the Banach ∗-algebra L1(G) consisting
of all integrable complex-valued functions on G is reduced. Let Π∗A denote
the set of all kernels of topologically irreducible ∗-representations of A on a
Hilbert space. If, as above, one defines the hull-kernel topology on Π∗A, then
Π∗A equipped with this topology is called the ∗-structure space of A.

For each a ∈ A, the mapping γA : A→ R+ ∪ {∞} is defined by

γA(a) := sup
π
‖π(a)‖,

where π runs through all ∗-representations of A on a Hilbert space and R+ :=
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{λ ∈ R : λ ≥ 0}. If γA(a) is finite for all a ∈ A, then A is called a G∗-algebra
and γA the Gelfand–Năımark seminorm on A. It is a C∗-seminorm on A and
the largest one that can be defined on A. An arbitrary Banach ∗-algebra is
a G∗-algebra. If A is a G∗-algebra, the completion of A/AR with respect
to the quotient Gelfand–Năımark C∗-norm γA/AR

is called the enveloping
C∗-algebra of A and is denoted by C∗(A). The closure of πu(C∗(A)) with
respect to the σ-weak operator topology, where πu denotes the universal
representation of C∗(A), is called the universal enveloping von Neumann
algebra of C∗(A), and it will be denoted by W ∗(A).

A ∗-algebra A is called a γS∗-algebra if A is a G∗-algebra and the
Gelfand–Năımark seminorm γA on A is spectral in the above sense. For
a ∗-algebra A, one defines Ah := {a ∈ A : a∗ = a}. Then A is called her-
mitian if specA(a) ⊆ R for all a ∈ Ah. The γS∗-algebras generalize the
hermitian Banach ∗-algebras.

Let A be a G∗-algebra with the canonical mapping Φ : A → C∗(A).
Then A is said to have a unique C∗-norm if γA/AR

is the only C∗-norm on
A/AR which can be defined on A/AR. Furthermore, A is called ∗-regular if
the continuous surjection

Φ̆ : ΠC∗(A) → Π∗A, P 7→ Φ−1(P ),

is a homeomorphism. If, in addition, A is reduced, we have Φ−1(P ) = P ∩A
for all P ∈ ΠC∗(A). According to [18, Theorem 10.5.12(c)], any ∗-regular
G∗-algebra always has a unique C∗-norm.

The disadvantage of the class of G∗-algebras is that comparatively little
of the representation theory of Banach ∗-algebras can be extended to G∗-
algebras. Consequently, we have to add another key property to the class
of G∗-algebras. For that purpose, let A be a ∗-algebra, L(X) the algebra of
all linear mappings of a pre-Hilbert space X to X and L∗(X) the ∗-algebra
of all elements T from L(X) having an adjoint element T ∗ in L(X), i.e.,
such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ, η ∈ X. A pre-∗-representation π of
A on a pre-Hilbert space X is a ∗-algebra homomorphism of A to L∗(X).
Then, a ∗-algebra A is called a BG∗-algebra if every pre-∗-representation
π of A on a pre-Hilbert space X is normed, i.e., π(a) is a bounded linear
operator on X for all a ∈ A. In view of [18, Theorem 10.2.8(a)], an arbitrary
Banach ∗-algebra is a BG∗-algebra, and any BG∗-algebra is a G∗-algebra
by [18, Proposition 10.1.19(a)].

In contrast to the class of G∗-algebras, the smaller class of BG∗-algebras
now enables the following construction: Define a pre-∗-representation on a
pre-Hilbert space first and then extend it to the Hilbert space completion.
Hence, essentially all of the features of the ∗-representation theory of Banach
∗-algebras are reproduced in the ∗-representation theory of BG∗-algebras.
In particular, this yields the fundamental result that any ∗-representation
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of a ∗-ideal in a BG∗-algebra can be extended to a ∗-representation of the
whole ∗-algebra on the same Hilbert space (see [18, Theorem 10.1.21]).

Now, for the class of reduced BG∗-algebras A, we obtain the following
characterizations. By [18, Proposition 10.5.19(a)], A has a unique C∗-norm
if and only if, for every closed two-sided ideal E 6= {0} in C∗(A), we have
E∩A 6= {0}. According to [18, Proposition 10.5.19(b)], A is ∗-regular if and
only if E∩A is dense in E for every closed two-sided ideal E in C∗(A). This is
the key result that we will use throughout the paper. Both characterizations
are due to B. A. Barnes [1, Proposition 2.4].

In the whole paper, we use the following notations:

C := C∗(A)

always denotes the enveloping C∗-algebra of a given G∗-algebra A, and

N := W ∗(A)

the universal enveloping von Neumann algebra of C∗(A).

2. Wiener’s inversion theorem

Proposition 2.1. Let A be a G∗-algebra. If A is unital, then so is C.

Proof. Let A be unital. Then the quotient G∗-algebra A/AR is unital,
too, where AR denotes the ∗-radical of A. Since A/AR is dense in C with
respect to the quotient Gelfand–Năımark C∗-norm γA/AR

and since left and
right multiplication are continuous with respect to γA/AR

, the identity of
A/AR is the identity of C, i.e., C is unital.

Proposition 2.2. Let A be a ∗-regular BG∗-algebra. Then so also is the
unitization A1 := A⊕ C of A.

Proof. Let A be a ∗-regular BG∗-algebra. In the case of C∗-algebras,
the ∗-structure space coincides with the structure space according to
[18, Corollary 10.5.4]. Hence, the C∗-algebra C of all complex numbers is
∗-regular. Since A1/A = C, A1/A is ∗-regular, too. Since A is a BG∗-algebra,
A1 is also a BG∗-algebra in view of [18, Theorem 10.1.20(f)]. By [18, Theo-
rem 10.5.15(d)], we conclude from the ∗-regularity of both A1/A and A that
A1 is ∗-regular.

The converse of Proposition 2.1 holds for special classes of G∗-algebras.

Proposition 2.3.

(i) Let A be a ∗-regular BG∗-algebra. If C is unital, then so is A.
(ii) Let A be a γS∗-algebra. If C is unital, then so is A.

Proof. (i) Let C be unital. Suppose that A is non-unital. From Proposi-
tion 2.2, A1 is also a ∗-regular BG∗-algebra. Furthermore, the ∗-regularity of
A and A1 implies that A and A1 have unique C∗-norms. Since A is assumed
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to be non-unital, it follows from [18, Theorem 10.5.26] that C is non-unital,
too. But this contradicts our assumption.

(ii) The contraposition of [18, Proposition 10.4.27] gives the assertion.

Remark 2.4. We may, for example, apply Propositions 2.1 and 2.3 to
the case of algebraic tensor products of ∗-algebras (see e.g. [18] and [4]), and
to complete m∗-convex algebras with Arens–Michael decompositions and
their enveloping pro-C∗-algebras (see e.g. [7, 10, 11, 16] and [4]), and obtain
similar results.

Generalizing the situation of commutative harmonic analysis (see e.g. [2]),
we make the following

Definition 2.5. Let A be a reduced G∗-algebra. Then we set, for all
a ∈ A,

Z(a) :=
⋂
E3a

{
E : E a closed two-sided ideal in C

}
and, for all X ⊆ A,

Z(X) :=
⋂
E⊇X

{
E : E a closed two-sided ideal in C

}
.

Let E be a closed two-sided ideal in C. Then we put

k(E) :=
{
a ∈ A : Z(a) ⊆ E

}
.

Remark 2.6. (i) Let G be a locally compact abelian group with dual
group Γ and let E be a closed subset of Γ . Furthermore, let A(Γ ) denote

the set of Fourier transforms f̂ of all integrable complex-valued functions
f ∈ L1(G). It is clear that A(Γ ) is a reduced G∗-algebra with the envelop-
ing C∗-algebra C0(Γ ). Following [2, p. 22] (see also [22, 7.1.3] and [13, Ex-

ample 39.10(b)]), let Z(f̂) denote the zero set of some f̂ ∈ A(Γ ), Z(X) :=⋂
f̂∈X Z(f̂) the common zero set of some X ⊆A(Γ ), and k(E) :=

{
f̂ ∈A(Γ ) :

E ⊆ Z(f̂)
}

, which is equal to the kernel of E with respect to the hull-kernel
topology of Γ according to [14, Definition VIII.5.3]. Based on classical spec-
tral synthesis in C0(Γ ) (see e.g. [13, Example 39.10(a)]), giving a one-to-one
correspondence between the closed subsets E of Γ and the closed ideals in
C0(Γ ) whose hull is equal to E, or equivalently, by [14, Definition VIII.5.3],
whose common zero set is equal to E, a closed subset E of Γ can be iden-
tified with the closed ideal {ϕ ∈ C0(Γ ) : ϕ(γ) = 0 ∀γ ∈ E} in C0(Γ ).
Hence, our Definition 2.5 generalizes all the above notations from the case
of A(Γ ) to the non-commutative situation, i.e., to any reduced G∗-algebra
with enveloping C∗-algebra.

(ii) As in (i) for A(Γ ), our Definition 2.5 is also motivated by correspond-
ing notations from the case of any commutative semisimple Banach algebra
A regarded, via Gelfand transform, as a subalgebra of C0(ΠA), where the
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structure space ΠA of A is a locally compact Hausdorff space with respect
to the hull-kernel topology if A is completely regular (see [13, Definition 39.7
and Example 39.10(a)] and [21, Theorem 3.7.1]).

The following lemma is essential for proving all our further results.

Lemma 2.7. Let A be a reduced G∗-algebra, and let E be a closed two-
sided ideal in C. Then

Z(k(E)) ⊆ E and k(E) = E ∩A.
Thus k(E) is a ∗-ideal in A.

Proof. The inclusion Z(k(E)) ⊆ E follows from the definition of k(E).
Now, we show that k(E) = E ∩A.

“⊆”: Let a ∈ k(E), i.e., let a ∈ A and Z(a) ⊆ E. Since a ∈ Z(a), it
follows that a ∈ E. Hence, a ∈ E ∩A.

“⊇”: Let a ∈ E ∩ A, i.e., let a ∈ A and a ∈ E. Since E is a closed
two-sided ideal in C and since Z(a) is the smallest closed two-sided ideal in
C containing a, we get Z(a) ⊆ E. Consequently, k(E) = E ∩A.

By [24, Theorem I.8.1], E is a ∗-ideal in C. Hence, E ∩ A = k(E) is a
∗-ideal in A.

Notation 2.8. Let A be a reduced G∗-algebra, and let E be a closed
two-sided ideal in C. We set

A(E) := A/k(E) and C(E) := C/E.

Remark 2.9. According to [18, Theorem 10.1.7(k)], A(E) is a G∗-alge-
bra, and by [24, Theorem I.8.1], C(E) is a C∗-algebra.

Proposition 2.10. Let A be a ∗-regular reduced BG∗-algebra, and let E
be a closed two-sided ideal in C. Then we have the isometric ∗-isomorphism

C∗(A(E)) ∼= C(E).

Proof. According to [18, Theorem 10.1.22], for each ∗-ideal I in a BG∗-
algebra A, there is a short exact sequence C∗(I) → C∗(A) → C∗(A/I). By
Lemma 2.7, k(E) is a ∗-ideal in A such that k(E) = E∩A. Thus, an applica-
tion to k(E) yields an isometric ∗-isomorphism C∗(A(E)) = C∗(A/k(E)) ∼=
C∗(A)/k(E)

γA
. Since A is also ∗-regular, we know that k(E)

γA
= E ∩AγA

= E.

Theorem 2.11. Let A be a ∗-regular reduced BG∗-algebra, and let E be
a closed two-sided ideal in C. Then E is regular in C if and only if k(E) is
regular in A.

Proof. “⇒”: Let E be regular in C, i.e., let C(E) be unital. By Propo-
sition 2.10, C∗(A(E)) is unital, too. Since A(E) is a quotient algebra and
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A is a BG∗-algebra, A(E) is also a BG∗-algebra according to [18, Theo-
rem 10.1.20(g)]. From [18, Theorem 10.5.15(a)], the ∗-regularity of A implies
the ∗-regularity of A(E). Altogether, we conclude from Proposition 2.3(i)
that A(E) is unital, i.e., k(E) is regular in A.

“⇐”: Let k(E) be regular in A, i.e., let A(E) be unital. By Remark 2.9,
the quotient algebra A(E) is a G∗-algebra. Thus, according to Proposi-
tion 2.1, we know that C∗(A(E)) is unital, too. Now, Proposition 2.10 shows
that C(E) is unital, i.e., E is regular in C.

Proposition 2.12. Let A be a reduced G∗-algebra, and let E be a closed

two-sided ideal in C with the weak∗ closure E
w∗

of E in the universal en-
veloping von Neumann algebra N := W ∗(A) of A. Let pE denote the central

projection in N such that E
w∗

= NpE. Then we have the ∗-algebra isomor-
phisms

A(E) ∼= A(1− pE) and C(E) ∼= C(1− pE).

Proof. According to [23, Proposition 1.10.5], for every weak∗ closed two-

sided ideal E
w∗

in N , there is a uniquely determined central projection

pE ∈ N such that E
w∗

= NpE = pEN .
Now, we consider the following diagram:

A

πA

��

ψA

&&
A(E)

ΦA
// A(1− pE)

Since A(E) := A/k(E) and since 1 − pE is a central projection in N , the
mappings πA and ψA are canonical surjective ∗-algebra homomorphisms.
Furthermore, we have

kerψA = k(E),

since

kerψA = {a ∈ A : 0 = ψA(a) = a(1− pE)} = {a ∈ A : a = apE}.

Hence, kerψA =E
w∗
∩A. Since A⊆C and E

w∗
∩ C =E, we have E

w∗
∩A=

E
w∗
∩ C ∩ A = E ∩ A. Together with Lemma 2.7, we get kerψA = k(E).

Thus we conclude that ΦA is a ∗-algebra isomorphism from A(E) onto
A(1− pE).

Similarly, we obtain C(E) ∼= C(1− pE).

Proposition 2.13. Let A be a ∗-regular reduced BG∗-algebra, and let
E be a closed two-sided ideal in C. Then A(E) is reduced.

Proof. Since A is reduced, we get A ⊆ C. Thus A(1−pE) ⊆ C(1−pE) with
the central projection pE ∈ N := W ∗(A) from Proposition 2.12, showing
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that A(E) may be identified with a subset of C(E) and, by Proposition 2.10,
with a subset of C∗(A(E)). Consequently, A(E) is reduced.

Theorem 2.14. Let A be simultaneously a ∗-regular reduced BG∗-alge-
bra and a γS∗-algebra, and let E be a closed two-sided ideal in C. If E
is regular in C (i.e., k(E) is regular in A), the following assertions are
equivalent for all a ∈ A:

(i) a+ k(E) is invertible in A(E);
(ii) a+ E is invertible in C(E).

Hence, letting A(E)G and C(E)G denote the groups of invertible elements
in A(E) and C(E), respectively, we obtain

A(E)G = C(E)G ∩A(E).

Proof. Without loss of generality, by Theorem 2.11, let E be regular
in C, i.e., let C(E) be unital. From Proposition 2.13 we know that A(E)
is reduced. Since A is a γS∗-algebra, the quotient algebra A(E) is also
a γS∗-algebra according to [18, Theorem 10.4.12]. Therefore, the desired
equivalence follows from Proposition 2.10 and [18, Corollary 10.4.20(a)].

Remark 2.15. (i) Let G be a locally compact abelian group with dual
group Γ , and let E be a closed subset of Γ . In the classical notations
from Remark 2.6(i), by [2, p. 22], elements of the quotient Banach ∗-
algebra A(Γ )/k(E) can be identified with the restrictions of functions from
A(Γ ) to E. Furthermore, E is compact if and only if A(Γ )/k(E) is unital.
Since A(Γ ) is isometrically isomorphic to L1(G), it is clear that A(Γ ) is
simultaneously a ∗-regular reduced BG∗-algebra and a γS∗-algebra. Conse-
quently, we obtain Wiener’s classical inversion theorem (see e.g. [2, Propo-
sition 1.1.5(b)]) from Theorem 2.14.

(ii) The investigation of invertible elements in inclusions of algebras
has already been carried out by C. E. Rickart in [19, 20] (see also [21,
Theorem 4.1.9]), in the case of closed ∗-subalgebras of hermitian Banach
∗-algebras.

(iii) If G is any locally compact group, then A := L1(G) is a reduced
Banach ∗-algebra, and the enveloping C∗-algebra C = C∗(A) is called the
full group C∗-algebra of G and denoted by C∗(G). The class of locally
compact groups for which L1(G) is both ∗-regular and hermitian includes
all connected groups of polynomial growth and all nilpotent groups (see
[6, 15]). It also includes all groups in [FC]− consisting of those groups such
that each conjugacy class has compact closure (see [12]). In particular, the
class includes all locally compact abelian groups and all compact groups,
since locally compact abelian groups are nilpotent and compact groups are
in [FC]−. In the case of locally compact abelian groups as well as com-
pact groups G, it is also known that the full group C∗-algebra C∗(G) is
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isometrically ∗-isomorphic to the reduced group C∗-algebra C∗r (G), which is
generated by the left regular representation of L1(G).

(iv) Let K = (M,∆, κ, ϕ) be a Kac algebra, generalizing the situation
of a locally compact group. For a comprehensive exposition of its theory,
we refer to [8] and also to [4, 5]. Since the predual M∗ of M is a Banach
∗-algebra,M∗ is a BG∗-algebra and thus aG∗-algebra. By [8, Theorem 2.5.3],
the Fourier representation λ is a faithful ∗-representation of M∗. Hence, M∗
is also reduced. Let K̂ = (M̂, ∆̂, κ̂, ϕ̂) denote the dual Kac algebra of K. If,
in addition, K is compact such that ϕ(1) = 1, we conclude from [8, Introduc-
tion 1.6.1 and Theorem 6.2.5(i)] that the enveloping C∗-algebra C∗(M∗) is
isometrically ∗-isomorphic to M̂c = C0(K̂), where M̂c denotes the C∗-algebra

λ(M∗)
norm

associated with M̂ . Consequently, for a compact Kac algebra, in
Theorem 2.14 we may replace A by M∗, C := C∗(A) by M̂c = C0(K̂), and
furthermore the universal enveloping von Neumann algebra W ∗(A) of A by
M̂ = L∞(K̂). Since, if G is a compact group, the predual L1(G) of L∞(G)
is both ∗-regular and hermitian (see (iii)), it may be interesting to ask if M∗
automatically has these properties in the case of an arbitrary compact Kac
algebra K = (M,∆, κ, ϕ).

Corollary 2.16. Under the assumptions of Theorem 2.14:

(i) For all a ∈ A, we have

specA(E)(a+ k(E)) = specC(E)(a+ E).

(ii) Let a ∈ A. Then a + k(E) is not contained in any maximal left
or right ideal of A(E) if and only if a + E is not contained in any
maximal left or right ideal of C(E).

(iii) If one of the equivalent assertions of Theorem 2.14 holds for some
a ∈ A, then, for each b ∈ A, there is a c ∈ A such that

b+ k(E) = (c+ k(E))(a+ k(E)).

Proof. (i) Since the spectra depend only on invertibility, the assertion
follows from Theorem 2.14.

(ii) Let a ∈ A. By [21, Corollary 2.1.2], a + k(E) (resp. a + E) is not
contained in any maximal left or right ideal of A(E) (resp. C(E)) if and
only if a+ k(E) (resp. a+E) is invertible in A(E) (resp. C(E)). Hence, the
equivalence follows from Theorem 2.14.

(iii) Without loss of generality, by Theorem 2.11, let k(E) be regular in A
and a+ k(E) invertible in A(E) for some a ∈ A according to Theorem 2.14.
Now, let b ∈ A. Then we set

c+ k(E) := (b+ k(E))(a+ k(E))−1 ∈ A(E).

Hence,

b+ k(E) = (b+ k(E))(a+ k(E))−1(a+ k(E)) = (c+ k(E))(a+ k(E)).
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Next, we give a necessary condition for the equivalent assertions in The-
orem 2.14.

Proposition 2.17. Under the assumptions of Theorem 2.14, suppose
that one of the equivalent assertions of that theorem holds for some a ∈ A.
Then

Z(a, k(E)) = C.
Proof. Take b ∈ A. By Corollary 2.16(iii), there exists c ∈ A with

b+k(E) = (c+k(E))(a+k(E)). Hence, b = ca+d for some d ∈ k(E). Since
A is reduced, we have b ∈ E′ for any two-sided ideal E′ in C containing
{a} ∪ k(E). Thus A ⊆ Z(a, k(E)) ⊆ C. The density of A in C now implies
that Z(a, k(E)) = C, since Z(a, k(E)) is closed.

Remark 2.18. (i) Let A be a reduced γS∗-algebra. If C is unital (resp.
A is unital) and if some a ∈ A is invertible in C (resp. invertible in A), we
can show that Z(a) = C in like manner as the above Proposition 2.17 using
Proposition 2.3(ii) and [18, Corollary 10.4.20(a)] directly.

(ii) We can also prove Proposition 2.17 by using Proposition 2.12 and
the theory of projections in von Neumann algebras.

Proposition 2.19. Let A be a ∗-regular reduced BG∗-algebra, and let
E be a closed two-sided ideal in C. Then:

(i) If a ∈ A with Z(a) ⊆ Z(k(E)), then a ∈ k(E).
(ii) If Z(k(E)) = C, then k(E) = A.
(iii) If k(E) 6= A and E is regular in C, then there is a maximal regular

ideal J in A containing k(E).

Proof. (i) Let a ∈ A with Z(a) ⊆ Z(k(E)). Since A is ∗-regular, we

conclude from Lemma 2.7 that Z(k(E)) = k(E)
γA

= E ∩AγA = E. Since A
is reduced, we have a ∈ Z(a). Hence, a ∈ E. Thus a ∈ E ∩A = k(E).

(ii) Let Z(k(E)) = C. Similarly to (i), we get Z(k(E)) = E. Thus E = C.
Since A is reduced, Lemma 2.7 shows that k(E) = E ∩A = C ∩A = A.

(iii) Let k(E) 6= A, and let E be regular in C. According to Theorem 2.11,
k(E) is regular in A. Since k(E) 6= A, there is a maximal regular ideal J
in A containing k(E), by [17, Theorem 2.4.6(d)].

If A is simultaneously a ∗-regular reduced BG∗-algebra and a γS∗-alge-
bra, then Proposition 2.19 holds for the primitive ideals in A.

Corollary 2.20. Let A be simultaneously a ∗-regular reduced BG∗-alge-
bra and a γS∗-algebra. Furthermore, let P ∈ ΠA be a primitive ideal in A.
Then:

(i) If a ∈ A with Z(a) ⊆ Z(P ), then a ∈ P .
(ii) If Z(P ) = C, then P = A.
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(iii) If P 6= A and P = k(E) with a closed regular ideal E in C, then
there is a maximal regular ideal J in A containing P .

Proof. Since A is ∗-regular, the ∗-structure space Π∗A of A is homeo-
morphic to the structure space ΠC of C. Since A is reduced, we conclude
from [18, Corollary 10.5.7] that for every I ∈ Π∗A there is a primitive ideal
E ∈ ΠC such that I = E ∩ A. Since A is also a γS∗-algebra, we get, by
[18, Theorem 10.5.1],

ΠA ⊆ Π∗A.
So, altogether, each primitive ideal P ∈ ΠA has the form E ∩ A with a
primitive ideal E ∈ ΠC . Since, by [17, Corollary 2.2.8], every Banach algebra
is a spectral normed algebra, it follows from [17, Proposition 4.2.6] that
each primitive ideal in a Banach algebra is closed. Hence, E is a closed
two-sided ideal in C. Consequently, according to Lemma 2.7, each primitive
ideal P ∈ ΠA has the form k(E) with a closed two-sided ideal E in C.

Therefore, the three assertions follow from the corresponding assertions
in Proposition 2.19.

In conclusion, we give an application of our results to the problem of
spectral synthesis.

Remark 2.21. Let G be a locally compact abelian group with dual
group Γ of G, and let E be a closed subset of Γ . Then E is called a set
of spectral synthesis, or an S-set, if E is the hull of a unique closed ideal
in A(Γ ) (see e.g. [22, 7.1.4] or [2, p. 54]). We say that spectral synthesis
holds in A(Γ ) if each closed subset of Γ is an S-set. In fact, by Malliavin’s
theorem (see e.g. [22, Theorem 7.6.1]), this is true if and only if G is compact
so that Γ is discrete.

More generally, spectral synthesis may be defined for any completely reg-
ular, commutative, semisimple Banach algebra (see e.g. [13, Definition 39.9]).

Now, Remark 2.6 leads us to the following non-commutative generaliza-
tion of spectral synthesis for a certain class of ∗-algebras:

Let A be a ∗-regular, hermitian, reduced Banach ∗-algebra. We call a
closed two-sided ideal E in C an ideal of spectral synthesis for A, or an
S-ideal for A, if there is a unique closed two-sided ideal in A which is dense
in E. Furthermore, we say that spectral synthesis holds in A if each closed
two-sided ideal E in C is an S-ideal for A. In this case, k(E) = E ∩A is the
only closed two-sided ideal in A which is dense in E, since the ∗-regularity
of A implies that k(E) is always dense in E. We also note that if A is in
addition commutative, then, by [18, Proposition 10.5.9], A is completely
regular, too.

Our definition of spectral synthesis for ∗-regular, hermitian, reduced Ba-
nach ∗-algebras A with enveloping C∗-algebra C := C∗(A) turns out to be
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equivalent to the “usual” one by E. Kaniuth et al. [9] saying the following:
Spectral synthesis holds in A if each closed subset of the ∗-structure space
Π∗A of A is the hull of a unique closed two-sided ideal in A. The equivalence
follows from the ∗-regularity of A, which means that the structure space
ΠC of C is homeomorphic to Π∗A, and since each closed two-sided ideal in C
is an intersection of primitive ideals in C, implying that there is a natural
one-to-one correspondence between the closed subsets of ΠC and the closed
two-sided ideals in C, i.e., spectral synthesis holds in every C∗-algebra (see
e.g. [3, II.6.5.3]).

In [9], it is further suggested that, since spectral synthesis is a very strong
property, it seems unlikely that in a Banach ∗-algebra A spectral synthesis
could hold when A fails to be ∗-regular and hermitian. This also justifies
our common assumptions on A.
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