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Abstract. We describe the representation-infinite blocks B of the group algebras
KG of finite groups G over algebraically closed fields K for which all simple modules are
periodic with respect to the action of the syzygy operators. In particular, we prove that all
such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture
for blocks of group algebras.

1. Introduction and the main results. Throughout this article,
K will denote a fixed algebraically closed field. By an algebra we mean an
associative, finite-dimensional K-algebra with identity, and we denote by
modA the category of finite-dimensional right A-modules. An algebra A is
called self-injective if AA is an injective module, or equivalently, the pro-
jective modules in modA are injective. A prominent class of self-injective
algebras is formed by the symmetric algebras A for which there exists an as-
sociative, non-degenerate, symmetric, K-bilinear form (−,−) : A×A→ K.

Given a module M in the module category modA, its syzygy is defined
to be the kernel ΩA(M) of a minimal projective cover PA(M) → M of M
in modA. The module M in modA is said to be periodic if Ωn

A(M) ∼= M
for some n ≥ 1, and if so the minimal such n is called the period of M .
Further, the category of finite-dimensional A-A-bimodules over an algebra
A is canonically equivalent to the module category modAe of the enveloping
algebra Ae = Aop⊗K A of A. Then the algebra A is called a periodic algebra
if A is a periodic module in modAe. It is known that any periodic algebra
A is self-injective, and that every module M in modA without non-zero
projective direct summands is periodic. It is conjectured that the following
should be true:

simple modules in modA are periodic ⇒ A is a periodic algebra

This is known as the periodicity conjecture, and is an exciting open problem.
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It has been proved by Green, Snashall and Solberg [24] that if all sim-
ple modules in modA are periodic then A is self-injective and some syzygy
Ωn
Ae(A) is isomorphic to a twisted bimodule 1Aσ where σ is some K-algebra

automorphism of A. However, it is not clear at all whether such an automor-
phism σ has finite order. We also mention that Dugas proved in [13] that an
arbitrary indecomposable self-injective algebra of finite representation type,
which is not simple, is a periodic algebra. In particular, this proves the pe-
riodicity conjecture for any algebra of finite representation type. Recently,
it has been proved by Białkowski, Erdmann and Skowroński [7] that the
periodicity conjecture holds for all algebras of polynomial growth. We also
mention that to prove these results it was important that the periodicity of
algebras is invariant under derived equivalences (see [21, Theorem 2.9] and
[37, Corollary 2.3]).

The main aim of this article is to describe the representation-infinite
blocks of group algebras of finite groups over algebraically closed fields for
which all simple modules are periodic, and to prove that all these blocks are
periodic algebras.

Let G be a finite group, K the fixed algebraically closed field, p the
characteristic of K, and B a block of the group algebra KG. Recall that
then KG = B ⊕ C, where B and C are two-sided ideals of KG and B is
indecomposable as an algebra. In particular, B is a symmetric algebra. We
note that if modB admits a periodic module, then B, and hence KG, is
not semisimple, and consequently p divides the order |G| of G, by Maschke’s
Theorem. Therefore, assume that p is a prime number dividing |G|. By gen-
eral theory, the representation type of B is controlled by the defect group
D = DB of B, which is a minimal subgroup of G such that every module
M in modB is a direct summand of a module of the form N ⊗KDKG for a
module N in modKD. The defect groups of B form one conjugacy class of
p-subgroups of G (see [3], [33] for more details). In particular, if the trivial
module K is a B-module, then DB is a Sylow p-subgroup of G. The ana-
logue of Maschke’s Theorem asserts that B is semisimple if and only if DB

is trivial. More generally, the analogue of Higman’s Theorem asserts that B
is of finite representation type if and only if DB is a cyclic group. By the
remarkable theorem of Dade, Janusz and Kupisch [11], [27], [28], [29] every
block B of KG which is of finite representation type but not simple (so DB

is a non-trivial cyclic group) is Morita equivalent to a Brauer tree algebra.
Moreover, by a result of Rickard [36] every Brauer tree algebra is derived
equivalent to a symmetric Nakayama algebra, and hence is a periodic alge-
bra (see [18]). Therefore, it remains to investigate the blocks B of infinite
representation type having all simple modules periodic.

The following theorem is the main result of the paper.
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Theorem 1.1. Let B be a block of infinite representation type of the
group algebra KG of a finite group G over an algebraically closed field K.
The following statements are equivalent:

(i) All simple modules in modB are periodic.
(ii) K has characteristic 2 and DB is a generalized quaternion 2-group.
(iii) B is a periodic algebra.

Recall that the generalized quaternion 2-groups are the groups

Q2m+2 = 〈x, y | x2m = y2, y4 = 1, xyx = y〉
of orders 2m+2, for m ≥ 1.

Motivated by the representation theory of blocks of group algebras with
defects being generalized quaternion 2-groups, Erdmann introduced in [15],
[16] (see also [17]) algebras of quaternion type (for algebraically closed fields
of any characteristic) and proved that they are Morita equivalent to alge-
bras belonging to 12 families of symmetric algebras defined by quivers and
relations. With the exception of cases of small dimension (described in [20,
Proposition 5.4]), these algebras are tame of non-polynomial growth, and
called algebras of pure quaternion type. Applying the derived equivalence
classification of algebras of pure quaternion type by Holm [26], Erdmann
and Skowroński proved in [20, Theorem 5.9] that all these algebras are peri-
odic of period 4. Moreover, all blocks of group algebras whose defect groups
are generalized quaternion 2-groups are algebras of pure quaternion type
(see [17]).

Then we obtain the following direct consequence of Theorem 1.1 and
Proposition 2.3 (proved in Section 2).

Corollary 1.2. Let B be a block of infinite representation type of the
group algebra KG of a finite group G over an algebraically closed field K
such that all simple modules in modB are periodic. Then:

(i) B is a periodic algebra of period 4.
(ii) Every simple module in modB is periodic of period 4.

From the remarkable Tame andWild Theorem of Drozd [12] (see also [10])
the class of finite-dimensional algebras over an algebraically closed field K
may be divided into two disjoint classes. The first class is formed by the
tame algebras for which the indecomposable modules occur in each dimen-
sion in a finite number of discrete and a finite number of one-parameter
families. The second class is formed by the wild algebras whose represen-
tation theory comprises the representation theories of all finite-dimensional
algebras over K. Accordingly, we may realistically hope to classify the inde-
composable finite-dimensional modules only for the tame algebras (see [38,
Chapter XIX] for details and related discussion). We also note that a promi-
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nent class of tame algebras is formed by the algebras of finite representation
type (representation-finite algebras) for which there are only finitely many
isomorphism classes of indecomposable modules.

Then we obtain the following consequence of Theorem 1.1, the main
results of [15], [16], and the tameness of all algebras of pure quaternion type
established in [26].

Corollary 1.3. Let B be a block of the group algebra KG of a finite
group G over an algebraically closed field K such that all simple modules in
modB are periodic. Then B is a tame algebra.

We would like to point out that there are many wild periodic algebras.
For example, with the exception of few cases of small dimension, the prepro-
jective algebras of Dynkin type, or more generally the deformed preprojective
algebras of generalized Dynkin type, are wild periodic algebras (see [6], [22],
[20, Theorem 3.7]).

For a finite group G and a positive integer n, denote by Hn(G,Z) =
ExtnZG(Z,Z) the nth cohomology group of G with coefficients in the trivial
ZG-module Z. A finite group G is called periodic if there exists a positive
integer d such that Hn(G,Z) ∼= Hn+d(G,Z) for all n ≥ 1. Then it has
been proved by Artin and Tate (unpublished, see [9, Theorem XII.11.6] for
details) that a finite group G is periodic if and only if for any prime p dividing
the order of G, the Sylow p-subgroups of G are either cyclic or generalized
quaternion 2-groups, and if and only if every abelian subgroup of G is cyclic.
We note that by a result of Swan [42] the periodic groups are exactly all
finite groups acting freely on finite CW-complexes homotopically equivalent
to spheres. We also mention that all finite groups whose abelian subgroups
are all cyclic have been classified by Zassenhaus [43] (solvable groups case)
and Suzuki [41] (general case), and a complete list of such groups consists of
six families (see [1, Chapter IV] for details on these groups).

As another consequence of Theorem 1.1 we obtain the following charac-
terization of periodic groups.

Corollary 1.4. Let G be a finite group. The following statements are
equivalent:

(i) G is periodic.
(ii) For any algebraically closed field K, every non-projective simple right

KG-module is periodic.

For basic background on the relevant representation theory we refer to
[3], [4], [17], [21], [33], [39], [40].

2. Projective resolutions. Let A be an algebra, and e1, . . . , em a set of
pairwise orthogonal primitive idempotents of A such that P1 = e1A, . . . , Pm
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= emA form a complete set of pairwise non-isomorphic indecomposable pro-
jective right A-modules. Then ei⊗ej for i, j ∈ {1, . . . ,m} is a set of pairwise
orthogonal primitive idempotents of the enveloping algebra Ae = Aop ⊗K A
such that P (i, j) = (ei ⊗ ej)Ae = Aei ⊗ ejA, for i, j ∈ {1, . . . ,m}, form a
complete set of pairwise non-isomorphic indecomposable projective right Ae-
modules (see [40, Proposition IV.11.3]). We also note that Si = eiA/ei radA
for i ∈ {1, . . . ,m} give a complete set of pairwise non-isomorphic simple
right A-modules.

The following result by Happel [25, Lemma 1.5] (based on [9, Corol-
lary 4.4]) describes the terms of a minimal projective resolution of A in
modAe.

Proposition 2.1. Let A be an algebra. Then there is in modAe a min-
imal projective resolution of A of the form

· · · → Pn
dn−→ Pn−1 −→ · · · → P1

d1−→ P0
d0−→ A→ 0,

where
Pn =

⊕
1≤i,j≤m

P (i, j)dimK ExtnA(Si,Sj) for any n ∈ N.

We note that in particular we obtain pdAe A = gl.dimA. Hence, A is a
projective module in modAe if and only if A is a semisimple algebra.

We also recall an important property of the syzygy bimodules of an al-
gebra (see [40, Lemma IV.11.16]).

Lemma 2.2. Let A be an algebra. For any positive integer n, the module
Ωn
Ae(A) is projective as a left A-module and projective as a right A-module.

The following fact has been mentioned in [24, proof of Theorem 1.4] as
a consequence of Proposition 2.1. We will provide an explicit proof.

Proposition 2.3. Let A be an algebra and S a simple right A-module.
Then, for any positive integer n, we have an isomorphism of right A-modules

Ωn
A(S)

∼= S ⊗A Ωn
Ae(A).

Proof. Let e1, . . . , em be a set of pairwise orthogonal primitive idempo-
tents of A such that S1 = e1A/e1 radA, . . . , Sm = emA/em radA is a com-
plete set of pairwise non-isomorphic simple right A-modules. We may assume
that S = Sr for some r ∈ {1, . . . ,m}. Moreover, let P (i, j) = (ei ⊗ ej)Ae =
Aei⊗ejA for i, j ∈ {1, . . . ,m}. It follows from Proposition 2.1 that A admits
a minimal projective resolution in modAe of the form

· · · → Pn
dn−→ Pn−1 −→ · · · → P1

d1−→ P0
d0−→ A→ 0,

where
Pn =

⊕
1≤i,j≤m

P (i, j)dimK ExtnA(Si,Sj)
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for any n ∈ N. For i, j ∈ {1, . . . ,m}, we have isomorphisms of right A-
modules

S ⊗A P (i, j) = Sr ⊗A (Aei ⊗K ejA) ∼= (ejA)
dimK(Sr⊗AAei),

and Sr ⊗A Aei = 0 for r 6= i, and dimK Si ⊗A Aei = dimK(eiAei/ei radAei)
= 1, because K is algebraically closed. Then, applying Proposition 2.1 and
Lemma 2.2 (see also the proof of [40, Proposition IV.11.17]), we conclude
that

· · · → S ⊗A Pn
1⊗Adn−−−−→ S ⊗A Pn−1 −→ · · · → S ⊗A P1

1⊗Ad1−−−−→ S ⊗A P0
1⊗Ad0−−−−→ S ⊗A A→ 0

is a projective resolution of S = S ⊗A A in modA. Moreover, a projective
right A-module ejA occurs in S ⊗A Pn with multiplicity dimK ExtnA(S, Sj).
This shows that it is a minimal projective resolution of S in modA. Fix
a positive integer n. It follows from Lemma 2.2 that the canonical exact
sequence of A-A-bimodules

0→ Ωn
Ae(A)

un−1−−−→ Pn−1
dn−1−−−→ Ωn−1

Ae (A)→ 0,

with un−1 the canonical embedding, splits as an exact sequence of left A-
modules and as an exact sequence of right A-modules. Hence the induced
exact sequence of right A-modules

0→ S ⊗A Ωn
Ae(A)

1⊗Aun−1−−−−−−→ S ⊗A Pn−1
1⊗Adn−1−−−−−−→ S ⊗A Ωn−1

Ae (A)→ 0

splits. Therefore, we obtain isomorphisms of right A-modules

Ωn
A(S)

∼= Ker(1⊗ dn−1) = Im(1⊗ un−1) ∼= S ⊗A Ωn
Ae(A).

We obtain the following immediate consequence of the above proposition.

Corollary 2.4. Let A be a periodic indecomposable algebra of period d.
Then every simple module in modA is periodic of period dividing d.

We shall use the following application of this result.

Corollary 2.5. Let A be a representation-infinite, symmetric, inde-
composable periodic algebra of period 4. Then every simple module in modA
is periodic of period 4.

Proof. It follows from Corollary 2.4 that every simple module in modA
is periodic of period dividing 4. However, if the period of a simple module
in modA is 1 or 2, then the indecomposability and symmetry of A force A
to be of finite representation type. Hence the claim follows.

3. Complexity of modules. We say that an N-graded K-vector space
V =

⊕
n∈N Vn has polynomial growth if there are a non-negative integer c

and a non-zero real constant µ with dimK Vn ≤ µnc−1 for n � 0. If these
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exist then the smallest such c is denoted by γ(V ) and is called the rate of
growth of V . If V is not of polynomial growth then we set γ(V ) =∞.

Let A be a self-injective algebra and M a module in modA. Consider a
minimal projective resolution

· · · → Pn −→ Pn−1 −→ · · · → P1 −→ P0 −→M → 0

ofM in modA. If γ(
⊕

n∈N Pn)<∞, then following Alperin [2] we set cA(M)
= γ(

⊕
n∈N Pn) and call it the complexity of M . Observe that cA(M) = 0 if

and only if M is projective. Moreover, if M is periodic, then cA(M) = 1.
The following fact is a consequence of the horseshoe lemma (see [4, Lem-

ma 2.5.1]).

Lemma 3.1. Let A be a self-injective algebra such that all simple modules
in modA are periodic. Then every non-projective indecomposable module
in modA has complexity 1.

For a self-injective algebra A, we denote by Γ sA the stable Auslander–
Reiten quiver of A, obtained from the Auslander–Reiten quiver ΓA of A by
removing the projective modules and the arrows attached to them.

Theorem 3.2. Let A be a symmetric algebra with Γ sA having no compo-
nent of type ZA∞. The following statements are equivalent:

(i) All simple modules in modA are periodic.
(ii) All non-projective indecomposable modules in modA are periodic.

Proof. The implication (ii)⇒(i) holds trivially. Assume that the state-
ment (i) holds. LetM be a non-projective indecomposable module in modA.
It follows from Lemma 3.1 that cA(M) = 1. Since A is a symmetric algebra,
the Auslander–Reiten translate τA(M) of M is isomorphic to Ω2

A(M) (see
[40, Corollary IV.8.3]). Hence cA(M) = 1 implies that there is a common
bound on the dimensions of indecomposable modules in the τA-orbit of M
in ΓA. Then it follows from [31, Theorem 3.9] that the component C of Γ sA
containing M is either a stable tube ZA∞/(τ r) for some r ≥ 1, or has the
form ZA∞. Thus C is a stable tube ZA∞/(τ r), by the assumption on A. But
then Ω2r

A (M) ∼= τ rA(M) ∼=M , and consequently M is periodic. Therefore, (i)
implies (ii).

We would like to mention that there are symmetric algebras having in-
decomposable non-periodic finite-dimensional modules of complexity 1. For
a non-zero element q of K, Liu and Schulz considered in [32] a symmetric
algebra Λ(q) of dimension 8 which is given by generators x0, x1, x2 and rela-
tions x2i = 0 and xi+1xi + qxixi+1 = 0 for i = 0, 1, 2 (where x3 = x0). More-
over, for any q which is not a root of unity, they constructed a 4-dimensional
cyclic non-periodic right Λ(q)-moduleM such that all syzygies Ωn

Λ(q)(M) are
4-dimensional, and hence cΛ(q)(M) = 1.
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We also mention that there are symmetric algebras A such that, for
any non-projective indecomposable module M in modA, cA(M) = ∞. For
example, this is the case for all symmetric algebras of wild tilted type (see
[19, Theorem 9.4]).

Let now K be of characteristic p > 0, G a finite group whose order is
divisible by p, and A = KG. Recall that the p-rank of G is the maximal
positive integer r such that G has a subgroup isomorphic to an elementary
abelian p-group Zrp = Zp × · · · × Zp (r times). By Evens’ Theorem [23], if
M is any non-projective indecomposable module in modA, then H∗(G,M)
is a noetherian module over the ring H∗(G,K), and the latter is a finitely
generated graded K-algebra. Then we have the following consequence of this
result and a result due to Quillen [34], [35] (see [19, Theorem 9.10]).

Theorem 3.3. Let K be of characteristic p > 0, G a finite group whose
order is divisible by p, and M a non-projective indecomposable module in
modKG. Then the complexity cKG(M) exists and is bounded by the p-rank
of G.

The following fact due to Eisenbud [14] is well known (see also [5, Theo-
rem 5.10.4] for a proof due to Carlson).

Theorem 3.4. Let K be of characteristic p > 0, G a finite group whose
order is divisible by p, and M a non-projective indecomposable module in
modKG. Then cKG(M) = 1 if and only if M is a periodic module.

The following proposition will be essential for the proof of Theorem 1.1.

Proposition 3.5. Let K be of characteristic p > 0, D a p-group, and
assume that K is a periodic module in modKD. Then either D is a cyclic
group or p = 2 and D is a generalized quaternion 2-group.

Proof. Since D is a p-group, K is the only simple module in modKD
[4, Lemma 3.14.1]. Then it follows from Lemma 3.1 that every module in
modKD has complexity at most 1. We claim that D does not have a non-
cyclic elementary abelian p-subgroup. Assume, for the contrary, that D con-
tains a subgroup Q isomorphic to Zp × Zp. Then the trivial module K in
KQ has complexity 2. This follows from [8, Proposition 7.5] where a min-
imal projective resolution for the trivial module K over the group algebra
of an elementary abelian p-group over K was constructed. By Green’s inde-
composablity theorem (see [33, Chapter 4, Section 7]), tensoring a minimal
projective resolution of the module K in modKQ by − ⊗KQ KD, we ob-
tain a minimal projective resolution of the module K ⊗KQKD in modKD.
This means that the indecomposable module K ⊗KQ KD in modKD has
complexity at least 2, a contradiction. Therefore, the required claim follows.
Then we conclude that either D is cyclic, or p = 2 and D is a generalized
quaternion 2-group (see [9, Theorem XII.11.6] or [30, Theorem 5.3.7]).
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4. Proof of Theorem 1.1. Let K be of characteristic p > 0 and G a
finite group whose order is divisible by p. Recall that a vertex of an inde-
composable module M in modKG is a minimal p-subgroup Q of G (unique
up to conjugation) such that M is a direct summand of M ⊗KQ KG (see
[3, III.9]).

We need the following lemma.

Lemma 4.1. Let K be of characteristic p > 0, G a finite group whose
order is divisible by p, and B a block of KG with a defect group D which is
normal in G. Then every simple module in modB is a direct summand of
K ⊗KD KG and has vertex D.

Proof. It is well known that a normal p-subgroup of G acts trivially on
any simple module in modKG, and that it is contained in its vertex (see
[33, Theorem 4.7.8]). Hence, for any simple module S in modKD, the group
D acts trivially on S, and D is contained in its vertex. Moreover, a vertex
of any module in modB is contained in D (see [33, Theorem 5.1.9]). This
shows that every simple module S in modB has vertex D. Then, since S
is trivial as a right KD-module, this implies that S is a direct summand of
K ⊗KD KG, by definition of a vertex.

Proof of Theorem 1.1. Let B be a block of infinite representation type of
the group algebra KG of a finite group G over an algeraically closed field K.
Then K is of positive characteristic p dividing the order of G, and the defect
group D = DB of B is a non-cyclic p-subgroup of G.

The implication (iii)⇒(i) follows from Corollary 2.4. Furthermore, the
implication (ii)⇒(iii) follows from [20, Proposition 5.8 and Theorem 5.9] and
the fact that periodicity of algebras is invariant under derived equivalences
[37], [21]. Therefore, it remains to show that (i) implies (ii).

Assume that all simple modules in modB are periodic.

Case 1. Assume thatD is a normal subgroup ofG. Then, by Lemma 4.1,
all simple modules in modB occur as direct summands of the module
K ⊗KD KG. As well, if a module M in modKG is a direct summand of
K ⊗KD KG, then Ωd

KG(M) is a direct summand of Ωd
KG(K)⊗KD KG, for

any d ≥ 1. Let S be a simple module in modB. Then Ωd
KG(S)

∼= S for
some positive integer d. In particular, Ωd

KG(S) is simple and hence a direct
summand of K ⊗KD KG, and D acts trivially on Ωd

KG(S). On the other
hand, Ωd

KG(S) is a direct summand of Ωd
KD(K)⊗KDKG. This implies that

D acts trivially on Ωd
KD(K). Since Ωd

KD(K) is indecomposable, we conclude
that Ωd

KD(K) ∼= K in modKD, that is, K is a periodic module in modKD.
Then it follows from Proposition 3.5 (and the assumption on D) that p = 2
and D is a generalized quaternion 2-group.
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General case. We use general theory to reduce to Case 1. Let N =
NG(D) be the normalizer of D in G. By Brauer’s First Main Theorem there
is a bijection, called Brauer correspondence, between the blocks of KG with
defect group D and the blocks of KN with defect group D (see [4, The-
orem 6.2.6] or [33, Theorem 5.2.15]). Let b be the block of KN which is
the Brauer correspondent of B. Then there is the Green correspondence
between the indecomposable modules in modB with vertex D and the
indecomposable modules in mod b with vertex D (see [3, Theorem 11.1]).
It is given as taking direct summands of an induced module from modKN
to modKG, or a restricted module from modKG to modKN . As well, in-
duction and restriction takes projective modules to projective modules. This
implies that the Green correspondence preserves the complexity of modules.
It follows from Lemma 3.1 that all non-projective indecomposable modules
in modB have complexity 1. Hence we conclude that all non-projective inde-
composable modules in mod b with vertex D have complexity 1. Further, by
Lemma 4.1, all simple modules in mod b are direct summands of the module
K⊗KDKN and have vertexD. This implies that all simple modules inmod b
have complexity 1, and consequently are periodic, by Theorem 3.4. Since D
is a normal subgroup of N , and D is a defect group of b, we conclude from
Case 1 that p = 2 and D is a generalized quaternion 2-group. This completes
the proof of Theorem 1.1.
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