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Abstract. The class of almost completely decomposable groups with a critical type-
set of type (1, 4) and a homocyclic regulator quotient of exponent p3 is shown to be of
bounded representation type. There are precisely four near-isomorphism classes of inde-
composables, all of rank 6.

1. Introduction. Kaplansky once observed that, in essence, anything
can happen in torsion-free abelian groups even if the groups have finite
rank. Thus to obtain results one has to consider subclasses and, in addition,
a weakening of the isomorphism concept proved to be essential. A suitable,
nontrivial, yet amenable class is the class of almost completely decompos-
able groups first introduced by Lady [14]. Every torsion-free abelian group of
finite rank is the direct sum of indecomposable groups, but even in the case
of almost completely decomposable groups such decompositions are notori-
ously “pathological”. This problem is avoided by restricting the “regulator
index” to be a power of a single prime and by employing a modest weakening
of isomorphism, also due to Lady, called “near-isomorphism” [15]. In this
way one obtains a Remak–Krull–Schmidt category and achieves a classifi-
cation up to near-isomorphism as soon as the indecomposable groups in the
class are found. As was shown in [6] most of these classes contain indecom-
posable groups of arbitrarily large rank, in which case it is hopeless to try to
describe all near-isomorphism classes of indecomposable groups. This leaves
some special subclasses that may have a finite number of near-isomorphism
classes of indecomposable groups. The class considered in this paper is shown
to be such a class and the indecomposables are determined. Earlier work on
this topic was done in [2]–[4].

Any torsion-free abelian group G is an additive subgroup of a Q-vector
space V . The Q-subspace of V generated by G is denoted QG, and dim(QG)
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is the rank of G. A torsion-free abelian group R of finite rank is completely
decomposable if R is the direct sum of rank-1 groups. Given a completely
decomposable group R, we get a decomposition R =

⊕
ρ∈Tcr(R)Rρ where

Rρ is obtained by combining the isomorphic rank-1 summands of R into a
summand Rρ ( 6= 0) where ρ is the isomorphism class or type of the rank-1
summands of Rρ. The set Tcr(R) is the critical typeset of R.

A group G is almost completely decomposable if it contains a completely
decomposable subgroup of finite index. An almost completely decomposable
group G contains a well-understood fully invariant completely decomposable
subgroup of finite index, the regulator R(G) [12]. The critical typeset of G
is the critical typeset of R, Tcr(G) = Tcr(R).

Given a finite poset S of p-locally free types, an almost completely de-
composable group G is an (S, pk)-group if S = Tcr(G) and the exponent of
the regulator quotient G/R(G) is pk, i.e., exp(G/R(G)) = pk. Two (S, pk)-
groups G and H are nearly isomorphic if there is an integer n relatively
prime to p and homomorphisms f : G→ H and g : H → G with fg = n and
gf = n. A group G is indecomposable if and only if it is nearly isomorphic to
an indecomposable group [1]. Moreover, an almost completely decomposable
G with G/R(G) p-primary is, up to near-isomorphism, uniquely a direct sum
of indecomposable groups [13], [16, Corollary 10.4.6]. Consequently, a classi-
fication of all indecomposable (S, pk)-groups up to near isomorphism results
in a classification of all (S, pk)-groups up to near isomorphism. Hence, for al-
most completely decomposable groups G with G/R(G) p-primary, the main
question is to determine the near-isomorphism classes of indecomposable
(S, pk)-groups.

There is an interesting connection between almost completely decom-
posable groups and representations of finite partially ordered sets [10], [11],
[19].

Let G be an almost completely decomposable group with regulator R,
critical typeset S, and regulator quotient G/R that is a finite abelian group
of exponent pk. By choosing a basis of G/R and expressing its elements
in terms of a basis of R (suitable, called a p-basis) one encodes the group
in an integral matrix, a “coordinate matrix”. In this matrix the entries
are determined only modulo pk, and therefore the matrix may be con-
sidered to have coefficients in Zpk = Z /pk Z. Suppose that the coordi-
nate matrix M has n columns and let S∗ = S ∪ {∗} where ∗ is incom-
parable with any element of S. Then we get a representation UG of S∗

in the Zpk -module U0 = (Zpk)n where each s ∈ S is assigned a certain
summand of U0 and ∗ is assigned the row space of M . Two representa-
tions UG and UH are isomorphic (as representations) if and only if G and
H are nearly isomorphic, and UG is indecomposable if and only if G is
indecomposable. This is where the terms “bounded representation type”
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and “unbounded representation type” originate. Details are in [8] and [9].
Moreover, [9] also contains a complete survey of the known and open prob-
lems in the subject. The present paper settles one of these open prob-
lems.

We denote by (1, n) the poset {τ0, τ1 < · · · < τn} where τ0 is incompa-
rable to any one of the other elements. In this paper we study homocyclic
((1, 4), p3)-groups, where G ∈ ((1, 4), p3) is homocyclic if G/R(G) is a di-
rect sum of cyclic groups all of the same order, pk = exp(G/R(G)).
We present a complete collection of near-isomorphism types of inde-
composable homocyclic groups in ((1, 4), p3). There are precisely four
near-isomorphism classes, and all have rank 6. The proof includes find-
ing a normal form for coordinate matrices of ((1, 4), p3)-groups—see
Section 3.

Still unresolved are the homocyclic cases ((1, 5), p3) and ((1, 3), p5), and
the nonhomocyclic cases ((1, 2), p5) and ((1, 4), p3) [9], [17], [18], [20].

2. Matrices. We deal with integer matrices. A line of a matrix is a
row or a column. Transformations of matrices are successive applications of
elementary transformations. Matrices are simplified by making entries equal
to 0. While annihilating an entry, other entries that were originally zero may
become nonzero; such entries are called fill-ins and must be removed, i.e.,
the original 0 must be restored. There is a fixed exponent pk and entries may
be changed modulo pk, in particular ph = 0 if h ≥ k. A unit in our context
is an integer that is relatively prime to p. An integer matrix A = [ai,j ] is
called p-reduced (modulo pk) if

(1) there is at most one 1 in a line and all other entries are in pZ,
(2) if an entry 1 of A is at the position (is, js), then ais,j = 0 for all

j > js and ai,js = 0 for all i < is, and ais,j , ai,js ∈ pZ for all j < js
and all i > is.

Thus in a p-reduced matrix, the entries left of and below an entry 1 are
in pZ.

Lemma 2.1 (cf. [7, Lemma 1]). Let A be an integer matrix.

(i) The matrix A can be transformed into a p-reduced matrix by
elementary row transformations upward and elementary column
transformations to the right and multiplications of lines by
units.

(ii) If in addition row transformations down are allowed, then A can be
transformed into a p-reduced matrix where all entries are 0 below an
entry 1.
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3. (S, pk)-groups and coordinate matrices. The following terminol-
ogy is used in this paper. Details, equivalent formulations, and confirmation
of assertions can be found in [1] or [16].

Let G be an almost completely decomposable group. The isomorphism
types of the regulator R(G) and the regulator quotient G/R(G) are near-
isomorphism invariants of G. In particular, the rank r of the regulator quo-
tient is an invariant of G. Given a prime p, G is p-reduced if the localization
G(p) of G at p is a free Z(p)-module, or equivalently, if each type τ ∈ Tcr(G)
is p-locally free, i.e., pX 6= X for any rank-1 subgroup X of G with [X] = τ ,
where [X] denotes the isomorphism class of X.

Given a finite poset S of p-locally free types, an almost completely de-
composable group G is an (S, pk)-group if S=Tcr(G) and exp(G/R(G))=pk.
An (S, pk)-group is homocyclic if G/R(G) is a free Zpk -module.

Let G be an (S, pk)-group of rank m with regulator R = R(G). The
group G is clipped if it has no rank-1 summands. A coordinate matrix of G
is obtained by means of bases of R and G/R. Write R = S1x1⊕ · · ·⊕Smxm
with xi ∈ R, Si = {s ∈ Q : sxi ∈ R}, and p−1 /∈ Si. In this case, {x1, . . . , xm}
is called a p-basis of R.

A matrix α = [αi,j ] is a coordinate matrix of G modulo R if α is integral,
there is a basis (γ1, . . . , γr) of G/R, there are representatives gi ∈ G of γi,
and there is a p-basis {x1, . . . , xm} of R such that

gi = p−ki
( m∑
j=1

αi,jxj

)
where 〈γi〉 ∼= Zpki , 1 ≤ ki ≤ k.

A coordinate matrix M of G is of size r × m and coordinate matrices
that are congruent modulo pk describe equal groups.

Since (γ1, . . . , γr) is a basis of G/R, a coordinate matrix of size r ×m
has (p-)rank r.

Henceforth, let G be a homocyclic ((1, n), pk)-group with regulator R and
critical typeset Tcr(G) = {τ0, τ1 < · · · < τn}, a poset of p-locally free types,
and r = rankG/R. Each column of a coordinate matrix corresponds to a
type. So we speak of a τ -column of α. The number rτ (G) of τ -columns of α
is called the τ -homogeneous rank of G. This is a near-isomorphism invariant
of G.

We call transformations of rows and of columns of a coordinate ma-
trix of G allowed if the transformed coordinate matrix is the coordinate
matrix of a near-isomorphic group. Since the regulator quotient is homo-
cyclic, arbitrary row transformations are allowed, and if the columns are
ordered as their types, all column transformations to the right are allowed.
Hence coordinate matrices can always be transformed into p-reduced form
by Lemma 2.1(i).
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If the coordinate matrix M is formed with respect to the regulator R,
then the submatrices of M formed by all τ0-columns and the rest matrix
both have rank equal to the rank r of the regulator quotient. Conversely, if
the coordinate matrix M is formed with respect to a completely decompos-
able subgroup R of finite index and M satisfies the stated rank conditions,
then R is the regulator. These rank conditions are called the Regulator Cri-
terion.

4. Standard coordinate matrices. We establish a standard form for
coordinate matrices of homocyclic ((1, n), pk)-groups. If A = [Ai,j ] is a block
matrix, then we denote by A∗,j and by Ai,∗ the jth block column and the
ith block row of A, respectively.

One of our main techniques is forming the (partial) Smith Normal Form
as follows. Let phX be an integer matrix. If X has entries that are units and
if for phX arbitrary row and column transformations are allowed, then phX

can be transformed to
[ phI 0

0 ph+1X′

]
. In our case p3 = 0, and the possible

partial Smith Normal Forms are[
I 0

0 pX

]
,

[
pI 0

0 p2X

]
,

[
p2I 0

0 0

]
.

A matrix A = [Ai,j ] with blocks Ai,j is said to be completely reduced if
Ai,j ∈ {0, I, pI, p2I, . . .} for all i, j.

Another technique is to form iterated Smith Normal Forms as follows.
Let [phA1 | phA2 | phA3 | . . .] be a block matrix. We form the Smith Normal

Form
[ phI 0

0 ph+1A′1

]
of phA1, annihilate with phI in [phA2 | phA3 | . . .] and

form the Smith Normal Form
[ phI 0

0 ph+1A′2

]
of the rest of phA2 and annihilate

in the rest of the block matrix, and so on. We call this forming the iterated
Smith Normal Form starting with phA1. Instead of having blocks in a row
there may be blocks in a column.

Often we assume ahead of forming Smith Normal Forms that certain
lines cannot be 0. This specializes the resulting Smith Normal Form; for
instance if p2X has no 0-row (and we assume p3 = 0), then we get [p2I | 0]
instead of

[
p2I 0
0 0

]
.

We improve the notation of [9, Proposition 2] and, for the convenience
of the reader, we give an adapted proof.

Proposition 4.1. Let k and n be natural numbers. A homocyclic
((1, n), pk)-group without summands of rank ≤ 3 has a coordinate matrix
of the form
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(4.1) [I‖pA‖I]

=



pA2,1 0 0 · · · 0 I(τ2) 0 · · · · · · 0

pA3,1 pA3,2 0 · · · 0 0 I(τ3) 0 · · · 0

I
..
.

..

.
. . .

...
..
.

..

.
. . .

...

...
...

. . .
...

...
...

. . .
...

pAn,1 pAn,2 · · · · · · pAn,n−1 0 0 · · · · · · I(τn)


.

︸︷︷︸
τ0

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τn−1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τn

The lower triangular block matrix [Ai,j ] (here [pAi,j ] is stripped to [Ai,j ])
is p-reduced. For the block pAn,1 there is a matrix C with pAn,1 = p2C. The
blocks pAi,j are of the form

pAi,j =

 0 0 0

0 pI 0

0 0 p2A′i,j

 .
Note that block lines may be absent.

In particular, if G is a homocyclic ((1, 4), p3)-group, then the coordinate
matrix has the form

0 pI 0 0 0 I(τ2)0 0 p2A

pI 0 0 0 0 0

0 p2B1 p2B2 0 pI 0 0 I(τ3)

0 p2B3 p2B4 0 0 p2D

p2C1 p2C2 p2C3 pI 0 0 0 0

p2C4 p2C5 p2C6 0 p2E1 p2E2 pI 0 I(τ4)

p2C7 p2C8 p2C9 0 p2E3 p2E4 0 p2F


.(4.2)

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

Proof. Let G be given by a coordinate matrix M where the columns are
ordered as their types. Let S be the submatrix formed by the τ0-columns.
Since the hypothesis “homocyclic” allows arbitrary row transformations,
there is a Smith Normal Form for S, and because G is clipped and by
the Regulator Criterion this Smith Normal Form is the identity matrix.
Moreover, this identity matrix can be restored after row transformations
by column transformations alone, i.e., without changing the rest. Hence
M = [I |M ′] and we disregard the leading identity matrix and call M ′ the
coordinate matrix.

The regulator quotient is homocyclic. This allows arbitrary row trans-
formations and Lemma 2.1(ii) applies. So this coordinate matrix M ′ can be
transformed to a p-reduced matrix, and by the Regulator Criterion M ′ con-
tains columns forming a permutation matrix of size r, where r is the number
of rows of M ′. We move those columns of the included permutation matrix
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to the right and rearrange this matrix by row permutations to I. As the co-
ordinate matrix M ′ is p-reduced we obtain the complete coordinate matrix
in the form [I |M ′] = [I | pA | I]. The identity matrix to the right contains
all the remaining units in M ′.

We order the columns of pA and of I as their types. So by Lemma 2.1(i)
the part A (here pA is stripped to A) can be transformed to a p-reduced
matrix. The identity matrix I (to the right) has block structure due to the
types. This and the ordering of the columns of pA define a block structure
of pA.

Since a τn-column in pA is 0, as A is p-reduced, there cannot be a τn-
column in pA if G is clipped. A τ1-column in I (to the right) displays a
summand of rank 2, hence there is no such column in I. As A is p-reduced,
Ai,j = 0 if j ≥ i. Thus we get the claimed block matrix for [I | pA | I].

A p ∈ pAn,1 allows to annihilate in its whole row and in its whole column
displaying a summand of rank 3. So there is a matrix C such that pAn,1 =
p2C.

Since arbitrary column transformations are allowed in the first block
column A∗,1 and since arbitrary row operations are allowed in each block
row Ai,∗, we may form the iterated Smith Normal Form of the first block
column A∗,1, starting with An−1,1. So we already obtained the first block
column of the coordinate matrix (4.1). Then we annihilate with all entries
p ∈ pA∗,1 horizontally to the right in the rows of pA.

Arbitrary column transformations are allowed in the second block col-
umn A∗,2. If we leave unchanged the 0-rows that are forced by the p’s in the
first block column, then arbitrary row operations of the rest are allowed in
each block row Ai,∗. So excluding the rows that we leave unchanged we may
form the iterated Smith Normal Form of the remaining block rows of the
second block column A∗,2, starting with An,2. We thus obtain the second
block column of the coordinate matrix (4.1). Again we annihilate with the
entries p in the second block column horizontally to the right in the rows
of pA. We continue to treat all block columns to the right successively in
the same way, and we get the claimed coordinate matrix.

In particular, specializing to n = 4 and k = 3, we get the coordinate
matrices of homocyclic ((1, 4), p3)-groups in the form (4.2).

A coordinate matrix as in Proposition 4.1 is called standard. The block
format of a standard coordinate matrix of G and the number of entries p in
each block pAi,j of pA are near-isomorphism invariants of G.

Proposition 4.2 (cf. [7, Prop. 5]). Let G be a homocyclic ((1, 4), p3)-
group with the standard coordinate matrix. Then the size of the Ii’s, the
format of the blocks Ai,j and the numbers of entries p in a block pAi,j are
near-isomorphism invariants of G for all i, j.
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5. Indecomposable groups in the class of homocyclic ((1, 4), p3)-
groups. (1, 4)-groups are of rank ≥ 5 because the critical typeset consists
of five types. But indecomposable (1, 4)-groups have a regulator quotient
of rank ≥ 2. So they are of rank ≥ 6. For indecomposables of rank 6 the
part pA of the coordinate matrix is a 2 × 2 matrix and it is easy to list all
near-isomorphism classes of indecomposable ((1, 4), p3)-groups of rank 6 by
their standard coordinate matrices.

List of indecomposable homocyclic ((1, 4), p3)-groups.

(i)

[
1 0 p 0 1 0

0 1 p2 p 0 1

]
of rank 6,

︸ ︷︷ ︸
τ0

︸︷︷︸
τ1

︸︷︷︸
τ3

︸︷︷︸
τ2

︸︷︷︸
τ4

(ii)

[
1 0 p 0 1 0

0 1 p2 p2 0 1

]
of rank 6,

︸ ︷︷ ︸
τ0

︸︷︷︸
τ1

︸︷︷︸
τ2

︸︷︷︸
τ3

︸︷︷︸
τ4

(iii)

[
1 0 p2 0 1 0

0 1 p2 p 0 1

]
of rank 6,

︸ ︷︷ ︸
τ0

︸︷︷︸
τ1

︸︷︷︸
τ2

︸︷︷︸
τ3

︸︷︷︸
τ4

(iv)

[
1 0 p2 p 1 0

0 1 0 p2 0 1

]
of rank 6.

︸ ︷︷ ︸
τ0

︸︷︷︸
τ1

︸︷︷︸
τ2

︸︷︷︸
τ3

︸︷︷︸
τ4

Proposition 5.1. The homocyclic ((1, 4), p3)-groups in the list above
are indecomposable and pairwise not near-isomorphic.

Proof. By Proposition 4.2 the four groups in the list above are pairwise
not near-isomorphic.

For all groups G in the list, pG + R and p2G + R are again almost
completely decomposable groups with regulator R. The decompositions of
pG+R and p2G+R are refinements of the decompositions of G.

We show exemplarily that the group G of type (ii) is indecomposable.
Let (x1, x2, y1, y2, y3, y4) be the p-basis of the regulator R belonging to the
given coordinate matrix. So x1, x2 are of type τ0 and the yi are of type τi.
This p-basis is also a p-basis of R in pG+R and p2G+R.

From the given coordinate matrix we read off that p2G+R = 〈x1, y3〉∗⊕
〈x2, y4〉∗ ⊕ 〈y1〉∗ ⊕ 〈y2〉∗. Thus, if there are summands of G of rank 2, then
they have critical typesets either (τ0, τ3) or (τ0, τ4). By straightforward cal-
culations using the coordinate matrix it can be shown that the exponent
of 〈x, y〉∗/(R ∩ 〈x, y〉∗) is ≤ p2 for all x, y of types τ0, τ4, respectively. For
instance, from
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r · p−3(x1 + py1 + y3) + s · p−3(x2 + p2y1 + p2y2 + y4) ∈ 〈ax1 + bx2, y4〉∗ +R

it can be deduced that p3 | r, p | s and r/s = a/b. Thus the exponent of
〈ax1 + bx2, y4〉∗/(〈ax1 + bx2, y4〉∗ ∩R) is ≤ p2.

The same takes place for x, y of types τ0, τ3, respectively. This contra-
dicts the fact that the regulator quotient is homocyclic of exponent p3. So
potential summands of G all are of rank 3, and as pG+R = 〈x1, y1, y3〉∗ ⊕
〈x2, y4〉∗ ⊕ 〈y2〉∗ we see that there are potential summands of rank 3 with
critical typesets (τ0, τ1, τ3) and (τ0, τ2, τ4), respectively. Again we may cal-
culate as above that the exponent of 〈x, y, z〉∗/(R ∩ 〈x, y, z〉∗) is ≤ p2 for
all x, y, z of types τ0, τ2, τ4, respectively. This contradicts the fact that the
regulator quotient is homocyclic of exponent p3. So G is indecomposable.

6. The class of homocyclic ((1, 4), p3)-groups is bounded

Theorem 6.1. There are precisely the four near-isomorphism types of
homocyclic ((1, 4), p3)-groups of rank 6 in the list above that are indecom-
posable.

Proof. Let G be an indecomposable ((1, 4), p3)-group with coordinate
matrix in standard form (cf. (4.2); we omit the leading identity matrix).
Recall that an indecomposable (1, 4)-group has rank ≥ 6. Thus summands
of rank ≤ 5 are impossible.

First we show that quite a number of blocks in (4.2) can immediately
be seen to be 0. An entry p2 ∈ p2C9 allows to annihilate in its complete
row, and then in its complete column. This leads to a summand of rank 3.
Thus C9 = 0. In turn an entry p2 ∈ p2C8 allows to annihilate in its complete
row, and then in its complete column, except for the pI above. This leads
to a summand of rank 5. Thus C8 = 0. Next, an entry p2 ∈ p2C6 allows
to annihilate in its complete row, except for the pI to the right, and then
it allows to annihilate in its complete column. This leads to a summand of
rank 4. Thus C6 = 0.

An entry p2 ∈ p2C5 allows to annihilate in its complete row, except for
the pI to the right. Then we annihilate with this entry p2 in its complete
column, except for the pI above. So we get a summand of rank 6 of type (i)
in the list. Assuming without loss of generality that our group is not near-
isomorphic to a group of type (i) we must have p2C5 = 0.

With the block pI in the first column we annihilate p2C1, p
2C4, with the

block pI in the second column we annihilate p2B1, p
2C2, with the block pI in

the fifth column we annihilate p2E1. The fill-ins in the identity matrix to the
right can be removed by the respective pI to the left. We replace in (4.2) all
those blocks by 0 that we discussed to be 0, and get the coordinate matrix
in the form
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(6.1)



0 pI 0
0 0 I(τ2)0 0 p2A

pI 0 0 0 0 0

0 0 p2B2 0 pI 0 0 I(τ3)

0 p2B3 p2B4 0 0 p2D

0 0 p2C3 pI 0 0 0 0

0 0 0 0 0 p2E2 pI 0 I(τ4)

p2C7 0 0 0 p2E3 p2E4 0 p2F


.

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

We show next that the p2A-row of the matrix (6.1) is not present. There
is no 0-row in p2C3 to avoid a summand of rank 3. So the Smith Normal

Form of p2C3 is [p2I | 0]. In the part of
[ p2B2

p2B4

]
above the 0-columns of p2C3

we form the iterated Smith Normal Form starting with the part in p2B4.
Then we annihilate in sequence with the resulting p2I’s in p2A, first with
p2I ⊂ p2B2, next with p2I ⊂ p2B4 and finally with p2I ⊂ p2C3. So nonzero
entries of p2A are above 0-columns and create summands of rank 3, while
p2A = 0 produces summands of rank 2. Hence the p2A-row is not present.

Similarly, working with columns instead of rows, we show that the p2F -
column of (6.1) is not present. For p2C7 in the last row we produce the
Smith Normal Form

[
p2I
0

]
. In the part of [p2E3 | p2E4] to the right of the

0-rows of p2C7 we form the iterated Smith Normal Form starting with this
part of p2E4. Then we annihilate in sequence with the resulting p2I’s in p2F ,
first with p2I ⊂ p2E4, next with p2I ⊂ p2E3 and finally with p2I ⊂ p2C7.
So nonzero entries of p2F are to the right of 0-rows and create summands of
rank 3, while p2F = 0 means the existence of summands of rank 2. Hence the
p2F -column is not present. Now we omit the p2A-row and the p2F -column
of (6.1) and get the coordinate matrix

0 pI 0 0 0 0 0 I(τ2)

pI 0 0 0 0 0 0

0 0 p2B2 0 pI 0 0 I(τ3)

0 p2B3 p2B4 0 0 p2D 0

0 0 p2C3 pI 0 0 0

0 0 0 0 0 p2E2 pI I(τ4)

p2C7 0 0 0 p2E3 p2E4 0


.(6.2)

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

Next we show that the first row and the second column, crossing in pI,
are not present. We form the iterated Smith Normal Form of [p2B3 | p2B4]
starting with p2B4. Then we annihilate with p2I ⊂ p2B3 in p2D. This dis-
plays a summand of rank 5. So p2B3 = 0 and this causes a summand of
rank 3 by the pI in the first row above p2B3. Hence the row and the column
crossing in this pI in the first row are not present.
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Further we show that the last column and last but one row, crossing in pI,

are not present. We form the iterated Smith Normal Form of
[ p2E2

p2E4

]
starting

with p2E4. Then we annihilate with p2I ⊂ p2E2 in p2D. This displays a
summand of rank 4. So p2E2 = 0 and this causes a summand of rank 3
by the pI in the seventh row to the right of p2E2. Hence the row and the
column crossing in this pI in the seventh column are not present. We omit
all block rows and block columns that we found to be absent and get the
coordinate matrix

pI 0 0 0 0

0 p2B2 0 pI 0 I(τ3)

0 p2B4 0 0 p2D

0 p2C3 pI 0 0
I(τ4)

p2C7 0 0 p2E3 p2E4

 .(6.3)

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

Next we collect some properties of

[
p2B2

p2B4

p2C3

]
. As we already know, the

Smith Normal Form of p2C3 is [p2I | 0]. Above the 0-columns of p2C3 there
are 0-columns of p2B4 to avoid a summand of rank 3. Since an entry p2 ∈ C3

allows one to annihilate in p2B2, there are no 0-columns of p2B4 above the
nonzero columns of p2C3 to avoid a summand of rank 3. Moreover, an entry

p2 ∈ p2B4 allows one to annihilate in p2B2, and furthermore
[ p2B2

p2B4

]
has

no 0-columns to avoid summands of rank ≤ 4. Altogether we obtain the
completely reduced form of

 p
2B2

p2B4

p2C3

 =


0 p2I

0 0

p2I 0

0 0

p2I 0

 .

An entry p2 ∈ p2B4 allows one to annihilate in p2D and displays a sum-
mand of rank 6 of type (iii) in the list. Assuming without loss of generality
that our group is not near-isomorphic to a group of type (iii) we must have
p2B4 = 0. But then in turn p2C3 = 0. So the p2C3-row is not present, and in
turn also the pI-column with pI in the p2C3-row is not present. We imple-
ment all of the above in the matrix (6.3) and obtain the coordinate matrix
in the form
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pI 0 0 0 0

0 p2I pI 0 0
I(τ3)

0 0 0 pI 0

0 0 0 0 p2D

p2C7 0 p2E
(1)
3 p2E

(2)
3 p2E4 I(τ4)

 .(6.4)

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

An entry p2 ∈ p2E4 allows one to annihilate in p2D, thus a remaining
entry p2 ∈ p2D is in a column that is 0 in p2E4. So it displays a summand of
rank 3, which is impossible. Hence p2D = 0 and the p2D-row is not present.

The submatrix [p2E
(1)
3 | p2E(2)

3 | p2E4] has no 0-line to avoid a summand
of rank ≤ 5 and there is no 0-column in p2C7 to avoid a summand of rank 3.
Hence the Smith Normal Form of p2C7 is

[
p2I
0

]
.

We can annihilate with an entry p2 ∈ [p2C7 | p2E4] in [p2E
(1)
3 | p2E(2)

3 ],

and we can annihilate with p2 ∈ p2E(1)
3 in p2E

(2)
3 . Moreover, a row of p2C7

is nonzero if and only if the same row of p2E4 is nonzero. Otherwise there
is a summand of rank 3. Hence we get the complete reduced form

[p2C7 | p2E(1)
3 | p2E(2)

3 | p2E4] =

 p2I 0 0 p2I

0 p2I 0 0

0 0 p2I 0

 .
In the matrix (6.4) we replace the block p2C7 by its Smith Normal Form

and p2E by its complete reduced form, and get the coordinate matrix

pI 0 0 0 0

0 p2I pI 0 0 I(τ3)

0 0 0 pI 0

p2I 0 0 0 p2I

0 0 p2I 0 0 I(τ4)

0 0 0 p2I 0


.

︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
τ2

︸ ︷︷ ︸
τ3

︸ ︷︷ ︸
τ4

Now the pI in the third block row displays summands of rank 5. Hence
the row and the column crossing in this pI and the last row are not present.
The rest displays the two remaining groups in the list, of type (ii) and (iv).
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