AN IDENTITY RAMANUJAN PROBABLY MISSED
 BY
 SUSIL KUMAR JENA (Odisha)

Abstract

Ramanujan's 6-10-8 identity" inspired Hirschhorn to formulate his "3-7-5 identity". Now, we give a new " $6-14-10$ identity" which we suppose Ramanujan would have discovered but missed to mention in his notebooks.

1. Introduction. In his third Notebook [5], Ramanujan writes: "If $a / b=c / d$, then

$$
\begin{array}{r}
64\left\{(a+b+c)^{6}+(b+c+d)^{6}-(c+d+a)^{6}\right. \\
\left.\left.-(d+a+b)^{6}+(a-d)^{6}-(b-c)^{6}\right)\right\} \\
\times\left\{(a+b+c)^{10}+(b+c+d)^{10}-(c+d+a)^{10}\right. \\
\left.\left.-(d+a+b)^{10}+(a-d)^{10}-(b-c)^{10}\right)\right\} \\
=45\left\{(a+b+c)^{8}+(b+c+d)^{8}-(c+d+a)^{8}\right. \\
\left.\left.-(d+a+b)^{8}+(a-d)^{8}-(b-c)^{8}\right)\right\}^{2} .
\end{array}
$$

This is "Ramanujan's 6-10-8 identity" which Berndt [1] describes to be "an amazing identity". He replicates a proof due to Berndt and Bhargava [2] and refers to another proof by Nanjundiah [4]. Inspired by "Ramanujan's $6-10-8$ identity", Hirschhorn [3] found a "3-7-5 identity" as

$$
\begin{array}{r}
25\left\{(a+b+d)^{3}+(b+c+d)^{3}-(a+b+c)^{3}\right. \\
\left.\left.-(a+c+d)^{3}+(a-d)^{3}-(b-c)^{3}\right)\right\} \\
\times\left\{(a+b+d)^{7}+(b+c+d)^{7}-(a+b+c)^{7}\right. \\
\left.\left.\left.-(a+c+d)^{7}+(a-d)^{7}-(b-c)^{7}\right)\right)\right\} \\
=21\left\{(a+b+d)^{5}+(b+c+d)^{5}-(a+b+c)^{5}\right. \\
\left.\left.-(a+c+d)^{5}+(a-d)^{5}-(b-c)^{5}\right)\right\}^{2},
\end{array}
$$

[^0]where it is assumed that $a d=b c$. But, a similar identity which the great master probably missed to mention is:
\[

$$
\begin{array}{r}
25\left\{\left(m^{2}+n^{2}\right)^{6}-\left(m^{2}-n^{2}\right)^{6}-(2 m n)^{6}\right\} \tag{1.1}\\
\times\left\{\left(m^{2}+n^{2}\right)^{14}-\left(m^{2}-n^{2}\right)^{14}-(2 m n)^{14}\right\} \\
=21\left\{\left(m^{2}+n^{2}\right)^{10}-\left(m^{2}-n^{2}\right)^{10}-(2 m n)^{10}\right\}^{2},
\end{array}
$$
\]

which is true for any real values of m and n. In the next section, we will prove this " $6-14-10$ identity" by using very elementary steps, which will naturally inspire us to re-look at the "remarkable identity of Ramanujan" in the hope of discovering similar simpler steps involved in its proof-the proofs due to Berndt and Bhargava [2] and Nanjundiah [4 are not that elementary.
2. The key identity. We need the following lemma to prove the identity 1.1):

Lemma 2.1. For any non-zero real values of a and b we have

$$
\begin{array}{r}
25\left\{(a+b)^{3}-(a-b)^{3}-(2 b)^{3}\right\} \tag{2.1}\\
\times\left\{(a+b)^{7}-(a-b)^{7}-(2 b)^{7}\right\} \\
=21\left\{(a+b)^{5}-(a-b)^{5}-(2 b)^{5}\right\}^{2} .
\end{array}
$$

Proof. By direct algebraic manipulation we get

$$
\begin{equation*}
\frac{(a+b)^{3}-(a-b)^{3}-(2 b)^{3}}{(a+b)^{5}-(a-b)^{5}-(2 b)^{5}}=\frac{3}{5\left(a^{2}+3 b^{2}\right)} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(a+b)^{7}-(a-b)^{7}-(2 b)^{7}}{(a+b)^{5}-(a-b)^{5}-(2 b)^{5}}=\frac{7\left(a^{2}+3 b^{2}\right)}{5} . \tag{2.3}
\end{equation*}
$$

So, LHS of $(2.2) \times$ LHS of $(2.3)=$ RHS of $(2.2) \times$ RHS of (2.3), which, after simplification, gives (2.1).

Proof of (1.1). Taking $a=\left(m^{4}+n^{4}\right), b=2 m^{2} n^{2}$ in (2.1), and observing that $(a+b)=\left(m^{2}+n^{2}\right)^{2},(a-b)=\left(m^{2}-n^{2}\right)^{2}$ and $2 b=(2 m n)^{2}$, we find that the identity (2.1) transforms to the identity (1.1).
3. Conclusion. At this moment, we do not know on which route Ramanujan discovered his " $6-10-8$ identity". Keeping in mind his humble background, and his unconventional way of approach to a problem, we expect the route to be straight and smooth.

Our " $3-7-5$ identity" of (2.1) and " $6-14-10$ identity" of (1.1) are not exactly similar to that of Ramanujan. But they are meant to motivate the search for undiscovered simpler steps involved in the proof of "Ramanujan's 6-10-8 identity".

Acknowledgements. I express my gratitude to the SEOUL ICM 2014 Organizing Committee for selecting the abstract of this paper for inclusion in the Short Communications. The abstract already contains the identity (1.1). Also, I am grateful to my family for standing by myself during the odd moments of my life.

REFERENCES

[1] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer, New York, 1994, pp. 3 and 102-106.
[2] B. C. Berndt and S. Bhargava, A remarkable identity found in Ramanujan's third notebook, Glasgow Math. J. 34 (1992), 341-345.
[3] M. Hirschhorn, Two or three identities of Ramanujan, Amer. Math. Monthly 105 (1998), 52-55.
[4] T. S. Nanjundiah, A note on an identity of Ramanujan, Amer. Math. Monthly 100 (1993), 485-487.
[5] S. Ramanujan, Notebooks, Vol. 2, Tata Inst. Fundam. Res., Bombay, 1957, 385-386.
Susil Kumar Jena
Department of Electronics \& Telecommunication Engineering
KIIT University, Bhubaneswar 751024
Odisha, India
E-mail: susil_kumar@yahoo.co.uk

[^0]: 2010 Mathematics Subject Classification: Primary 11D41; Secondary 11D72.
 Key words and phrases: Ramanujan's identity, Ramanujan's third notebook, Diophantine equations.

