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Abstract. Let P be the family of all 2-connected plane triangulations with vertices
of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph
P ∈ P has a decomposition into factors P0, P1, P2 (indexed by elements of the cyclic group
Q = {0, 1, 2}) such that every factor Pq consists of two induced paths of the same length
M(q), and K(q)−1 induced cycles of the same length 2M(q). For q ∈ Q, we define an inte-
ger S+(q) such that the vector (K(q),M(q), S+(q)) determines the graph P (if P is simple)
uniquely up to orientation-preserving isomorphism. We establish arithmetic equations that
will allow calculating (K(q + 1),M(q + 1), S+(q + 1)) from (K(q),M(q), S+(q)), q ∈ Q.
We present some applications of these equations. The set {(K(q),M(q), S+(q)) : q ∈ Q}
is called the orbit of P . If P has a one-point orbit, then there is an orientation-preserving
automorphism σ such that σ(Pi) = Pi+1 for every i ∈ Q (where P3 = P0). We characterize
one-point orbits of graphs in P. It is known that every graph in P has an even order.
We prove that if P is of order 4n+ 2, n ∈ N, then it has two disjoint induced trees of the
same order, which are equitable 2-colorable and together cover all vertices of P .

1. Introduction. Let Gi, i = 1, 2, be a plane graph with vertex
set V (Gi), edge set E(Gi), and face set F (Gi). An isomorphism σ between
G1 and G2 is called combinatorial if it can be extended to a bijection

σ : V (G1) ∪ E(G1) ∪ F (G1)→ V (G2) ∪ E(G2) ∪ F (G2)

that preserves incidence not only of vertices with edges but also of vertices
and edges with faces (Diestel [3, p. 93]). Furthermore, we say that G1 and G2

are op-equivalent (equivalent up to orientation-preserving isomorphism) if σ
is a combinatorial isomorphism which preserves the counterclockwise orien-
tation. (Formally: we require that g1, g2, g3 are counterclockwise successive
edges incident with a vertex v if and only if σ(g1), σ(g2), σ(g3) are counter-
clockwise successive edges incident with σ(v).)

2010 Mathematics Subject Classification: Primary 05C10, 05C70, 05C75, 05C05, 05C15,
05C45, 11D09.
Key words and phrases: plane triangulation, decomposition into factors, billiards, induced
tree, 2-equitable coloring, Hamilton cycle, Diophantine equation.

DOI: 10.4064/cm138-1-2 [23] c© Instytut Matematyczny PAN, 2015



24 J. FLOREK

A factor of a graph is a subgraph whose vertex set is that of the whole
graph. A graph H is said to be factorable into factors H1, . . . ,Ht if these
factors are pairwise edge-disjoint and E(H) = E(H1) ∪ · · · ∪ E(Ht) (see
Chartrand–Lesniak [1, p. 246]). An edge (respectively a subgraph) of H is
said to be of class q if this edge (respectively any edge of this subgraph)
belongs to the factor Hq.

Let P be the family of all 2-connected plane triangulations all of whose
vertices are of degree 3 or 6, and suppose that P ∈ P. Grünbaum and
Motzkin [8, Lemma 2] proved (in dual terms) that the graph P is factorable
into factors P0, P1, P2 (indexed by elements of the cyclic group Q = {0, 1, 2})
satisfying the following condition:

(GM1) if three edges in P are counterclockwise successive edges incident
with a common vertex, then these edges belong to successive
factors of P .

Notice that every edge of class q ∈ Q belongs to a maximal path with
ends of degree 3 in P , or it belongs to a cycle of class q. Since P has four
vertices of degree 3, there are two maximal paths of class q. More precisely,

(GM2) for q ∈ Q, there is a drawing of P (called the q-drawing) which
is op-equivalent to P . The q-drawing of P consists of a maximal
path of class q and length M(q), and this path is surrounded by
K(q) − 1 disjoint cycles of class q and the same length 2M(q).
Finally, there is another maximal path of class q and lengthM(q)
(called the outer path) around the outside of the last cycle (see
Example 1.1, Figs. 1 and 2).

By (GM2) we have the following result of Grünbaum and Motzkin
[8, Theorem 2]:
(1) 2K(q)M(q) + 2 is the order of P .
Notice that the outer path may be added at different positions. We define
(Definition 2.2) an integer 0 ≤ S+(q) < M(q) (and also 0 < S−(q) ≤M(q))
that determines that position. In Theorem 2.1 we show the following relation
between S+(q) and S−(q):
(2) S−(q)− S+(q) ≡ K(q) (mod M(q)).

The vector (K(q),M(q), S+(q)), for q ∈ Q, is called the q-index-vector of P ,
and the set {(K(q),M(q), S+(q)) : q ∈ Q} is called the orbit of P . The pur-
pose of this article is to find arithmetic equations that will allow calculating
the (q + 1)-index-vector from the q-index-vector of P . In Theorem 3.1 we
prove the following equality:
(3) K(q + 1) = |S+(q),M(q)|,
where |s,m| is the greatest common divisor of the integers s ≥ 0 and m ≥ 1
(|0,m| = m). Suppose 0 < b ≤M(q)/d is an integer such that bS+(q) ≡ −d
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(mod M(q)), where d = |S+(q),M(q)| (see Remark 3.1). In Theorem 3.2 we
prove that
(4) S−(q + 1) = bK(q).

Notice that every isomorphism between two 3-connected plane graphs is
combinatorial (Diestel [3, p. 94]). Hence, if P is simple, then it is determined
by any of its index-vectors uniquely up to op-equivalence. Therefore, using
equations (1)–(4) we can verify whether simple graphs in P are op-equivalent.

Example 1.1. Let us consider the simple graph S0 of Fig. 1, and
simple graphs S1, S2 of Fig. 2. We assume that the edges g0, g1, g2 are
of class 0, 1, 2, respectively, and they are incident with a common vertex
of degree 3. The graph S0 has 0-index-vector (1, 6, 3), S1 has 1-index-vector
(3, 2, 0) and S2 has 2-index-vector (2, 3, 1). Using equations (1)–(4) we check
that {(1, 6, 3), (3, 2, 0), (2, 3, 1)} is their common orbit (see Example 3.1).
Hence, the graph Sq, q ∈ Q, is the q-drawing of the graph Sq+1 and Sq+2.
Therefore these graphs are op-equivalent.

g0
g1

g2

A B
C

D

Fig. 1. The graph S0 with 0-index-vector (1, 6, 3)
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Fig. 2. The graph S1 with 1-index-vector (3, 2, 0), and S2 with 2-index-vector (2, 3, 1)
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We are going to present some applications of equations (1)–(4). From
(GM2) it follows that X = {(k,m, s) ∈ Z3 : k,m ≥ 1, 0 ≤ s < m} is the set
of all index-vectors of graphs in P. In Theorem 4.1 we characterize one-point
orbits of graphs in P. Namely, we prove that (k,m, s) ∈ X is a one-point
orbit of a graph in P if and only if m = kz, s = kx, where k is a positive
integer and 0 ≤ x < z are integers which satisfy the Diophantine equation
x2+x+1 = yz. By a theorem of Gauss, reproved in a relevant special case by
Schinzel and Sierpiński [12], the set of all integral solutions of the equation
x2 + x + 1 = 3y2 is infinite. It follows that there is an infinite family of
graphs in P with one-point orbit. In the Theorem of the Appendix, Schinzel
has found formulas for positive integers x, y < z which satisfy the equation
x2 + x+ 1 = yz.

If P has index-vector (K(q),M(q), S+(q)), then its mirror reflection has
index-vector (K(q),M(q),M(q) − S−(q)). We say that P is double mirror
symmetric if there exist q1, q2 ∈ Q such that S+(qi) = M(qi) − S−(qi) for
i = 1, 2. In Theorem 4.2 we show that P is double mirror symmetric if and
only if P has a one-point orbit of the form {(k, k, 0)} or {(k, 3k, k)} for some
k ∈ N.

A graphG has a 2-tree partition (see [5], [10]) if it has two disjoint induced
trees which together cover all vertices of G. It is known that a 2-connected
plane graph has a Hamilton cycle if and only if its dual graph has a 2-tree
partition (see Stein [14]). Goodey [6] showed that every 2-connected cubic
plane graph whose faces are only triangles or hexagons has a Hamilton cycle.
Hence, every graph in P has a 2-tree partition. In Theorem 5.1 we prove that
for every 2-tree partition of a graph in P the two trees have the same order.
In Theorem 5.2 we prove a similar result for the family H of all 2-connected
plane triangulations all of whose vertices are of degree at most 6. Namely,
for every 2-tree partition of a graph in H the orders of the two trees differ
by at most 3.

A graph G is equitable k-colorable if there exists a proper k-coloring of G
such that the sizes of any two color classes differ by at most one (see Jensen
and Toft [9]). It is easy to see, by condition (GM2), that every graph in P
is equitable 4-colorable. One may guess that every graph in P has a 2-tree
partition such that the two trees have the same order and are equitable
2-colorable. In fact, in Theorem 6.1 we prove (using equations (1)–(3)) that
this is the case if P is of order 4n+ 2, n ∈ N.

2. Index-vector. Let P be the family of all 2-connected plane trian-
gulations all of whose vertices are of degree 3 or 6. Fix P ∈ P. Let P be
factorable into factors P0, P1, P2 (indexed by elements of the cyclic group
Q = {0, 1, 2}) satisfying condition (GM1). We recall that a subgraph of P is
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said to be of class q ∈ Q if any edge of the subgraph belongs to the factor Pq.
Let M(q) be the length of a maximal path of class q, and K(q) the distance
between the two maximal paths of this class in P .

Definition 2.1. Let A be a vertex of degree 3 in the graph P , and sup-
pose that [A, q] is a maximal path of class q with an orientation v0v1 . . . vM(q)

such that A = v0 is its initial vertex and Aq = vM(q) its terminal vertex.
An edge e adjacent to the path [A, q] is called a left branch of the path
if it is branching off from [A, q] to the left (more precisely, if vjvj+1, e,
0 ≤ j < M(q), or e, vj−1vj , 0 < j ≤ M(q), are counterclockwise succes-
sive edges incident with the vertex vj). Otherwise, it is called a right branch
of the path. We set

[A, q](e) =

{
j if e is a left branch of [A, q], incident with vj ,

2M(q)− j if e is a right branch of [A, q], incident with vj .

Remark 2.1. Notice that [A, q] = v0v1 . . . vM(q) if and only if [Aq, q] =
vM(q)vM(q)−1 . . . v0. An edge e is a left branch of [A, q] if and only if it is
a right branch of [Aq, q]. Moreover,

|[Aq, q](e)− [A, q](e)| =M(q).

Lemma 2.1. Let A,C be the ends of two different maximal paths of
class q.

(1) If e, ê and f, f̂ are pairs of end-edges of two minimal paths of class
q+1 so that e, f are adjacent to the path [A, q] and ê, f̂ are adjacent
to [C, q], then

[A, q](f)− [A, q](e) ≡ [C, q](ê)− [C, q](f̂) (mod 2M(q)).

(2) Moreover, if e is incident with A, and f̂ is incident with C, then

[A, q](f) = [C, q](ê).

Proof. The proof is clearer when we consider the q-drawing of P . Notice
that

[A′, q](f)− [A′, q](e) = [C ′, q](ê)− [C ′, q](f̂)

for some A′ ∈ {A,Aq} and C ′ ∈ {C,Cq}. Hence, by Remark 2.1 we ob-
tain (1). If e is incident with A, and f̂ is incident with C, then, by (GM1),
e is a left branch of [A, q] and f̂ is a left branch of [C, q]. Hence, [A, q](e) = 0

and [C, q](f̂ ) = 0, which yields (2).

Definition 2.2. Let A, C be the ends of two different maximal paths
of class q in the graph P , and suppose f (or g) is the first edge of [C, q + 1]
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(or [C, q − 1], respectively) which is adjacent to [A, q]. Let

S+(q) =

{
[A, q](f) if f is a left branch of [A, q],

[A, q](f)−M(q) if f is a right branch of [A, q],

S−(q) =

{
[A, q](g) if g is a left branch of [A, q],

[A, q](g)−M(q) if g is a right branch of [A, q],

Notice that by Remark 2.1 and Lemma 2.1(2) the definitions of S+(q)
and S−(q) do not depend on the choice of ends of two different maximal
paths of class q. The following theorem shows that S+(q) is determined by
S−(q) and vice versa.

Theorem 2.1.

S−(q)− S+(q) ≡ K(q) (mod M(q)).

Proof. The proof is clearer if one considers the q-drawing of P . Let A, C
be the ends of two different maximal paths of class q in P , and suppose f
(or g) is the first edge of [C, q + 1] (or [C, q − 1]) which is adjacent to [A, q],
say at a vertex E (or F , respectively). If V is the last common vertex of
[C, q + 1] with a segment CF of [C, q − 1], then

[A, q](g)− [A, q](f) ≡ |V E| ≡ K(q) (mod 2M(q)).

Hence,

S−(q)− S+(q) ≡ [A, q](g)− [A, q](f) ≡ K(q) (mod M(q)),

which completes the proof.

3. Billiards and structure of plane triangulations in P. Let P be
the family of all of 2-connected plane triangulations all of whose vertices are
of degree 3 or 6. Fix P ∈ P and q ∈ Q (where Q = {0, 1, 2} is the cyclic
group). Let (K(q),M(q), S+(q)) be the q-index-vector of P .

If 0 < θ < 1, then a θ-billiard sequence is a sequence F (j) ∈ [0, 1), j ∈ N,
which satisfies the following conditions (see [4]): F (1) = 0 and

F (j) + F (j + 1) =

{
θ or 1 + θ for j odd,
0 or 1 for j even.

We consider a billiard table rectangle with perimeter of length 1 with
the bottom left vertex labeled v0, and the others, in the clockwise direction,
v1, v2 and v3. The distance from v0 to v1 is θ/2. We describe the position of
points on the perimeter by their distance along the perimeter measured in
the clockwise direction from v0, so that v1 is at position θ/2, v2 at 1/2 and v3
at (θ + 1)/2. If a billiard ball is pushed from position F (1) = 0 at the angle
of π/4, then it will rebound against the sides of the rectangle consecutively
at F (2), F (3), . . . .
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The following lemma comes from [4, Theorem 3.3(2) and Example 3.1].

Lemma 3.1. If 0 < s/m < 1 is a fraction, d = |s,m| and F (j), j ∈ N,
is the s/m-billiard sequence, then:

(1) {2mF (1), 2mF (2), . . . , 2mF (m/d)} = {0, 2d, 4d, . . . , 2m− 2d}.

(2) 2mF (m/d) =


s for s/d even,
m for m/d even,
s+m for s/d and m/d both odd,

and 2mF (j) /∈ {s,m, s+m} for 1 ≤ j < m/d.
(3) If a, b are natural numbers, am− bs = d and b ≤ m/d, then

2mF (b) =


s+ d for a even,
m− d for b even,
s+m+ d for a and b 6= 1 both odd,
0 for a = b = 1.

Remark 3.1. The sequence of all reduced fractions in the interval [0, 1]
with denominators not exceeding n, listed in order of size, is called the Farey
sequence of order n (0/1 is the smallest and 1/1 the greatest fraction of any
Farey sequence). Let 0 ≤ s/m < 1 be a fraction, d = |s,m|, and suppose that
s′/m′ = s/m is a fraction in lowest terms. Then s′/m′ < a/b are consecutive
fractions in the Farey sequence of order m′ if and only if am − bs = d and
b ≤ m/d (see Schmidt [13]).

The following theorem shows that the structure of the graph P is closely
related to S+(q)/M(q)-billiard sequences.

Theorem 3.1. Let A be a vertex of degree 3 in P , and suppose that
e1, . . . , en is a sequence of all consecutive edges of [A, q+1] which are adja-
cent to [A, q].

(1) If n > 1, then

[A, q](ej) = 2M(q)F (j) for 1 ≤ j ≤ n,
where F (j), j ∈ N, is the S+(q)/M(q)-billiard sequence.

(2) n =M(q)/|S+(q),M(q)|.
(3) K(q + 1) = |S+(q),M(q)|.
(4) K(q + 1)M(q + 1) = K(q)M(q).

Proof. Since 2K(q)M(q) + 2 is the order of P , condition (4) holds.
If n = 1, then S+(q) = 0,M(q+1) = K(q) and, by (4),K(q+1) =M(q).

Hence, conditions (2) and (3) are satisfied.
Let n > 1. Let C be a vertex of degree 3, C 6= A, C 6= Aq, and suppose

that f is the first edge of the path [C, q+1] which is adjacent to [A, q]. With-
out loss of generality we can assume, by Remark 2.1, that f is a left branch



30 J. FLOREK

of [A, q]. Hence, [A, q](f) = S+(q). Suppose that ê1, . . . , ên is a sequence of
all consecutive edges of [A, q+1] which are adjacent to [C, q]. Note that the
edges ê2j−1, ê2j are incident with the same vertex of [C, q] and that they are
on the opposite sides of this path. Hence,

[C, q](ê2j−1) + [C, q](ê2j) = 2M(q).

By Lemma 2.1(1),
[A, q](ej) + [C, q](êj) ≡ [A, q](f) ≡ S+(q) (mod 2M(q)) for 1 ≤ j ≤ n.

Hence,
[A, q](e2j−1) + [A, q](e2j) ≡ 2S+(q) (mod 2M(q)), 2 ≤ 2j ≤ n.

Since 0 ≤ [A, q](e2j−1) + [A, q](e2j) < 4M(q) and 0 < S+(q) < M(q) we get
(i) [A, q](e2j−1) + [A, q](e2j) = 2S+(q) or 2M(q) + 2S+(q), 2 ≤ 2j ≤ n.
By analogy, the edges e2j , e2j+1 are incident with the same vertex of [A, q],
and therefore they are on the opposite sides of this path. Hence,
(ii) [A, q](e2j) + [A, q](e2j+1) = 2M(q), 2 ≤ 2j ≤ n− 1.

From (i) and (ii) we obtain (1).
By definition of Aq, C and Cq, we have

Aq+1 = Aq and j = n ⇔ [A, q](ej) =M(q),

Aq+1 = C and j = n ⇔ [C, q](êj) = 0 ⇔ [A, q](ej) = S+(q),

Aq+1 = Cq and j = n ⇔ [C, q](êj) =M(q) ⇔ [A, q](ej) =M(q)+S+(q).

Accordingly,

(iii)
[A, q](en) ∈ {M(q), S+(q),M(q) + S+(q)},
[A, q](ej) /∈ {M(q), S+(q),M(q) + S+(q)} for j < n.

By (1) and Lemma 3.1(2), condition (iii) leads to n =M(q)/|S+(q),M(q)|.
Since n =M(q)/|S+(q),M(q)| condition (4) shows that

M(q + 1) = nK(q) =
M(q)K(q)

|S+(q),M(q)|
=
M(q + 1)K(q + 1)

|S+(q),M(q)|
.

Thus K(q + 1) = |S+(q),M(q)| and condition (3) holds.

By analogy, we obtain the following corollary:

Corollary 3.1. Let A be a vertex of degree 3 in P , and suppose that
e1, . . . , en is a sequence of all consecutive edges of [A, q− 1] which are adja-
cent to [A, q].

(1) If n > 1, then

[A, q](ej) = 2M(q)F (j) for 1 ≤ j ≤ n,
where F (j), j ∈ N, is the S−(q)/M(q)-billiard sequence.
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(2) n =M(q)/|S−(q),M(q)|.
(3) K(q − 1) = |S−(q),M(q)|.
Theorem 3.2. Let A be a vertex of degree 3 in P , and suppose that a, b

are natural numbers such that aM(q)− bS+(q) = d and b ≤M(q)/d, where
d = |S+(q),M(q)|. Then:

(1) S−(q + 1) = bK(q).
(2) S+(q + 1) ≡ bK(q)−K(q + 1) (mod M(q + 1)).

Proof. It suffices to prove (1), because (2) follows from (1) and The-
orem 2.1. Suppose that e1, . . . , en is a sequence of all consecutive edges of
[A, q+1] which are adjacent to [A, q] at vertices A = E1, . . . , En, respectively.

If n = 1, then A is the only common vertex of [A, q + 1] and [A, q].
Hence, S+(q) = 0 and S−(q+1) =M(q+1) = K(q). Then a = b = 1, and
condition (1) holds.

Let n > 1. Let C be a vertex of degree 3, C 6= A, C 6= Aq, and suppose
that f is the first edge of [C, q + 1] which is adjacent to [A, q]. Without
loss of generality we can assume, by Remark 2.1, that f is a left branch
of [A, q]. Hence, [A, q](f) = S+(q). Suppose that ê1, . . . , ên is a sequence
of all consecutive edges of [A, q + 1] which are adjacent to [C, q] at vertices
Ê1, . . . , Ên, respectively. Note that Ej = Ej+1 for j even, Êj = Êj+1 for j
odd, and the segment EjÊj of [A, q + 1] has length |EjÊj | = K(q). Hence,
the segments AEb and AÊb of [A, q + 1] have lengths:

(i)
{ |AEb| = bK(q) for b even,
|AÊb| = bK(q) for b odd.

By Remark 2.1 and Lemma 2.1(1), we have

[Aq, q](ej)− [Aq, q](ei) ≡ [A, q](ej)− [A, q](ei) ≡ [C, q](êi)− [C, q](êj)

≡ [Cq, q](êi)− [Cq, q](êj) (mod 2M(q)) for 1 ≤ i, j ≤ n.
From Theorem 3.1(2) it follows that n = M(q)/d. Hence, by Theo-

rem 3.1(1) and Lemma 3.1(1), we obtain

(ii) [Aq, q](ej)− [Aq, q](ei) ≡ [C, q](êi)− [C, q](êj)

≡ [Cq, q](êi)− [Cq, q](êj) ≡ 0 (mod 2d) for 1 ≤ i, j ≤ n.
By Lemma 3.1(3) we get

[A, q](eb) =


S+(q) + d for a even,
M(q)− d for b even,
S+(q) +M(q) + d for a and b 6= 1 both odd.

Since [A, q](f) = S+(q), Lemma 2.1(1) shows that

[C, q](êb) ≡ [A, q](f)− [A, q](eb) ≡ S+(q)− [A, q](eb) (mod 2M(q)).
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Accordingly, by Remark 2.1, we obtain

(iii)


[C, q](êb) = 2M(q)− d for a even,
[Aq, q](eb) = 2M(q)− d for b even,
[Cq, q](êb) = 2M(q)− d for a and b 6= 1 both odd.

Hence, for b even (resp. b odd and b 6= 1), eb (resp. êb) is a right branch of
[Aq, q] (resp. [C, q] or [Cq, q]). For b even (resp. b odd and b 6= 1), suppose
that g is the first arc of the directed path [Aq, q] (resp. [C, q] or [Cq, q])
which is adjacent to the directed path [A, q + 1]. By (ii)–(iii), Eb (resp. Êb)
is the common head of the arcs g and eb (resp. êb). Hence, g is a left branch
of [A, q + 1]. Thus, by (i),

S−(q + 1) = [A, q + 1](g) = |AEb| (resp. |AÊb|) = bK(q),

and condition (1) holds.

Example 3.1. Let {aj} be the Fibonacci sequence:

a1 = a2 = 1 and aj+2 = aj + aj+1 for j ∈ N.
We will check that

{(1, a2n+1a2n+2, a2na2n+2), (a2n+2, a2n+1, 0), (a2n+1, a2n+2, a2n)}
is the orbit of a graph in P. Notice that for n = 1 we obtain the orbit

{(1, 6, 3), (3, 2, 0), (2, 3, 1)}.
Proof. Since aj/aj+1 is the jth convergent to (

√
5−1)/2, j ∈ N, we have

the following conditions (see Schmidt [13, Lemmas 3C, 3D]):

a2j+1 − ajaj+2 = (−1)j ,(1)

aj+3aj − aj+2aj+1 = (−1)j+1.(2)

If (K(1),M(1), S+(1)) = (1, a2n+1a2n+2, a2na2n+2) then, by (1), for j =
2n− 1,

a2n−1M(1)− a2nS+(1) = a2n+2.

Hence, by Theorem 3.1(3–4) we have

K(2) = a2n+2, M(2) = a2n+1,

and, by Theorem 3.2(2),

S+(2) ≡ a2nK(1)−K(2) = a2n − a2n+2 = −a2n+1 ≡ 0 (mod a2n+1).

If (K(2),M(2), S+(2)) = (a2n+2, a2n+1, 0), then M(2) − S+(2) = a2n+1.
Hence, by Theorem 3.1(3–4) we obtain

K(3) = a2n+1, M(3) = a2n+2,

and, by Theorem 3.2(2),

S+(3) ≡ K(2)−K(3) = a2n+2 − a2n+1 = a2n (mod a2n+2).
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If (K(3),M(3), S+(3)) = (a2n+1, a2n+2, a2n), then, by (2), for j = 2n− 1,

a2n−1M(3)− a2n+1S
+(3) = 1.

Hence, by Theorem 3.1(3–4) we have

K(1) = 1, M(1) = a2n+1a2n+2,

and, by Theorem 3.2(2) and (1), for j = 2n,

S+(1) ≡ a2n+1K(3)−K(1) = a22n+1 − 1 = a2na2n+2 (mod a2n+1a2n+2),

and the proof is complete.

4. One-point orbits of plane triangulations in P. We recall that
X = {(k,m, s) ∈ Z3 : k,m ≥ 1, 0 ≤ s < m} is the set of all index-vectors of
graphs in P. In the following theorem we characterize one-point orbits.

Theorem 4.1. {(k,m, s)} ∈ X is a one-point orbit of a graph in P if
and only if m = kz, s = kx, where 0 ≤ x < z are integers such that z is
a divisor of x2 + x+ 1.

Proof. Let (k,m, s) be an index-vector of a graph in P. It is easy to
prove that the following conditions are equivalent ((ii)⇔(iii) follows from
Theorems 3.1(3–4) and 3.2(2)):

(i) {(k,m, s)} is a one-point orbit,
(ii) (k,m, s) = (K(q),M(q), S+(q)) = (K(q + 1),M(q + 1), S+(q + 1)),
(iii) k = |s,m| and s = bk − k, where b is an integer such that 0 < b

≤ m/k and bs ≡ −k (mod m),
(iv) m = kz, s = kx = bk − k, where z ≥ 1, x ≥ 0 and 0 < b ≤ z are

integers such that bx ≡ −1 (mod z),
(v) m = kz, s = kx, where 0 ≤ x < z are integers such that z is a divisor

of x2 + x+ 1.

Remark 4.1. Notice that if {(k,m, s)} is a one-point orbit of a graph
G ∈ P, then, by Theorem 2.1, {(k,m,m− s− k)} is a one-point orbit of the
mirror reflection of G. Hence, by Theorem 4.1, z is a divisor of x2 + x+ 1 if
and only if z is a divisor of (z−x− 1)2+(z−x− 1)+ 1, which is confirmed
by the following equivalence:

x2 + x+ 1 = yz ⇔ (z − x− 1)2 + (z − x− 1) + 1 = (z − 2x− 1 + y)z.

Example 4.1. Notice that (y, z, x) = (1, 1, 0), (1, 3, 1), (1, 7, 2) and
(1, 13, 3) are all integral solutions of the Diophantine equation

x2 + x+ 1 = yz for 0 ≤ x ≤ 3 and x < z.

Hence, by Theorem 4.1, {(k, k, 0)}, for k ∈ N, {(1, 3, 1)}, {(1, 7, 2)} and
{(1, 13, 3)} are all one-point orbits with s ≤ 3. Notice that K4 (tetrahedron)
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has one-point orbit {(1, 1, 0)}. Let G0, G1, G2 and G3 be graphs in P with
one-point orbits

{(4, 4, 0)}, {(1, 3, 1)}, {(1, 7, 2)}, {(1, 13, 3)},

respectively. Consider a solid regular tetrahedron with closed 3-faces f1, f2,
f4, f4. We leave it to the reader to verify that Gj , j = 0, 1, 2, 3, can be
embedded in the sphere of the solid regular tetrahedron in such a way that
all four induced plane graphs Gj [Vj ∩ f1], . . . , Gj [Vj ∩ f4] are op-equivalent
to the plane graph Qj shown in Fig. 3.

graph Q0

graph Q1 graph Q2 graph Q3

Fig. 3

We conjecture that each graph G ∈ P with one-point orbit and vertex
set V can be embedded in the sphere of the solid regular tetrahedron in
such a way that all four induced plane graphs G[V ∩ f1], . . . , G[V ∩ f4] are
op-equivalent.

Theorem 4.2. G ∈ P is double mirror symmetric if and only if G has
a one-point orbit of the form {(k, k, 0)} or {(k, 3k, k)} for some k ∈ N.

Proof. Let G ∈ P and suppose that {(K(q),M(q), S+(q)) : q ∈ Q} is
the orbit of G. First we prove that if S+(q) + S−(q) = M(q) for q = 1, 2,
then G has a one-point orbit of the form {(k, 2s + k, s)}. If S+(q) + S−(q)
= M(q) for q = 1, 2, then by Theorem 3.1(3) and Corollary 3.1(3) we con-
clude thatK(0) = K(1) = K(2) = k. Hence,M(0) =M(1) =M(2) = m, by
Theorem 3.1(4). Suppose that aq, bq for q ∈ Q are integers such that
aqm − bqS

+(q) = k and 1 ≤ bq ≤ m/k. By Theorem 3.2(1–2), we de-
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duce that S+(q + 1) = bqk − k and S−(q + 1) = bqk. Since S+(q + 1) +
S−(q + 1) = m for q = 0, 1, we see that b0 = b1, S+(1) = S+(2) = s,
and s+ (s+ k) = m. Since (K(1),M(q), S+(1)) = (K(2),M(2), S+(2)) =
(k, 2s + k, s), we have (K(0),M(0), S+(0)) = (k, 2s + k, s). This completes
the proof of the claimed implication. The opposite implication follows from
Theorem 2.1.

It is easy to see that the following conditions are equivalent ((i)⇔(ii)
follows from Theorem 4.1):

(i) {(k, 2s+ k, s)} is a one-point orbit of G,
(ii) m = 2s+ k = kz, s = kx, where 0 ≤ x < z are integers such that z

is a divisor of x2 + x+ 1,
(iii) m = k(2x+1), s = kx, where integers x ≥ 0 and y > 0 are solutions

of the equation x2 + x+ 1 = y(2x+ 1).

LetD be the determinant of the quadratic equation x2+x(1−2y)+1−y = 0.
Since D = 4y2 − 3 is the square of an integer, it follows that y = 1. Hence,
x = 0 or x = 1, which completes the proof.

5. 2-tree partitions with trees of the same order. Suppose that
G is a 2-connected plane triangulation which has a 2-tree partition, that
is, G has two disjoint induced trees S, T which together cover all vertices
of G. Denote by fSi and fTi the number of vertices of degree i contained
in S and T , respectively. Tutte [15] proved the following identity, which is
the dual version of the well-known Grinberg theorem [7]:

(1)
∑
i

(i− 2)fSi =
∑
i

(i− 2)fTi .

Let us denote by fi the number of vertices of degree i of the graph G. Euler’s
equation becomes
(2)

∑
i

(6− i)fi = 12.

Recall that P (resp. H) is the family of all 2-connected plane triangulations
all of whose vertices are of degree 3 or 6 (at most 6, respectively).

Theorem 5.1. If G ∈ P, then for every 2-tree partition of G the trees
have the same number of vertices of degree 6, and the same number of vertices
of degree 3 in G.

Proof. Let S and T be two disjoint induced trees which together cover
all vertices of G. By (1) we have 4fS6 + fS3 = 4fT6 + fT3 . Hence, fS3 ≡ fT3
(mod 4). In view of fS3 + fT3 = 4 we have two cases: fS3 = 4 or fS3 = 2 = fT3 .
In the first case, 4fS6 + 4 = 4fT6 . Accordingly, f6 is odd. Hence, we have
a contradiction, because the order of G is even. In the second case we have
fS3 = fT3 and we obtain fS6 = fT6 .
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Theorem 5.2. If G ∈ H, then for every 2-tree partition of G the orders
of the trees differ by at most 3.

Proof. Let S and T be two disjoint induced trees which together cover
all vertices of G. By (1) and (2) we obtain∣∣∣ 6∑

i=3

fTi −
6∑
i=3

fSi

∣∣∣ = ∣∣∣∣ 5∑
i=3

(fTi − fSi )−
5∑
i=3

i− 2

4
(fTi − fSi )

∣∣∣∣
=

∣∣∣∣14
5∑
i=3

(6− i)(fTi − fSi )
∣∣∣∣ ≤ 1

4

5∑
i=3

(6− i)fi = 3,

which completes the proof.

6. 2-tree partitions with trees which are equitable 2-colorable.
Let P be the family of all 2-connected plane triangulations all of whose ver-
tices are of degree 3 or 6. We recall that a graph P ∈ P is factorable into
factors P0, P1, P2 (indexed by elements of the cyclic group Q = {0, 1, 2})
satisfying condition (GM1). We will give an example of a graph in P which
has a 2-tree partition, but the trees are not equitable 2-colorable. In Theo-
rem 6.1 we will prove that if P ∈ P has order 4n + 2, n ∈ N, then it has
a 2-tree partition such that the two trees are equitable 2-colorable.

Example 6.1. Let G ∈ P be the graph of Fig. 4. Notice that G contains
two disjoint induced trees whose vertices together span all of G. However,
the induced trees are not equitable 2-colorable.

Fig. 4. An induced tree (thick) is not equitable 2-colorable.

A k-caterpillar, k ≥ 1, is a tree T which contains a path T0 such that
T − V (T0) is a family of independent paths of the same order k. The path
T0 is referred to as the spine of T (see Chartrand and Lesniak [1]). Paths
and k-caterpillars, for k even, are called even caterpillars. Notice that even
caterpillars are equitable 2-colorable.
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Goodey [6] constructed a Hamiltonian cycle in every 2-connected cubic
plane graph whose faces are only triangles or hexagons. Suppose that H ∈ P
has a unique cycle of class q for some q ∈ Q. In Lemma 6.1 we use a dual
version of Goodey’s construction to partition the vertex set of H into two
subsets so that each induces an even caterpillar.

Lemma 6.1. Suppose that H ∈ P has a unique cycle of class q, say γ1,
for some q ∈ Q. Then H contains two disjoint, induced even caterpillars T
and S (T is a (2d − 2)-caterpillar, where d = |S+(q) + 1,M(q)|, and S is
a path) whose vertices together span all of H. Moreover,

(1) T ∩γ1 is a family of independent paths in H with the same order 2d−1,
and S ∩ γ1 is an independent set of vertices.

Proof. Let γ = v0v1 . . . vM(q) and γ′ be two maximal paths of class q, and
suppose that γ1 = t0t1 . . . t2M(q)−1 is the clockwise oriented cycle of class q
in H. Without loss of generality we can assume that the vertices t0, t1 are
adjacent to v1 (see Fig. 6).

Suppose that S+(q) < M(q) − 1. In the graph H − V (γ) we identify
successive vertices and edges of the path t0t1 . . . tM(q) with successive vertices
and edges of the path t0t2M(q)−1t2M(q)−2 . . . tM(q). After the identification we
obtain a path δ = w0w1 . . . wM(q) and a graph Hγ ∈ P (see Fig. 5). We can
assume that δ and γ′ are two maximal paths of the same class q in Hγ . Since
K(q) = 2, (Kγ(q),Mγ(q), S

+
γ (q)) = (1,M(q), S+(q)) is the q-index-vector of

the graph Hγ . Let e1, . . . , en be a sequence of all consecutive edges of the
path [w0, q − 1] which are adjacent to the path δ (see Fig. 5).

w0 w1 w6

Fig. 5. A [w0, q − 1] path (thick) in the graph Hγ ; I = {0, 4} (see Lemma 6.1).

Since S−γ (q) = S+
γ (q) + 1 = S+(q) + 1 < M(q), we have n > 1. By

Lemma 3.1(1) and Corollary 3.1(1–2), we obtain

(2) {[w0, q](e1), [w0, q](e2), . . . , [w0, q](en)} = {0, 2d, 4d, . . . , 2M(q)− 2d},
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where d = |S−γ (q),Mγ(q)| = |S+(q) + 1,M(q)|. Let
I = {0 ≤ i ≤M(q) : wi ∈ V ([w0, q − 1])}.

We can consider V0 = V ([w0, q − 1]) ∩ V (γ′) as a set of vertices in H. It is
not difficult to see that the set

V1 = V0 ∪
⋃
i∈I
{vi, ti} ∪

⋃
i∈I\{0,M(q)}

{t2M(q)−i}

induces a path T0 in H (see Fig. 6). Accordingly, by (2), the set

V2 = V1 ∪
⋃
i∈I
{ti+1, ti+2, . . . , ti+2d−2}

∪
⋃

i∈I\{0,M(q)}

{t2M(q)−i+1, t2M(q)−i+2, . . . , t2M(q)−i+2d−2}

induces a (2d− 2)-caterpillar T in H with spine T0 (see Fig. 6). Notice that
V (H)− V2 induces a path S in H, and condition (1) holds.

v0 v1

t0 t1

v6

Fig. 6. A 2-caterpillar T (thick) in the graph H (see Lemma 6.1); J = {3, 7, 11} (see
Theorem 6.1).

If S+(q) =M(q)− 1, then there exists a vertex u 6= v0 of degree 3 which
is adjacent to t2M(q)−1 and t0. Then the set W = {u, v0, t0, t1, . . . , t2M(q)−2}
induces a (2M(q)−2)-caterpillar T with spine ut0v0, and V (H)−W induces
a path S satisfying condition (1).

Theorem 6.1. Let P ∈ P. If P has order 4n+2, n ∈ N, then P contains
two disjoint, induced even caterpillars whose vertices together span all of P .

Proof. Let P ∈ P have order 4n+ 2, n ∈ N. Let (K(q),M(q), S+(q)) be
the q-index-vector of P , q ∈ Q. First we prove that K(q) is even for some
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q ∈ Q. We know that 2K(q)M(q) + 2 = 4n + 2 for every q ∈ Q. Suppose
that K(q) is odd for some q ∈ Q. Hence, M(q) is even. By Theorem 2.1,
S−(q) − S+(q) ≡ K(q) (mod M(q)), whence S+(q) or S−(q) is even. By
Theorem 3.1(3) and Corollary 3.1(3), K(q ± 1) = |S±(q),M(q)|, whence
K(q + 1) or K(q − 1) is even.

Let now K(q) = k be even, and suppose that γ0, γ′ are maximal paths
of class q, and γ1, . . . , γk−1 are clockwise oriented cycles of class q in P
such that vertices of γj are adjacent to vertices of γj−1, 1 ≤ j < k. We
will prove that P contains two disjoint, induced even caterpillars Tk and Sk
whose vertices together span all of P , and the following condition is satis-
fied:

(3)


{Tk ∩ γj : j odd, 1 ≤ j < k} ∪ {Sk ∩ γj : j even, 1 < j < k}
is a family of independent paths in P with the same odd order,
and {Tk ∩ γj : j even, 1 < j < k} ∪ {Sk ∩ γj : j odd, 1 ≤ j < k}
is an independent set of vertices in P.

We proceed by induction on the even number K(q) = k. By Lemma 6.1,
we can assume that k ≥ 4. Let

γk−3=x0x1 . . . xM(q)−1, γk−2=y0y1 . . . y2M(q)−1, γk−1= z0z1 . . . z2M(q)−1.

Without loss of generality we can assume that y0, y1 are adjacent to x1,
and z0, z1 are adjacent to y0 (see Fig. 7). In the graph P − V (γk−2) we

v0 v1

x0 x1

v6

y0 y1

z1z0

Fig. 7. A 2-caterpillar T (thick) in the graph P (see Theorem 6.1)
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identify successive vertices and edges of the cycle γk−1 with successive ver-
tices and edges of the cycle γk−3. After the identification we obtain a cycle
δ = t0t1 · · · t2M(q)−1 and a graph H ∈ P (see Fig. 6). We can assume that
γ0, γ′ (or γj , for 1 ≤ j < k − 3, and δ) are maximal paths (or cycles, re-
spectively) of class q in H. By induction H contains two disjoint, induced
even caterpillars Tk−2 and Sk−2 whose vertices together span all of H, and
condition (3) holds (for k replaced with k − 2, and P replaced with H).
Let

I = {0 ≤ i < 2M(q) : ti ∈ V (Tk−2)},

J = {0 ≤ i < 2M(q) : ti ∈ V (Sk−2)}.

We can consider VT = V (Tk−2) \ V (δ) and VS = V (Sk−2) \ V (δ) as sets of
vertices in the graph P . Hence, the sets

VT ∪ {xi : i ∈ I} ∪ {zi : i ∈ I} ∪ {yi : i ∈ J},

VS ∪ {xi : i ∈ J} ∪ {zi : i ∈ J} ∪ {yi : i ∈ I}

induce (respectively) two disjoint even caterpillars Tk and Sk whose vertices
together span all of P , and condition (3) holds.

7. Orbits of non-simple plane triangulations in P. In the following
theorem we characterize orbits of plane triangulations in P which are not
simple.

Theorem 7.1. G ∈ P is not simple if and only if G has an orbit of the
form

{(n, 1, 0), (1, n, n− 1), (1, n, 0)} for some integer n > 1.

Proof. Let G ∈ P. It is easy to prove that the following conditions are
equivalent ((iv)⇔(v) follows from Theorems 3.1(3–4) and 3.2(2)):

(i) G is not simple,
(ii) G has a cycle of class q and length 2 for some q ∈ Q,
(iii) G 6= K4 and it has two edges of class q with ends of degree 3 for

some q ∈ Q,
(iv) G has an index-vector of the form (n, 1, 0) for some n > 1,
(v) G has an orbit of the form {(n, 1, 0), (1, n, n− 1), (1, n, 0)} for some

n > 1.

This completes the proof.

Appendix: On the Diophantine equation x2 + x + 1 = yz (by
A. Schinzel). Let us adopt the notation introduced in the classical book
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[11, pp. 5–6]:

A−1 = 1, A0 = b0, Aν = bνAν−1 +Aν−2 (ν ≥ 1),

B−1 = 0, B0 = 1, Bν = bνBν−1 +Bν−2 (ν ≥ 1),

where bν (ν ≥ 0) is an arbitrary sequence of integers.
We shall prove

Theorem. For every even k ≥ 0 and all positive integers b0, . . . , bk, the
positive integers

x = Ak−1Ak +Bk−1Bk +AkBk−1,

y = A2
k−1 +Ak−1Bk−1 +B2

k−1,

z = A2
k +AkBk +B2

k

satisfy the equation x2 + x+ 1 = yz and the inequality y < z.

Proof. We have (see [11, p. 16, formula (30)])

AλBλ−1 −Aλ−1Bλ = (−1)λ−1,

which for k even gives

AkBk−1 −Ak−1Bk = −1,
hence

x2 + x+ 1− yz = A2
k−1A

2
k + 2Ak−1AkBk−1Bk + 2Ak−1A

2
kBk−1

+B2
k−1B

2
k + 2AkB

2
k−1Bk +A

2
kB

2
k−1+Ak−1Ak+Bk−1Bk+AkBk−1+1

−A2
k−1A

2
k −A2

k−1AkBk −A2
k−1B

2
k −Ak−1A2

kBk−1 −Ak−1AkBk−1Bk
−Ak−1Bk−1B2

k −A2
kB

2
k−1 −AkB2

k−1Bk −B2
k−1B

2
k

= Ak−1AkBk−1Bk +Ak−1A
2
kBk−1 +AkB

2
k−1Bk

+Ak−1Ak +Bk−1Bk +AkBk−1 + 1

−A2
k−1AkBk −A2

k−1B
2
k −Ak−1Bk−1B2

k

= (Ak−1Bk +Ak−1Ak +Bk−1Bk)(AkBk−1 −Ak−1Bk)
+Ak−1Ak +Bk−1Bk +AkBk−1 + 1

= −Ak−1Bk +AkBk−1 + 1 = 0.

Moreover, since bi are positive integers, we have

0 < Ak−1 < Ak, 0 ≤ Bk−1 ≤ Bk, hence y < z.

Using [11, Chapter II, Theorem 13] and [2, Theorem 131] one can prove
that all solutions of the equation x2 + x+ 1 = yz in positive integers x, y, z
satisfying the condition y < z can be obtained from the formula given in the
Theorem for some integer b0 and some positive integers bi (i = 1, . . . , k).
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