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Abstract. A generalization of the well-known Fibonacci sequence {Fn}n≥0 given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1+Fn for all n ≥ 0 is the k-generalized Fibonacci sequence
{F (k)

n }n≥−(k−2) whose first k terms are 0, . . . , 0, 1 and each term afterwards is the sum of
the preceding k terms. For the Fibonacci sequence the formula F 2

n + F 2
n+1 = F2n+1 holds

for all n ≥ 0. In this paper, we show that there is no integer x ≥ 2 such that the sum of the
xth powers of two consecutive k-generalized Fibonacci numbers is again a k-generalized
Fibonacci number. This generalizes a recent result of Chaves and Marques.

1. Introduction. Let {Fn}n≥0 be the Fibonacci sequence given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. The formula

(1) F 2
n + F 2

n+1 = F2n+1

holds for all n ≥ 0. Marques and Togbé [9] investigated analogues of (1) in
higher powers, obtaining the following partial result.

Theorem 1. If x ≥ 1 is an integer such that F xn + F xn+1 is a Fibonacci
number for all sufficiently large n, then x ∈ {1, 2}.

Later, Luca and Oyono [8] extended the above result on the nonexistence
of positive integer solutions (n,m, x) to the Diophantine equation

(2) F xn + F xn+1 = Fm

by proving the following result.

Theorem 2. Equation (2) has no positive integer solutions (n,m, x)
with n ≥ 2 and x ≥ 3.

In this paper, we prove an analogue of Theorem 2 when the sequence of
Fibonacci numbers is replaced by the sequence of k-generalized Fibonacci
numbers. In what follows, we adopt some definitions and notation from
Bravo and Luca [1], [2].
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Let k ≥ 2 be an integer. One of numerous generalizations of the Fibonacci
sequence, which is sometimes called the k-generalized Fibonacci sequence

{F (k)
n }n≥−(k−2), is given by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We refer to F
(k)
n as the nth k-generalized Fibonacci number. Note that for

k = 2, we have F
(2)
n = Fn, the familiar nth Fibonacci number. For k = 3 such

numbers are called Tribonacci numbers. They are followed by the Tetranacci
numbers for k = 4, and so on.

Recently, Chaves and Marques [3] proved that the analogue of the Dio-
phantine equation (1) in k-generalized Fibonacci numbers has no positive
integer solution (k, n,m) with k ≥ 3 and n ≥ 1.

In this paper, we look at the Diophantine equation (2), in k-generalized
Fibonacci numbers, in this way generalizing both the results from [8] and
from [3]. More precisely, we prove:

Main Theorem. The Diophantine equation

(3) (F (k)
n )x + (F

(k)
n+1)x = F (k)

m

has no positive integer solutions (k, n,m, x) with k ≥ 3, n ≥ 2 and x ≥ 2.

Before getting into details, we give a brief description of our method. We
first use lower bounds for linear forms in logarithms of algebraic numbers to
bound n, m and x polynomially in terms of k. When k is small, we use the
theory of continued fractions by means of a variation of a result of Dujella
and Pethő to lower such bounds to cases that allow us to treat our problem
computationally. When k is large, we use the fact that the dominant root of
the k-generalized Fibonacci sequence is exponentially close to 2, to replace
this root by 2 in our calculations with linear forms in logarithms, obtaining
in this way a simpler linear form in logarithms which allows us to bound k
and then complete the calculations.

2. Preliminary results. Note that the characteristic polynomial of the
k-generalized Fibonacci sequence is

Ψk(x) = xk − xk−1 − · · · − x− 1.

The above polynomial has just one root α(k) outside the unit circle. It is
real and positive, so it satisfies α(k) > 1. The other roots are strictly inside
the unit circle. In particular, Ψk(x) is irreducible over Q. Lemma 2.3 in [7]
shows that

(4) 2(1− 2−k) < α(k) < 2 for all k ≥ 2.
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This inequality was rediscovered by Wolfram [11]. In particular, we have
α(k) > 7/4 = 1.75 for all k ≥ 3. This fact will be used in our work.

We write α := α(k). This is called the dominant root of Ψk(x) for reasons
that we present below. Dresden [4] gave the following Binet-like formula

for F
(k)
n :

(5) F (k)
n =

k∑
i=1

α(i) − 1

2 + (k + 1)(α(i) − 2)
(α(i))n−1,

where α = α(1), . . . , α(k) are the roots of Ψk(x). Dresden also showed that the
contribution of the roots which are inside the unit circle to the right-hand
side of (5) is very small. More precisely, he proved that

(6)

∣∣∣∣F (k)
n − α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣ < 1

2
for all n ≥ 1.

We will also use the following results.

Lemma 1. We have F
(k)
n = 2n−2 for all n = 2, . . . , k + 1.

Bravo and Luca [2] showed that F
(k)
n < 2n−2 for all n ≥ k + 2.

Lemma 2. The inequality

αn−2 ≤ F (k)
n ≤ αn−1

holds for all n ≥ 1.

For a proof of Lemma 2, see [1]. We consider the function

fk(z) :=
z − 1

2 + (k + 1)(z − 2)
for k ≥ 2.

If z ∈ (2(1− 2−k), 2), a straightforward verification shows that ∂zfk(z) < 0.
Indeed,

∂zfk(z) =
1− k

(2 + (k + 2)(z − 2))2
< 0 for all k ≥ 2.

Thus, from inequality (4), we conclude that

1/2 = fk(2) ≤ fk(α) ≤ fk(2(1− 2−k)) =
2k−1 − 1

2k − k − 1
≤ 3/4

for all k ≥ 3. Even more, since f2((1 +
√

5)/2) = 0.72360 . . . < 3/4, we
deduce that fk(α) ≤ 3/4 for all k ≥ 2. On the other hand, if z = α(i) with
i = 2, . . . , k, then |fk(α(i))| < 1 for all k ≥ 2. Indeed, as |α(i)| < 1, then
|α(i) − 1| < 2 and |2 + (k + 1)(α(i) − 2)| > k − 1. Further, f2((1−

√
5)/2) =

0.2763 . . . .

The following lemma is due to Bravo and Luca [2].
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Lemma 3. If 1 ≤ r < 2k/2, then

αr = 2r + δ with |δ| < 2r+1

2k/2
,(7)

fk(α) = fk(2) + η with |η| < 2k

2k
.(8)

The idea of the proof of Lemma 3 is as follows. We estimate the error
of approximating αr with 2r. Let λ > 0 be such that λ + α = 2. Since α is
located between 2(1− 2k) and 2, we get λ ∈ (0, 1/2k−1). Therefore,

αr = (2− λ)r = 2rer log(1−λ/2) ≥ 2re−λr ≥ 2r(1− λr),

where we have used the fact that log(1− x) ≥ −2x for all x < 1/2 and that
e−x ≥ 1− x for all x ∈ R. Moreover, λr < r/2k−1 < 2/2k/2. It then follows
that

|αr − 2r| < 2r+1

2k/2
.

Writing δ = αr − 2r, we get (7).

We now estimate the error of approximating fk(α) with fk(2) = 1/2. By
the Mean-Value Theorem, there exists θ ∈ (α, 2) such that

|fk(α)− fk(2)| = |2− α| |∂zfk(θ)| <
2k

2k
,

where we have used the fact that |∂zfk(θ)| < k. Writing η = fk(α)− fk(2),
we obtain (8).

In particular,

(9) |fk(α)αr − 2r−1| < 2r

2k/2
+

2r+1k

2k
+

2r+2k

23k/2
.

Lemma 4. The sequences {F (k)
n }n≥1, {F (k)

n }k≥3 and {α(k)}k≥3 are non-
decreasing.

The following lemma is crucial in our applications of linear forms in
logarithms.

Lemma 5. The number fk(α) is an algebraic integer for no k ≥ 2.

Proof. Assume that fk(α) is an algebraic integer. Then its norm (from
K to Q) is an integer. Applying the norm and taking absolute values, we
obtain

1 ≤ |NK/Q(fk(α))| = fk(α)
k∏
i=2

|fk(α(i))|.

However, fk(α) ≤ 0.75 and |fk(α(i))| < 2/(k − 1) ≤ 1 for i = 2, . . . , k and
all k ≥ 3, contradicting the above inequality. The case k = 2 is clear.
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We need two more ingredients from Diophantine approximation, which
are Matveev’s lower bound for nonzero linear forms in logarithms of alge-
braic numbers and a generalization of the Baker and Davenport Lemma on
continued fractions due essentially to Dujella and Pethő.

Let γ be an algebraic number of degree d over Q with minimal primitive
polynomial over the integers

f(X) := a0

d∏
i=1

(X − γ(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of γ is
given by

h(γ) :=
1

d

(
log a0 +

d∑
i=1

log max{|γ(i)|, 1}
)
.

One of the most cited results today when it comes to the effective so-
lution of exponential Diophantine equations is the following theorem of
Matveev [10].

Theorem 3. Let K be a number field of degree D over Q, let γ1, . . . , γt
be positive real numbers of K, and let b1, . . . , bt be rational integers. Suppose

B ≥ max{|b1|, . . . , |bt|},

and set

Λ := γb11 · · · γ
bt
t − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max{Dh(γi), |log γi|, 0.16}, i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At

)
.

We make repeated use of the following result, which is a slight variation
of a result due to Dujella and Pethő which itself is a generalization of a
result of Baker and Davenport (see [5] and [1]). For a real number x, we
write ‖x‖ = min{|x − n| : n ∈ Z} for the distance from x to the nearest
integer.

Lemma 6. Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational γ such that q > 6M , and let A,B, µ be
some real numbers with A > 0 and B > 1. Let ε := ‖µq‖−M‖γq‖. If ε > 0,
then there is no solution to the inequality

0 < mγ − n+ µ < AB−k
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in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

3. An inequality for x in terms of k and n. From now on, k ≥ 2,
n ≥ 1, m, x ≥ 2 are integers satisfying (3).

Observe that when n = 1 we get F
(k)
m = 2. This has the solution m = 3,

for all k ≥ 2 and x ≥ 2. Furthermore, if k = 2 and x = 2, then (3) holds
with m = 2n+ 1 for all n ≥ 1, as shown by identity (1). If k = 2 and x ≥ 3,
then Theorem 2 shows that equation (3) has no positive solutions (n,m).
Thus, from now on, we assume that n ≥ 2 and k ≥ 3. Moreover, since x ≥ 2,

by Lemma 4 we get F
(k)
m ≥ (F

(k)
2 )2 + (F

(k)
3 )2 = 5, so m ≥ 5.

Hence, our equation reduces to

(10) (F (k)
n )x + (F

(k)
n+1)x = F (k)

m

in integers subject to the inequalities n ≥ 2, m ≥ 5, k ≥ 3 and x ≥ 2. By
Lemma 2,

αm−2 ≤ F (k)
m = (F (k)

n )x+(F
(k)
n+1)x ≤ α(n−1)x+αnx = αnx(1+α−x) < αnx+1,

and

α(n−1)x ≤ (F
(k)
n+1)x < (F (k)

n )x + (F
(k)
n+1)x = F (k)

m ≤ αm−1.

Thus,

(11) (n− 1)x+ 1 < m < nx+ 3.

Estimate (11) is essential for our purpose.

From formula (5) and estimate (6), we can write

(12) F (k)
m = fk(α)αm−1 + ek(m), where |ek(m)| < 1/2.

Hence, equation (10) can be rewritten as

(13) fk(α)αm−1 − (F
(k)
n+1)x = (F (k)

n )x − ek(m).

Dividing (13) by (F
(k)
n+1)x and taking absolute values, we get

(14) |fk(α)αm−1(F
(k)
n+1)−x − 1| < 2

(
F

(k)
n

F
(k)
n+1

)x
<

2

1.75x
,

where we have used the fact that F
(k)
n /F

(k)
n+1 ≤ 4/7 for all n ≥ 2 and k ≥ 3.

Indeed,
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7F (k)
n ≤ 4F

(k)
n+1 ⇔ 7F (k)

n ≤ 4(F (k)
n + · · ·+ F

(k)
n−(k−1))

⇔ 3F (k)
n ≤ 4(F

(k)
n−1 + · · ·+ F

(k)
n−(k−1))

⇔ 3(F
(k)
n−1 + · · ·+ F

(k)
n−k) ≤ 4(F

(k)
n−1 + · · ·+ F

(k)
n−(k−1))

⇔ 3F
(k)
n−k ≤ F

(k)
n−1 + · · ·+ F

(k)
n−(k−1),

and the last statement is true since F
(k)
n−k is less than or equal to each of

F
(k)
n−1, F

(k)
n−2, . . . , F

(k)
n−(k−1) for n ≥ 2.

We apply Theorem 3 with t := 3, γ1 := fk(α), γ2 := α, γ3 := F
(k)
n+1,

b1 := 1, b2 := m− 1, b3 := −x. Hence,

Λ1 := fk(α)αm−1(F
(k)
n+1)−x − 1

and from (14) we have

(15) |Λ1| <
2

1.75x
.

Furthermore, K := Q(α) contains γ1, γ2, γ3 and has D = [K : Q] = k. To see
that Λ1 6= 0, we note that otherwise we would get the relation

fk(α)αm−1 = (F
(k)
n+1)x.

The above inequality implies that fk(α) is an algebraic integer, which is
false by Lemma 5. Thus, Λ1 6= 0.

Bravo and Luca [2] showed that h(γ1) < 4 log k. Furthermore, by the
properties of the roots of Ψk(x) we obtain

h(γ2) = (logα)/k < (log 2)/k < 0.7/k,

h(γ3) = log(F
(k)
n+1) ≤ n logα < 0.7n,

by Lemma 2. Thus, we can take A1 := 4k log k, A2 := 0.7 and A3 := 0.7nk.
Finally, from (11), we have m > (n− 1)x+ 1 > x, so we can take B := m.

Theorem 3 gives the following lower bound for |Λ1|:
exp

(
−1.4 · 306 · 34.5k2(1 + log k)(1 + logm)(4k log k)(0.7)(0.7nk)

)
,

which is smaller than 2/1.75x by (15). Taking logarithms and performing
the calculations, we get

x <
log 2

log 1.75
+

1.4 · 306 · 34.5 · 0.72 · 4
log 1.75

nk4(log k)(1 + log k)(1 + logm)(16)

<
log 2

log 1.75
+

(
1.4 · 306 · 34.5 · 0.72 · 42

log 1.75

)
nk4(log k)2 logm

< 3 · 1012nk4(log k)2 log(nx),

where we have used the fact that 1 + log k < 2 log k for all k ≥ 3, the similar
inequality with k replaced by m, and inequality (11).
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We next extract from (16) an upper bound for x depending on n and k.
Multiplying both sides of (16) by n we obtain

nx < 3 · 1012n2k4(log k)2 log(nx),

or equivalently

(17)
nx

log(nx)
< 3 · 1012n2k4(log k)2.

Now we use the fact that

(18) if A > 3 and
y

log y
< A then y < 2A logA

(see [8]). Taking y := nx and A := 3 ·1012n2k4(log k)2, we see from (17) and
(18) that

nx < 2(3 · 1012n2k4(log k)2) log(3 · 1012n2k4(log k)2)

< 6 · 1012n2k4(log k)2(29 + 2 log n+ 4 log k + 2 log log k)

< 3 · 1014n2k4(log k)2 max{log n, log k}.
In the last inequality, we have used the fact that

29 + 2 log n+ 4 log k + 2 log log k < 42 max{log n, log k}
for all n ≥ 2 and k ≥ 3.

We record what we have just proved.

Lemma 7. If (n,m, k, x) is a solution of (10) with n ≥ 2, k ≥ 3 and
x ≥ 2, then

(19) x < 3 · 1014nk4(log k)2 max{log n, log k}.

4. Inequalities on x, n and m in terms of k. We assume first that
n > 1750. We suppose that k < n and we find an upper bound for n, m
and x in terms of k only.

From (19), we have

(20) x < 3 · 1014n5(log n)3.

For equation (12) (with m replaced by n), we can write

(F (k)
n )x = fk(α)xα(n−1)x

(
1 +

ek(n)

fk(α)αn−1

)x
.

We look at the elements

z := xr and (1 + r)x, where r :=
ek(n)

fk(α)αn−1
.

We have k ≥ 3, α > 1.75 and fk(α) > 1/2. So, |r| < 1/1.75n−1 and

|z| = x|r| < 3 · 1014n5(log n)3

1.75n−1
<

1

1.750.921n
,
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where the last inequality holds for all n > 1750. In particular, we have
|z| < 10−391.

Now, if r < 0 then

1 > (1 + r)x = exp(x log(1− |r|)) ≥ exp(−2|z|) > 1− 2|z|,

while if r > 0, then

1 < (1 + r)x =

(
1 +
|z|
x

)x
< exp |z| < 1 + 2|z|,

because |r| < 1/2 and |z| < 10−391 is very small.

Thus, in either case we have

(21) |(F (k)
n )x − fk(α)xα(n−1)x| < 2|z|fk(α)xα(n−1)x.

The same inequality is true if we replace n by n+ 1:

(22) |(F (k)
n+1)x − fk(α)xαnx| < 2|z|fk(α)xαnx.

We rewrite (10) using (21) and (22) as

F (k)
m = (F (k)

n )x + (F
(k)
n+1)x = fk(α)xα(n−1)x + fk(α)xαnx

+ [(F (k)
n )x − fk(α)xα(n−1)x] + [(F

(k)
n+1)x − fk(α)xαnx],

or

(23) |fk(α)αm−1 − fk(α)xα(n−1)x(1 + αx)|

< |(F (k)
n )x − fk(α)xα(n−1)x|+ |(F (k)

n+1)x − fk(α)xαnx|+ 1

2

< 2|z|fk(α)xα(n−1)x(1 + αx) +
1

2
.

Dividing by fk(α)xαnx, we conclude that

|fk(α)1−xαm−1−nx − (1 + α−x)| < 2|z|(1 + α−x) +
1

2fk(α)xαnx
(24)

< 3|z|+ 1

2

(
1

1.75n−2

)x
<

4

1.750.921n
,

where we have used the following facts: αx > 1.752 > 2, fk(α)αn > 1.75n−2

and (n− 2)x+ 1 ≥ 0.921n for all n > 1750, x ≥ 2. Hence,

(25) |fk(α)1−xαm−1−nx − 1| < 4

1.750.921n
+

1

1.75x
<

5

1.75`
,

where we have set ` := min{0.921n, x}.
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We apply again Theorem 3 with t := 2, γ1 := fk(α), γ2 := α, b1 := 1−x,
b2 := m− 1− nx. So, Λ2 := fk(α)1−xαm−1−nx − 1, and from (25),

(26) |Λ2| <
5

1.75`
.

As in the previous application of Theorem 3, we have K := Q(α), so we can
take D := k, A1 := 4k log k, A2 := 0.7. Moreover, we can take B := x, since
|m− 1− nx| ≤ x by inequality (11).

Let us see that Λ2 6= 0. Indeed, if Λ2 = 0, then

fk(α)x−1 = αm−1−nx.

This implies that fk(α) is an algebraic integer, which is not possible by
Lemma 5. Thus, Λ2 6= 0.

The conclusion of Theorem 3 and inequality (26) yield, after taking
logarithms, the following upper bound for `:

` <
log 5

log 1.75
+

1.4 · 305 · 24.5 · 4 · 0.7
log 1.75

k3(log k)(1 + log k)(1 + log x)

<
log 5

log 1.75
+

1.4 · 305 · 24.5 · 4 · 0.7 · 22

log 1.75
k3(log k)2 log x,

which leads to

(27) ` < 1.6 · 1010 k3(log k)2 log x.

If ` = 0.921n, then from (27),

n < 1.8 · 1010k3(log k)2 log x

and using inequality (20), we obtain

n < 1.8 · 1010k3(log k)2(log(3 · 1014) + 5 log n+ 3 log log n)

< 1.8 · 1010k3(log k)2(57 log n)

< 1.1 · 1012k3(log k)2 log n,

where we have used the fact that log(3 ·1014) < 49 log n for all n ≥ 2. Hence,
n

log n
< 1.1 · 1012k3(log k)2.

Applying the argument (18) with y := n and A := 1.1 · 1012k3(log k)2, we
obtain an upper bound on n depending only on k. Inserting this bound in
(20) and using inequality (11), we obtain

n < 7 · 1013k3(log k)3,

x < 5.1 · 1083k15(log k)18,(28)

m < 3.5 · 1097k18(log k)21,

where we have used the fact that log(1.1 · 1012) < 26 log k for all k ≥ 3.
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If ` = x, then from (27) we get

x

log x
< 1.6 · 1010k3(log k)2,

which implies, via (18) again, that

x < 2(1.6 · 1010k3(log k)2) log(1.6 · 1010k3(log k)2).

Since log(1.6 · 1010k3(log k)2) < 27 log k for k ≥ 3, we conclude that

(29) x < 1012k3(log k)3.

In order to estimate n in terms of k only, we recall inequality (23):

|fk(α)αm−1 − fk(α)xα(n−1)x(1 + αx)| < 2|z|fk(α)xα(n−1)x(1 + αx) +
1

2
.

Dividing both sides by fk(α)αm−1, we obtain

|fk(α)x−1α(n−1)x−(m−1)(1 + αx)− 1|

< 2|z|fk(α)x−1αnx−(m−1)(1 + α−x) +
1

2fk(α)αm−1

<
2n(fk(α)α)x−1

1.75n−1
(1 + α−x) +

1

αm−1

< 6

(
n(3/2)0.921n

1.75n

)
+

1

1.750.32n
<

2

1.750.32n
,

where we have used the following facts:

(i) ` = x ≤ 0.921n, so |z| = x|r| < n/1.75n−1;
(ii) by (11), we have (n− 1)x− (m− 1) +x ≤ x− 1 and m− 1 > 0.32n;

(iii) since k ≥ 3 and 1/2 < fk(α) ≤ 3/4, we have fk(α)α < 3/2;
(iv) 1 + α−x < 3/2;
(v) the very last inequality holds for all n > 1750.

In conclusion, we have shown that

(30) |fk(α)x−1α(n−1)x−(m−1)(1 + αx)− 1| < 2

1.750.32n
.

We apply again Theorem 3 with t := 3, γ1 := fk(α), γ2 := α, γ3 := 1 + αx,
b1 := x− 1, b2 := (n− 1)x− (m− 1), b3 := 1. Hence, from (30),

Λ3 := fk(α)x−1α(n−1)x−(m−1)(1 + αx)− 1

satisfies

(31) |Λ3| <
2

1.750.32n
.

We can take again K := Q(α), D := k, A1 := 4k log k, A2 := 0.7. For A3,
we note that 1 + αx ∈ OK, 1 + αx < 2x+1 for all x ≥ 2 and |1 + (α(i))x| < 2
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for all i = 2, . . . , k. Therefore, if 1 ≤ d ≤ k is the degree of the minimal
polynomial of 1 + αx over Z, then

h(1 + αx) =
1

d

(
log(1 + αx) +

d∑
i=2

log max{|1 + (α(i))x|, 1}
)

< log 2(x+ 1) + log 2(d− 1) < 0.7(x+ k).

Thus, we can take A3 := 0.7(x + k)k. For B, we observe that, by (11),
|(n− 1)x− (m− 1)| < x+ 2, so we take B := x+ 2.

Before applying Theorem 3, it remains to prove that Λ3 6= 0. Assuming
the contrary, we get

fk(α)1−xαm−1−(n−1)x = 1 + αx.

This again implies (as in the argument used to show that Λ1 6= 0 and
Λ2 6= 0) that fk(α) is an algebraic integer, which is false by Lemma 5.
Hence, Λ3 6= 0.

Combining the conclusion of Theorem 3 with inequality (31), we get,
after taking logarithms, the following upper bound for n:

(32) (0.32n) log 1.75

< log 2 + (1.4 · 306 · 34.5 · 2 · 4 · 4 · (0.7)2)k4(log k)2(log x)(x+ k),

where we have used the inequality 1 + log(x+ 2) < 4 log x for all x ≥ 2.
By (29), we have x < 1012k3(log k)3 so x + k < 1.1 · 1012k3(log k)3 and

therefore

log x < log(1012) + 3 log k + 3 log log k < 28 + 6 log k < 32 log k.

Here, we have used the fact that 28 < 26 log k for all k ≥ 3.
Hence, returning to inequality (32), we get

n < 4.5 · 1026k7(log k)6.

Using also the inequality m < nx+ 3, we have in summary

n < 4.5 · 1026k7(log k)6,

x < 1012k3(log k)3,

m < 4.6 · 1038k10(log k)9.

(33)

Combining (28) and (33), we get

n < 4.5 · 1026k7(log k)6,

x < 5.1 · 1083k15(log k)18,

m < 3.5 · 1097k18(log k)21.

We note that the above inequalities have been obtained under the assump-
tions that n > 1750 and k < n. However, we can see that when n ≤ k, the
upper bounds for n, x and m in terms of k, arising from (19), are smaller
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than the above upper bounds. Moreover, the case n ≤ 1750 together with
inequalities (19) yields upper bounds for x and m in terms of k which are
also smaller than the ones above. Thus, we can state the following result.

Lemma 8. Let (n,m, k, x) be a solution of (10). Then

n < 4.5 · 1026k7(log k)6,

x < 5.1 · 1083k15(log k)18,

m < 3.5 · 1097k18(log k)21.

(34)

5. The case of small k. We first treat the case n > 1750 and k ∈
[3, 1131] (so n > k); we show that in this range equation (10) has no solution.

Returning to inequality (25), we take

Γ2 := (x− 1) log(fk(α)−1) + (m− 1− nx) logα,

and conclude that

(35) |Λ2| = |eΓ2 − 1| < 4

1.750.921n
+

1

1.75x
<

1

3
,

because n > 1750 and x ≥ 2. Thus, e|Γ2| < 3/2, and from (26),

|Γ2| ≤ e|Γ2||eΓ2 − 1| < 7.5

1.75`

with ` = min{0.921n, x}.
Dividing the above inequality by (x− 1) logα, we obtain∣∣∣∣ log(fk(α)−1)

logα
− nx− (m− 1)

x− 1

∣∣∣∣ < 7.5

1.75`(x− 1) logα
(36)

<
14

1.75`(x− 1)
.

Now for 3 ≤ k ≤ 1131, we set γk := log(fk(α)−1)/logα, compute its con-

tinued fraction [a
(k)
0 , a

(k)
1 , a

(k)
2 , . . .] and its convergents p

(k)
1 /q

(k)
1 , p

(k)
2 /q

(k)
2 , . . . .

In each case we find an integer tk such that

q
(k)
tk

> 5.1 · 1083k15(log k)18 > x− 1

(by (34)), and take

aM := max
3≤k≤1131

{a(k)
i : 0 ≤ i ≤ tk}.

Then, from the known properties of continued fractions, we have∣∣∣∣γk − nx− (m− 1)

x− 1

∣∣∣∣ > 1

(aM + 2)(x− 1)2
.(37)

Hence, combining (36) and (37), and taking into account that aM + 2 <
3.6 · 10337 (confirmed by Mathematica), we obtain

1.75` < 5.1 · 10337x.
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If ` = 0.921n, then

1.750.921n < 1.6 · 10352n5(log n)3,

which is a consequence of (20), since n > k. The last inequality above leads
to n ≤ 1657, contradicting the assumption on n.

If ` = x, then we get

1.75x < 5.1 · 10337x,

so x ≤ 1402. Below we show that (10) has no solution for x ∈ [2, 1402] with
k in our range.

We go back to inequality (24) and rewrite it as

|fk(α)1−x(α−1)nx−(m−1)(1 + α−x)−1 − 1| < 4

1.750.921n(1 + α−x)
(38)

<
4

1.750.921n
.

Before continuing, we note that |Λ2| < 1/3 by (35), therefore

fk(α)1−xαm−1−nx ∈ [2/3, 4/3]

and, in particular, 0.4x− 1 < nx− (m− 1) < 1.3x.
Set d := nx− (m− 1). With the help of Mathematica, we calculated the

numbers |fk(α)1−x(α−1)d(1+α−x)−1−1| for all k ∈ [3, 1131], all x ∈ [2, 1402]
and all d ∈ [b0.4x − 1c, b1.3xc]. It turns out that the smallest of these
numbers is > 10−340. Hence, by (38), 10−340 < 4/1.750.921n, so n < 1521,
which is false.

We now continue with the case n ∈ [2, 1750] and k ∈ [3, 1131]. In order
to apply Lemma 6, we let

Γ1 := log fk(α) + (m− 1) logα− x logF
(k)
n+1.

Returning to Λ1 given by (15), we have eΓ1 − 1 = Λ1. We note that Γ1

is positive since Λ1 is positive, which can be deduced by looking at the
right-hand side of (13) and using

(F (k)
n )x − ek(m) > (F

(3)
2 )2 − 1

2
>

1

2
.

Moreover,

(39) 0 < Γ1 < eΓ1 − 1 <
2

1.75x
.

Replacing Γ1 and dividing by logF
(k)
n+1, we get

0 < m

(
logα

logF
(k)
n+1

)
− x+

log fk(α)− logα

logF
(k)
n+1

(40)

<
2

1.75x logF
(k)
n+1

<
3

(1.75
1

1750 )m
,

where we have used (m−3)/1750 < (m−3)/n < x as well as the inequalities

logF
(k)
n+1 > logF

(3)
3 = log 2 > 2/3.
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We set

γ :=
logα

logF
(k)
n+1

, µ :=
log fk(α)− logα

logF
(k)
n+1

,

and

A := 3, B := 1.00032 ≤ 1.75
1

1750 .

The fact that α is a unit in OK ensures that γ is irrational. Inequality (40)
can be rewriten as

(41) 0 < mγ − x+ µ < AB−m.

Now, we take M := b3 · 1014n2k4(log k)2 max{log n, log k} + 3c (using (11)
and (19)) and apply Lemma 6 for each k ∈ [3, 1131] and n ∈ [2, 1750]
to inequality (41). A computer search with Mathematica showed that the
maximum of log(Aq/ε)/logB is 5030930, which according to Lemma 6 is an
upper bound on m.

Next, since (n− 1)x+ 1 < m, we have

x ≤ m/(n− 1) ≤ 5030930/(n− 1).

Thus, our problem is reduced to searching for solutions to equation (10) in
the following range:

(42)
k ∈ [3, 1131], n ∈ [2, 1750],

m ∈ [5, 5030930], x ∈ [2, 5030930/(n− 1)].

A computer search with Mathematica revealed that there are no solutions
to (10) in the ranges given in (42). This completes the analysis of the case
when k is small.

6. The case of large k. From now on, we assume that k > 1131. From
(34), we have

n < 4.5 · 1026k7(log k)6 < 2k/2, m < 3.5 · 1097k18(log k)21 < 2k/2.

If n ≤ k, then from (13) and Lemma 1, we obtain

(43) |fk(α)αm−1 − 2(n−1)x| < 2(n−2)x +
1

2
.

Taking r := m− 1 in (9) and using (43), we conclude that

|2m−2 − 2(n−1)x| < |2m−2 − fk(α)αm−1|+ |fk(α)αm−1 − 2(n−1)x|(44)

< 2m−2

(
2

2k/2
+

4k

2k
+

8k

23k/2

)
+ 2(n−2)x +

1

2
.

Now, dividing by 2m−2 and using the inequalities 4k/2k < 1/2k/2 and
8k/23k/2 < 1/2k/2, which are valid for k > 1131, we get
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|1− 2(n−1)x−(m−2)| < 1

2(m−2)−(n−2)x
+

1

2m−1
+

4

2k/2
(45)

<
1

2x
+

1

8
.

The last inequality follows because (m− 2)− (n− 2)x ≥ x (by (11)), m ≥ 5
and k > 1131.

The left side in (45) is greater than or equal to 1/2 unless (n−1)x = m−2,
in which case it is zero. However, m−2 = (n−1)x is not possible: otherwise,
from (10), we would get

2(n−2)x + 2(n−1)x = F
(k)
(n−1)x+2 ≤ 2(n−1)x,

which is a contradiction. This shows that the case n ≤ k does not yield any
convenient solutions to our problem.

Assume now that n > k. From (13) again, we conclude that

(46) |fk(α)αm−1 − (F
(k)
n+1)x| < (F (k)

n )x +
1

2
≤ 2(n−2)x +

1

2
.

Performing an analysis similar to the one used to deduce (22), we get

(47) |(F (k)
n+1)x − fk(α)xαnx| < 2|z|(fk(α)αn)x <

2(n−1)x+1

1.750.88n
,

where we have used the facts that |z| < 1/1.750.88n for n ≥ k > 1131 and
fk(α)αn < 2n−1.

Finally, we conclude that

(48) |fk(α)xαnx − 2(n−1)x|
= |fk(α)αn − 2n−1|((fk(α)αn)x−1 + · · ·+ 2(n−1)(x−1))

< |fk(α)αn − 2n−1|x(max{fk(α)αn, 2n−1})x−1

< x2(n−1)(x−1)

(
2n

2k/2
+

2n+1k

2k
+

2n+2k

23k/2

)
= x2(n−1)x+1

(
1

2k/2
+

2k

2k
+

4k

23k/2

)
< x2(n−1)x+1

(
3

2k/2

)
<

2(n−1)x+1

2k/14
.

In the above inequality, we have used (9) with r := n, and the inequalities

2k/2k < 1/2k/2, 4k/23k/2 < 1/2k/2,

3x

2k/2
<

3(5.1 · 1083k15(log k)18)

2k/2
<

1

2k/14
,

which hold since n > k > 1131.
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Hence, combining the estimate for |2m−2− fk(α)αm−1| used in (44) and
the estimates (46)–(48), we obtain

|2m−2 − 2(n−1)x| < |2m−2 − fk(α)αm−1|+ |fk(α)αm−1 − (F
(k)
n+1)x|

+ |(F (k)
n+1)x − fk(α)xαnx|+ |fk(α)xαnx − 2(n−1)x|

<
2m

2k/2
+

(
2(n−2)x +

1

2

)
+

2(n−1)x+1

1.750.88n
+

2(n−1)x+1

2k/14
.

Dividing by 2m−2, we get

|1− 2(n−1)x−(m−2)| < 4

2k/2
+

1

2x
+

1

2m−1
+

2

1.750.88n
+

2

2k/14
<

1

2x
+

1

8
,

where we have used m− 2− (n− 2)x ≥ x (by (11)), as well as the facts that
n > k > 1131 and m ≥ 5. But the last displayed inequality leads us again
to

1

2
<

1

2x
+

1

8
,

which is impossible for any x ≥ 2.
Thus, we have in fact shown that there are no solutions (n,m, k, x) to

(10) with k > 1131, which completes the proof of our Main Theorem.
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