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MAXIMAL FUNCTION IN BEURLING–ORLICZ AND
CENTRAL MORREY–ORLICZ SPACES

BY

LECH MALIGRANDA (Luleå) and KATSUO MATSUOKA (Tokyo)

Abstract. We define Beurling–Orlicz spaces, weak Beurling–Orlicz spaces, Herz–
Orlicz spaces, weak Herz–Orlicz spaces, central Morrey–Orlicz spaces and weak central
Morrey–Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy–
Littlewood maximal function on these spaces are investigated.

1. Introduction. Arne Beurling [B] introduced the spaces Bp(Rn),
which we call the Beurling spaces, together with their preduals Ap(Rn), the
Beurling algebras (they are, in fact, convolution algebras), and he proved the
duality (Ap(Rn))∗ = Bp′(Rn), where 1/p + 1/p′ = 1. Then Feichtinger [F]
observed that the spaces Bp(Rn) can be described by the condition ‖f‖Bp =
supk≥0 2−kn/p‖fχk‖p < ∞, where χ0 is the characteristic function of the
unit ball {x ∈ Rn : |x| ≤ 1}, χk is the characteristic function of the annulus
{x ∈ Rn : 2k−1 < |x| ≤ 2k}, k = 1, 2, . . . , and ‖ · ‖p is the norm in Lp(Rn).
Note that this observation is a special case of earlier results of Gilbert [Gi].
In terms of duality the spaces Ap(Rn) can be described by the condition
‖f‖Ap =

∑∞
k=0 2kn/p

′‖fχk‖p <∞.
Herz [H] further generalized Ap(Rn) and Bp(Rn) by defining the spaces

Kα
p,q(Rn) depending on α ∈ R and 0 < p, q ≤ ∞:

Kα
p,q(Rn) = {f ∈ Lploc(R

n) : ‖f‖Kα
p,q

= ‖{2kα‖fχk‖p}‖lq(N∪{0}) <∞};
they are called non-homogeneous Herz spaces. In 1989 García-Cuerva [Ga,
Proposition 1.2] showed that f ∈ Bp(Rn) if and only if

(1) sup
r≥1

(
1

|Br|

�

Br

|f(x)|p dx
)1/p

<∞,

where Br is the ball with center at 0 and radius r > 0, and the quantity (1)
is equivalent to the norm ‖f‖Bp (see also [CL] for the one-dimensional case).
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The homogeneous Herz and Beurling spaces are defined as
K̇α
p,q(Rn) = {f ∈ Lploc(R

n) : ‖f‖K̇α
p,q

= ‖{2kα‖fχk‖p}‖lq(Z) <∞}

and

Ḃp(Rn) =

{
f ∈ Lploc(R

n) : ‖f‖Ḃp = sup
r>0

(
1

|Br|

�

Br

|f(x)|p dx
)1/p

<∞
}
.

The classical Morrey spaces Mp
λ(Rn) were introduced in 1938 by Morrey

[Mo]. In today’s language, these spaces consist of all functions f ∈ Lploc(R
n)

such that

‖f‖Mp
λ

= sup
x0∈Rn, r>0

(
1

|B(x0, r)|λ
�

B(x0,r)

|f(x)|p dx
)1/p

<∞,

where B(x0, r) denotes the ball with center at x0 ∈ Rn and radius r > 0.
Note that if the supremum is taken over all sets of measure ≤ t, then we
get the p-convexifications of the Marcinkiewicz spacesM (p)

1−λ on (0,∞) which
consist of all Lebesgue measurable functions f such that

‖f‖
M

(p)
1−λ

=
∥∥|f |p∥∥1/p

M1
1−λ

= sup
t>0

(
1

tλ

t�

0

f∗(s)p ds

)1/p

<∞

(cf. [KPS, pp. 112–114], [M1, p. 164]). There are also the local Morrey spaces
LMp

λ(Rn, x0) at any fixed x0 ∈ Rn (cf. [BG]) and the non-homogeneous
central Morrey spaces Bp,λ(Rn), which were first introduced in [ALG] as

(2) Bp,λ(Rn)

=

{
f ∈ Lploc(R

n) : ‖f‖Bp,λ = sup
r≥1

(
1

|Br|λ
�

Br

|f(x)|p dx
)1/p

<∞
}
.

Note that the homogeneous central Morrey spaces Ḃp,λ(Rn), i.e., when the
supremum in (2) is taken over all r > 0, are LMp

λ(Rn, 0), the special cases
of local Morrey spaces.

Chiarenza and Frasca [CF] proved that if f ∈ Mp
λ(Rn), then the max-

imal function Mf is finite almost everywhere, the strong-type estimate
‖Mf‖Mp

λ
≤ ‖f‖Mp

λ
holds if p > 1 and 0 ≤ λ < 1, and for p = 1 a weak-type

estimate is also valid. The results on boundedness of the Hardy–Littewood
maximal operator in the local and global Morrey-type spaces LMp,q

w (Rn) and
GMp,q

w (Rn), respectively, were investigated by Burenkov and Guliyev [BG].
We remark that the special case of the global Morrey–Orlicz spaces was

investigated by Nakai [N1]–[N3] and Sawano, Sugano and Tanaka [SST].
In this paper we combine basic definitions from the theory of Orlicz spaces

with the Beurling and local Morrey constructions and introduce Beurling–
Orlicz spaces, central Morrey–Orlicz spaces, weak Beurling–Orlicz spaces,
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weak central Morrey–Orlicz spaces and their homogeneous versions. We also
study some relations between them and their relations to some Herz–Orlicz
spaces. Furthermore, the boundedness of the Hardy–Littlewood maximal
operator between these spaces is proved as extension of the previous results.
Related results between weak-type spaces are also investigated.

2. Beurling–Orlicz spaces BΦ(Rn) and ḂΦ(Rn). We start by giving
necessary definitions. For a measurable set A ⊂ Rn we denote its Lebesgue
measure by |A| and its characteristic function by χA. Recall that B(x, r)
denotes the open ball with center at x ∈ Rn and radius r > 0, that is,
{y ∈ Rn : |x − y| < r}, and let Br = B(0, r). Moreover, for k ∈ Z, let
Ck = B2k \ B2k−1 , and for k ∈ N, let Pk = Ck and P0 = B1. For two
Banach or quasi-Banach spaces X and Y the symbol X

C
↪→ Y means that the

embedding X ⊂ Y is continuous with norm at most C, i.e., ‖f‖Y ≤ C‖f‖X
for all f ∈ X. When X

C
↪→ Y holds with some (unknown) constant C > 0,

we simply write X ↪→ Y . Furthermore, X = Y means that the spaces are
the same and the norms are equivalent.

We also need the definition of Orlicz spaces on Rn, of weak Orlicz spaces
on Rn and some of their properties to be used later on (see [M1] for details).

A function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is an in-
creasing, continuous and convex function with Φ(0) = 0. Each such function
Φ has an integral representation

(3) Φ(u) =

u�

0

p(s) ds,

where p is a non-decreasing right-continuous function. Here, Φ′(u) = p(u)
a.e. on (0,∞).

If we want to include in the Orlicz spaces, for example, L∞(Rn) and
Lp(Rn) ∩ L∞(Rn), we need to consider the so-called Young functions.
A Young function is a non-decreasing convex function Φ : [0,∞) → [0,∞]
with limu→+0 Φ(u) = Φ(0) = 0, and not identically 0 or ∞ in (0,∞). It may
have a jump to∞ at some point u > 0, but then it should be left-continuous
at u.

For any Young function Φ the Orlicz space LΦ(Rn) consists of all classes of
Lebesgue measurable real functions on Rn such that

	
Rn Φ(ε|f(x)|) dx < ∞

for some ε = ε(f) > 0 with the Luxemburg–Nakano norm

‖f‖LΦ = ‖f‖LΦ(Rn) = inf
{
ε > 0 :

�

Rn
Φ(|f(x)|/ε) dx ≤ 1

}
;

it is a Banach space (cf. [M2, pp. 125–127]).
The fundamental function of the Orlicz space LΦ(Rn) is

ϕLΦ(t) = ‖χA‖LΦ(Rn) = ‖χ[0,|A|]‖LΦ([0,∞)) = 1/Φ−1(1/t),
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where |A| = t and Φ−1 is the right-continuous inverse of Φ defined by
Φ−1(v) = inf{u ≥ 0 : Φ(u) > v} with inf ∅ =∞.

The weak Orlicz space WLΦ(Rn) generated by the Young function Φ is
a space larger than LΦ(Rn), determined by the quasi-norm

‖f‖WLΦ = inf
{
ε > 0 : sup

u>0
Φ(u/ε)df (u) ≤ 1

}
,

where df (u) = |{x ∈ Rn : |f(x)| > u}|. In fact, if f ∈ LΦ(Rn), then for any
ε > ‖f‖LΦ and arbitrary u > 0, we have

1 ≥
�

Rn
Φ(|f(x)|/ε) dx ≥

�

{x∈Rn : |f(x)|>u}

Φ(|f(x)|/ε) dx ≥ Φ(u/ε)df (u),

and so f ∈WLΦ(Rn) with ‖f‖WLΦ ≤ ε. Hence, LΦ(Rn)
1
↪→WLΦ(Rn). Also

we remark that

‖f‖WLΦ = sup
t>0

tϕLΦ(df (t)) = sup
t>0

ϕLΦ(t)f∗(t),

where f∗ is the non-increasing rearrangement of f . Therefore, WLΦ(Rn)
given by the last quasi-norm is also the Marcinkiewicz space M∗ϕ

LΦ
(Rn) (cf.

[O, Section 9] and [M3, Part 4.1.2]).
To each Young function Φ one can associate another convex function Φ∗,

i.e., the complementary function to Φ, which is defined by

Φ∗(v) = sup
u>0

[uv − Φ(u)] for v ≥ 0.

Then Φ∗ is also a Young function and Φ∗∗ = Φ. Note that

u ≤ Φ−1(u)Φ∗−1(u) ≤ 2u for all u > 0.

We say that a Young function Φ satisfies the ∆2-condition, and we write
Φ ∈ ∆2, if 0 < Φ(u) < ∞ for u > 0 and there exists a constant C ≥ 1 such
that Φ(2u) ≤ CΦ(u) for all u > 0.

Sometimes in the investigations of Orlicz spaces or spaces based on Orlicz
spaces, it is enough to consider only the case of Orlicz functions, because
the first author proved that for any Young function Φ there is an Orlicz
function Ψ such that one of the four cases holds: LΦ = LΨ , LΦ = LΨ ∩ L∞,
LΦ = LΨ + L∞ and LΦ = L∞ (see [M1, Theorem 12.4]).

Now, we are ready to define the non-homogeneous and the homogeneous
Beurling–Orlicz and weak Beurling–Orlicz spaces. For any Young function
Φ and a set A ⊂ Rn with 0 < |A| <∞, let

‖f‖Φ,A = inf

{
ε > 0 :

1

|A|

�

A

Φ(|f(x)|/ε) dx ≤ 1

}
,

‖f‖Φ,A,∞ = inf

{
ε > 0 : sup

u>0
Φ(u/ε)

1

|A|
dfχA(u) ≤ 1

}
.
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Then the non-homogeneous Beurling–Orlicz space BΦ(Rn) and the non-
homogeneous weak Beurling–Orlicz space WBΦ(Rn) are defined by

BΦ(Rn) =
{
f ∈ L1

loc(Rn) : ‖f‖BΦ = sup
r≥1
‖f‖Φ,Br <∞

}
,(4)

WBΦ(Rn) =
{
f ∈ L1

loc(Rn) : ‖f‖WBΦ = sup
r≥1
‖f‖Φ,Br,∞ <∞

}
.(5)

If in (4) and (5) the supremums are taken over all r > 0, then we have the
definitions of the homogeneous Beurling–Orlicz space ḂΦ(Rn) and the homo-
geneous weak Beurling–Orlicz space WḂΦ(Rn). In particular, for Φ(u) = up,
1 ≤ p <∞, these spaces are the classical spaces Bp(Rn), WBp(Rn), Ḃp(Rn)
and WḂp(Rn) (cf. [CL], [F], [Ga] and [Ma]).

Note that since LΦ(Rn)
1
↪→ WLΦ(Rn), we obviously have BΦ(Rn)

1
↪→

WBΦ(Rn) and ḂΦ(Rn)
1
↪→WḂΦ(Rn). It is also easy to prove that

BΦ(Rn)
Φ−1(1)
↪→ B1(Rn) and ḂΦ(Rn)

Φ−1(1)
↪→ Ḃ1(Rn).

In fact, if f ∈ BΦ(Rn) and ‖f‖BΦ ≤ 1, then ‖f‖Φ,Br ≤ 1 for any r ≥ 1.
Therefore, 1

|Br|
	
Br
Φ
( |f(x)|

1+ε

)
dx ≤ 1 for any r ≥ 1 and any ε > 0. Then, by

the Jensen inequality, we obtain

Φ

(
1

|Br|

�

Br

|f(x)|
1 + ε

dx

)
≤ 1

|Br|

�

Br

Φ

(
|f(x)|
1 + ε

)
dx ≤ 1,

and so 1
|Br|

	
Br
|f(x)| dx ≤ (1 + ε)Φ−1(1) for any r ≥ 1 and any ε > 0, i.e.,

f ∈ B1(Rn) and ‖f‖B1 ≤ Φ−1(1). The proof of the embedding for ḂΦ(Rn)
is the same.

We can also describe the above spaces as some non-homogeneous and ho-
mogeneous Herz–Orlicz and weak Herz–Orlicz spaces in the way Feichtinger
[F] did for Bp(Rn) and Ḃp(Rn).

Proposition 1. Let Φ be an Orlicz function. Then with equivalent norms
the following hold:

BΦ(Rn) = KΦ,∞(Rn)(i)

:=
{
f ∈ L1

loc(Rn) : ‖f‖KΦ,∞ = sup
k∈N∪{0}

‖f‖Φ,Pk <∞
}
,

WBΦ(Rn) = WKΦ,∞(Rn)(ii)

:=
{
f ∈ L1

loc(Rn) : ‖f‖WKΦ,∞ = sup
k∈N∪{0}

‖f‖Φ,Pk,∞ <∞
}
,

ḂΦ(Rn) = K̇Φ,∞(Rn)(iii)

:=
{
f ∈ L1

loc(Rn) : ‖f‖K̇Φ,∞ = sup
k∈Z
‖f‖Φ,Ck <∞

}
,
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WḂΦ(Rn) = WK̇Φ,∞(Rn)(iv)

:=
{
f ∈ L1

loc(Rn) : ‖f‖WK̇Φ,∞
= sup

k∈Z
‖f‖Φ,Ck,∞ <∞

}
.

Proof. (i) Let f ∈ KΦ,∞(Rn). Taking r ≥ 1 we can find k ∈ N∪{0} such
that 2k−1 < r ≤ 2k. Then

�

Br

Φ

(
|f(x)|
‖f‖KΦ,∞

)
dx ≤

k∑
j=0

�

Pj

Φ

(
|f(x)|
‖f‖KΦ,∞

)
dx ≤

k∑
j=0

�

Pj

Φ

(
|f(x)|
‖f‖Φ,Pj

)
dx

≤
k∑
j=0

|Pj | = |B2k | ≤ |B2r| = 2n|Br|.

Therefore, by the convexity of Φ, we obtain
1

|Br|

�

Br

Φ

(
|f(x)|

2n‖f‖KΦ,∞

)
dx ≤ 1,

which implies that
‖f‖BΦ = sup

r≥1
‖f‖Φ,Br ≤ 2n‖f‖KΦ,∞ .

On the other hand, if f ∈ BΦ(Rn), then for any k ∈ N ∪ {0} we have
�

Pk

Φ

(
|f(x)|
‖f‖BΦ

)
dx ≤

�

B
2k

Φ

(
|f(x)|
‖f‖Φ,B

2k

)
dx ≤ |B2k | =

2n

2n − 1
|Pk|.

Thus, for C = 2n

2n−1 > 1, again by the convexity of Φ, we obtain
1

|Pk|

�

Pk

Φ

(
|f(x)|
C
‖f‖BΦ

)
dx ≤ 1,

which gives ‖f‖KΦ,∞ ≤ C‖f‖BΦ ≤ 2‖f‖BΦ .
(ii) Let f ∈ WKΦ,∞(Rn). For r ≥ 1 there exists k ∈ N ∪ {0} such that

2k−1 < r ≤ 2k. Then

Φ(u)

∣∣∣∣{x ∈ Br :
|f(x)|

‖f‖WKΦ,∞

> u

}∣∣∣∣ ≤ k∑
j=0

Φ(u)

∣∣∣∣{x ∈ Pj :
|f(x)|

‖f‖WKΦ,∞

> u

}∣∣∣∣
≤

k∑
j=0

Φ(u)

∣∣∣∣{x ∈ Pj :
|f(x)|
‖f‖Φ,Pj ,∞

> u

}∣∣∣∣ ≤ k∑
j=0

|Pj | = |B2k | ≤ 2n|Br|.

Therefore, by the convexity of Φ, we obtain

Φ(u)
1

|Br|

∣∣∣∣{x ∈ Br :
|f(x)|

2n‖f‖WKΦ,∞

> u

}∣∣∣∣ ≤ 1,

which implies that

‖f‖WBΦ = sup
r≥1
‖f‖Φ,Br,∞ ≤ 2n‖f‖WKΦ,∞ .
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On the other hand, if f ∈WBΦ(Rn), then for any k ∈ N ∪ {0},

Φ(u)

∣∣∣∣{x ∈ Pk :
|f(x)|
‖f‖WBΦ

> u

}∣∣∣∣ ≤ Φ(u)

∣∣∣∣{x ∈ B2k :
|f(x)|

‖f‖Φ,B
2k
,∞

> u

}∣∣∣∣
≤ |B2k | =

2n

2n − 1
|Pk| = C|Pk|.

Thus,

Φ(u)
1

|Pk|

∣∣∣∣{x ∈ Pk :
|f(x)|

C2n‖f‖WBΦ
> u

}∣∣∣∣ ≤ 1,

and so ‖f‖WKΦ,∞ ≤ C‖f‖WBΦ ≤ 2‖f‖WBΦ . The proofs of (iii) and (iv) are
the same as those of (i) and (ii), respectively.

Remark 2. We can prove in the same way as in Proposition 1 that

BΦ(Rn) = K∗Φ,∞(Rn)

:=
{
f ∈ L1

loc(Rn) : ‖f‖K∗Φ,∞ = sup
k∈N∪{0}

‖f‖Φ,Pk,2kn <∞
}
,

where
‖f‖Φ,Pk,2kn = inf

{
ε > 0 : 2−kn

�

Pk

Φ(|f(x)|/ε) dx ≤ 1
}
,

and ‖f‖K∗Φ,∞ ≤ |B1| ‖f‖BΦ ≤ 4n

2n−1‖f‖K∗Φ,∞ . Similar results are true for the
other three cases.

3. Central Morrey–Orlicz spaces BΦ,λ(Rn) and ḂΦ,λ(Rn). For an
Orlicz function Φ, and numbers λ ∈ R and r > 0, let ‖f‖Φ,λ,Br denote the
λ-central mean Luxemburg–Nakano norm of f on Br defined by

‖f‖Φ,λ,Br = inf

{
ε > 0 :

1

|Br|λ
�

Br

Φ(|f(x)|/ε) dx ≤ 1

}
,

and the corresponding (smaller) weak λ-central mean Luxemburg–Nakano
norm ‖f‖Φ,λ,Br,∞ is defined by

‖f‖Φ,λ,Br,∞ = inf

{
ε > 0 : sup

u>0
Φ(u)

1

|Br|λ
d(fχBr , εu) ≤ 1

}
.

Then using these notions we can define the non-homogeneous central Morrey–
Orlicz space BΦ,λ(Rn) and the non-homogeneous weak central Morrey–Orlicz
space WBΦ,λ(Rn):

BΦ,λ(Rn) =
{
f ∈ L1

loc(Rn) : ‖f‖BΦ,λ = sup
r≥1
‖f‖Φ,λ,Br <∞

}
,(6)

WBΦ,λ(Rn) =
{
f ∈ L1

loc(Rn) : ‖f‖WBΦ,λ = sup
r≥1
‖f‖Φ,λ,Br,∞ <∞

}
.(7)
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If in (6) and (7) the supremums are taken over all r > 0, then we have the
definitions of the homogeneous central Morrey–Orlicz space ḂΦ,λ(Rn) and
the homogeneous weak central Morrey–Orlicz space WḂΦ,λ(Rn).

Remark 3. Clearly BΦ,0(Rn) = ḂΦ,0(Rn) = LΦ(Rn), WBΦ,0(Rn) =
WḂΦ,0(Rn) =WLΦ(Rn) and BΦ,1(Rn) =BΦ(Rn), WBΦ,1(Rn) =WBΦ(Rn).
The last two equalities also hold for the homogeneous cases. In particu-
lar, if Φ(u) = up, 1 ≤ p < ∞, and λ ∈ R, then BΦ,λ(Rn) = Bp,λ(Rn)
and WBΦ,λ(Rn) = WBp,λ(Rn), where WBp,λ(Rn) = {f ∈ Lploc(R

n) :
‖f‖WBp,λ <∞} with

‖f‖WBp,λ = sup
r≥1

sup
u>0

u

(
1

|Br|λ
|{x ∈ Br : |f(x)| > u}|

)1/p

is the non-homogeneous weak central Morrey space. The same properties hold
for the homogeneous cases, using WḂp,λ(Rn) = {f ∈ Lploc(R

n) : ‖f‖WḂp,λ

<∞} with

‖f‖WḂp,λ = sup
r>0

sup
u>0

u

(
1

|Br|λ
|{x ∈ Br : |f(x)| > u}|

)1/p

which is the homogeneous weak central Morrey space. For WBp,λ(Rn) and
WḂp,λ(Rn), see [KMNS].

Note that since LΦ(Rn)
1
↪→ WLΦ(Rn), for any Orlicz function Φ and

λ ∈ R we have BΦ,λ(Rn)
1
↪→WBΦ,λ(Rn) and ḂΦ,λ(Rn)

1
↪→WḂΦ,λ(Rn).

4. Boundedness of the Hardy–Littlewood maximal function on
BΦ,λ(Rn) and ḂΦ,λ(Rn). The Hardy–Littlewood maximal function Mf of
f ∈ L1

loc(Rn) at x ∈ Rn is defined by

Mf(x) = sup
B3x

1

|B|

�

B

|f(y)| dy,

where the supremum is taken over all open balls B ⊂ Rn containing x.
A sublinear operatorM sending f toMf is also called the Hardy–Littlewood
maximal operator.

The following modular strong-type and weak-type inequalities concerning
the Hardy–Littlewood maximal operatorM hold on the Orlicz space LΦ(Rn).

Theorem 4. Let M be the Hardy–Littlewood maximal operator and Φ be
an Orlicz function.

(i) Φ∗ ∈ ∆2 if and only if there exists a constant C1 ≥ 1 such that

(8)
�

Rn
Φ(Mf(x)/C1) dx ≤

�

Rn
Φ(|f(x)|) dx

provided that the right side of inequality (8) is finite.
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(ii) There exists a constant C2 > 1 such that

(9) sup
u>0

Φ(u)|{x ∈ Rn : Mf(x)/C2 > u}| ≤
�

Rn
Φ(|f(x)|) dx

provided that the right side of inequality (9) is finite.

In order to prove (ii) of Theorem 4 we need the following lemma.

Lemma 5. If Φ is an Orlicz function and Mf(x) <∞ for x ∈ Rn, then

Φ(Mf(x)) ≤MΦ(|f |)(x) for x ∈ Rn.

Proof. Let x ∈ Rn and suppose Mf(x) < ∞. Then, for any 0 < ε < 1,
there exists a ball B0 ⊂ Rn such that B0 3 x and

Mf(x) <
1

|B0|

�

B0

|f(y)| dy + ε.

Further, for an Orlicz function Φ, by the representation (3),

Φ(u+ ε) =

u+ε�

0

p(s) ds =

u�

0

p(s) ds+

u+ε�

u

p(s) ds ≤ Φ(u) + p(u+ ε) ε.

Consequently, by the Jensen inequality we obtain

Φ(Mf(x)) ≤ Φ
(

1

|B0|

�

B0

|f(y)| dy + ε

)
≤ Φ

(
1

|B0|

�

B0

|f(y)| dy
)

+ p

(
1

|B0|

�

B0

|f(y)| dy + ε

)
ε

≤ 1

|B0|

�

B0

Φ(|f(y)|) dy + p(Mf(x) + 1)ε

≤MΦ(|f |)(x) + p(Mf(x) + 1)ε.

Since ε > 0 was arbitrary, this shows Φ(Mf(x)) ≤MΦ(|f |)(x).

Proof of Theorem 4. (i) The strong-type estimate for the maximal func-
tion on [0, 1] was proved already by Lorentz [L, Theorem 4] and also by
Shimogaki [S, Theorem 3], who has the result even for rearrangement invari-
ant spaces on [0, 1] with the Fatou property (cf. also [KPS, Theorem 6.6,
p. 138]). The modular estimate for the maximal function on Rn with the
restriction on Φ to be the so-called N-function was found by Gallardo [G,
Theorem 2.1]. The modular estimate for an Orlicz function Φ was presented
by Krbec and Kokilashvili [KK, Theorem 1.2.1] with some constant C ≥ 1
inside and outside of the integral on the right side of (8).

Now, we give a direct proof of (8). First of all, if
	
RnΦ(|f(x)|) dx <∞,

then ‖f‖LΦ ≤ 1 and so we get Mf(x) < ∞ for almost all x ∈ Rn, be-
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cause LΦ(Rn) ↪→ L1(Rn) + L∞(Rn) (cf. [M1, Theorem 12.1c]) and L1(Rn)
+ L∞(Rn) ⊂ {f ∈ L1

loc(Rn) : Mf < ∞ a.e. in Rn} (cf. [FK, Theorem 2.2])
hold.

Second, it is well-known that the maximal operator M is of weak-type
(1, 1) (this was proved in 1939 independently by Wiener [W] and Marcinkie-
wicz–Zygmund—see [M3, Theorem 15, p. 196]), that is, there exists a con-
stant C3 > 1 such that

(10) sup
λ>0

λ|{x ∈ Rn : Mf(x) > λ}| ≤ C3

�

Rn
|f(x)| dx

for any f ∈ L1(Rn). Also Grafakos [Gr, Theorem 2.1.6] proved (10) with the
constant C3 being at most 3n. Further, Wiener [W] observed the validity of
a stronger inequality,

(11) λ|{x ∈ Rn : Mf(x) > λ}| ≤ 2C3

�

{x∈Rn: |f(x)|>λ/2}

|f(x)| dx

for any f ∈ L1(Rn), which is called the Wiener inequality (cf. [AKMP,
pp. 109 and 118]). In fact, |f | = g + h, where g = |f |χ{|f |≤λ/2} and h =
|f |χ{|f |>λ/2}. Then Mf ≤Mg +Mh ≤ λ/2 +Mh and

{Mf > λ} ⊂ {Mg > λ/2} ∪ {Mh > λ/2}.
Thus, by (10), we have

λ|{x ∈ Rn : Mf(x) > λ}| ≤ λ|{x ∈ Rn : Mh(x) > λ/2}|
≤ 2C3

�

Rn
|h(x)| dx = 2C3

�

{x∈Rn: |f(x)|>λ/2}

|f(x)| dx.

Without loss of generality we can assume that an Orlicz function Φ is dif-
ferentiable on (0,∞). Otherwise we consider the equivalent Orlicz function
Φ1(u) =

	u
0
Φ(t)
t dt with this property, for which

Φ(u/2) ≤
u�

u/2

Φ(t)

t
dt ≤

u�

0

Φ(t)

t
dt = Φ1(u) ≤ Φ(u) for all u > 0.

Using twice the Fubini theorem and the Wiener inequality (11) we obtain
�

Rn
Φ(Mf(x)) dx =

∞�

0

Φ′(λ)|{x ∈ Rn : Mf(x) > λ}| dλ

≤ 2C3

∞�

0

Φ′(λ)

λ

( �

{x∈Rn: |f(x)|>λ/2}

|f(x)| dx
)
dλ

= 2C3

�

Rn
|f(x)|

(2|f(x)|�

0

Φ′(λ)

λ
dλ
)
dx.
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The complementary function Φ∗ satisfies the ∆2-condition if and only if
there exists a constant p > 1 such that pΦ(u) < uΦ′(u) for all u > 0 (cf.
[KR, Theorem 4.3]) and the latter is equivalent to u−pΦ(u) being increasing
on (0,∞) because

[Φ(u)
up

]′
= uΦ′(u)−pΦ(u)

up+1 . Thus, using integration by parts
and the above fact, we obtain

u�

0

Φ′(λ)

λ
dλ ≤ Φ(u)

u
+

u�

0

Φ(λ)

λ2
dλ =

Φ(u)

u
+

u�

0

Φ(λ)

λp
λp−2 dλ

≤ Φ(u)

u
+
Φ(u)

up
up−1

p− 1
=

p

p− 1

Φ(u)

u
.

Therefore,
�

Rn
Φ(Mf(x)) dx ≤ 2C3

�

Rn
|f(x)| p

p− 1

Φ(2|f(x)|)
2|f(x)|

dx

= C3
p

p− 1

�

Rn
Φ(2|f(x)|) dx

and for C ≥ 2C3
p
p−1 by the convexity of Φ we obtain

�

Rn
Φ(Mf(x)/C) dx ≤

�

Rn
Φ(|f(x)|) dx,

which means that estimate (8) holds with C1 ≥ 2C3
p
p−1 , where p = p(Φ).

If (8) holds and 0 6= f ∈ LΦ, then since
	
Rn Φ(|f(x)|/‖f‖LΦ) dx ≤ 1,

estimate (8) means that

‖Mf‖LΦ ≤ C1‖f‖LΦ for any f ∈ LΦ.

In particular,

(8′) ‖MχA‖LΦ ≤ C1‖χA‖LΦ for any 0 < |A| <∞.

Taking in (8′) A = Br with r = (a1uv)−1/n, where ar = |Br|, u > 0 and
v > 1, we get

‖χBr‖LΦ =
1

Φ−1(1/|Br|)
=

1

Φ−1(1/(rn|B1|))
=

1

Φ−1(uv)
≤ 1

uv
Φ∗−1(uv).

On the other hand, if x 6∈ Br then Br ⊂ B(x, 2|x|) since for y ∈ Br we
have

|x− y| ≤ |x|+ |y| ≤ |x|+ r ≤ 2|x|
and

MχBr(x) ≥ 1

|B(x, 2|x|)|

�

B(x,2|x|)

χBr(y) dy =
|B(x, 2|x|) ∩Br|
|B(x, 2|x|)|

=

(
r

2|x|

)n
.
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For g = Φ∗−1(u)χBs with s = (a1u)−1/n we obtain�

Rn
Φ∗(|g(x)|) dx = u|Bs| = usn|B1| = 1.

Since the Luxemburg–Nakano norm is equivalent to the Orlicz norm

‖f‖0LΦ = sup
{ �

Rn
|f(x)g(x)| dx :

�

Rn
Φ∗(|g(x)|) dx ≤ 1

}
(more precisely, ‖f‖LΦ ≤ ‖f‖0LΦ ≤ 2‖f‖LΦ—cf. [KR] or [M1]), it follows that

‖MχBr‖0LΦ = sup
{ �

Rn
|MχBr(x)g(x)| dx :

�

Rn
Φ∗(|g(x)|) dx ≤ 1

}
≥ Φ∗−1(u)

�

Bs

MχBr(x) dx ≥ Φ∗−1(u)
�

Bs\Br

(
r

2|x|

)n
dx

=
Φ∗−1(u)

2na1uv

�

r<|x|<s

1

|x|n
dx (using spherical coordinates)

=
Φ∗−1(u)

2na1uv
na1 ln

s

r
=
Φ∗−1(u)

2nuv
ln v.

Hence, (8′) implies that
Φ∗
−1

(u)

2nuv
ln v ≤ 2C1

1

uv
Φ∗−1(uv) for u > 0 and v > 1.

Thus, taking v = exp(C1 ·2n+2) we obtain 2Φ∗−1(u) ≤ Φ∗−1(u exp(C1 ·2n+2))
for u > 0 or Φ∗(2t) ≤ exp(C1 · 2n+2)Φ∗(t) for every t > 0, and so Φ∗ satisfies
the ∆2-condition.

(ii) By applying Lemma 5 and estimate (10), it follows for u > 0, C3 > 1
and Φ(|f |) ∈ L1(Rn) that

Φ(u)|{x ∈ Rn : Mf(x) > C3u}|
= Φ(u)|{x ∈ Rn : Φ(Mf(x)) > Φ(C3u)}|
= Φ(u)|{x ∈ Rn : MΦ(|f |)(x) > Φ(C3u)}|

≤ Φ(u)C3

Φ(C3 u)

�

Rn
Φ(|f(x)|) dx ≤

�

Rn
Φ(|f(x)|) dx,

and so (9) is proved with C2 = C3.

Using Theorem 4 we can show the following strong-type and weak-type
estimates for the Hardy–Littlewood maximal operator M on the spaces
BΦ,λ(Rn) and ḂΦ,λ(Rn), which include the estimates onBΦ(Rn) and ḂΦ(Rn),
respectively, i.e., the cases of λ = 1.

Theorem 6. Let M be the Hardy–Littlewood maximal operator, Φ be an
Orlicz function and 0 ≤ λ ≤ 1.
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(i) If Φ∗ ∈ ∆2, then M is bounded on BΦ,λ(Rn), that is, ‖Mf‖BΦ,λ ≤
C4‖f‖BΦ,λ for all f ∈ BΦ,λ(Rn) with C4 ≤ 2 max(C12

nλ, 4n).
(ii) M is bounded from BΦ,λ(Rn) to WBΦ,λ(Rn), that is, ‖Mf‖WBΦ,λ ≤

C5‖f‖BΦ,λ for all f ∈ BΦ,λ(Rn) with C5 ≤ 4 · 6n.

The same conclusions hold for homogeneous spaces ḂΦ,λ(Rn).

Proof. (i) Let r ≥ 1 and x ∈ Br. Then

Mf(x) ≤ sup
x∈B⊂B2r

1

|B|

�

B

|f(y)| dy + sup
x∈B\B2r 6=∅

1

|B|

�

B

|f(y)| dy

=: M (1)f(x) +M (2)f(x).

Now, since Φ∗ ∈ ∆2, there exists a constant C1 > 1 such that the strong-
type modular inequality (8) holds. Moreover, for the ball B with radius
r0 > 0 satisfying B ∩Br 6= ∅ and B \B2r 6= ∅ denote by B′0 the smallest ball
centered at 0 and containing B. Then B′0 ⊂ Br+2r0 , r ≤ 2r0, and so

|B′0| ≤ |Br+2r0 | = (r + 2r0)
n|B1| ≤ (4r0)

n|B1| = 4nrn0 |B1| = 4n|B|.

Therefore, for C = max(C1 2nλ, 4n) and 0 6= f ∈ BΦ,λ(Rn) we have

2
�

Br

Φ

(
Mf(x)

2C‖f‖BΦ,λ

)
dx

≤ 2
�

Br

Φ

(
M (1)f(x) +M (2)f(x)

2C‖f‖BΦ,λ

)
dx

≤
�

Br

Φ

(
M (1)f(x)

C‖f‖BΦ,λ

)
dx+

�

Br

Φ

(
M (2)f(x)

C‖f‖BΦ,λ

)
dx

≤
�

Br

Φ

(
M (1)f(x)

C32nλ‖f‖BΦ,λ

)
dx+

�

Br

Φ

(
M (2)f(x)

4n‖f‖BΦ,λ

)
dx

=: I1 + I2.

First, we estimate I1. Since M (1)f(x) ≤ M(fχB2r)(x) for x ∈ Br, it
follows from the strong-type modular inequality (8), definition of BΦ,λ(Rn)
and 0 ≤ λ ≤ 1 that

I1 ≤
�

Br

Φ

(
M(fχB2r)(x)

C12nλ‖f‖BΦ,λ

)
dx ≤

�

Rn
Φ

(
|f(x)|χB2r(x)

2nλ‖f‖BΦ,λ

)
dx

=
�

B2r

Φ

(
|f(x)|

2nλ‖f‖BΦ,λ

)
dx ≤ 1

2nλ

�

B2r

Φ

(
|f(x)|
‖f‖Φ,λ,B2r

)
dx

≤ (|B2r|/2n)λ = |Br|λ.
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Next, we estimate I2. From Lemma 5, the Jensen inequality, the definition
of BΦ,λ(Rn) and 0 ≤ λ ≤ 1 it follows that

I2 ≤
�

Br

Φ

(
1

‖f‖BΦ,λ
sup
B′03x

1

|B′0|

�

B′0

|f(y)| dy
)
dx

≤
�

Br

sup
B′03x

Φ

(
1

|B′0|

�

B′0

|f(y)|
‖f‖BΦ,λ

dy

)
dx

≤
�

Br

sup
B′03x

1

|B′0|

�

B′0

Φ

(
|f(y)|
‖f‖BΦ,λ

)
dy dx

≤
�

Br

sup
B′03x

1

|B′0|

�

B′0

Φ

(
|f(y)|
‖f‖Φ,λ,B′0

)
dy dx

≤ |B′0|λ−1|Br| ≤ |Br|λ−1|Br| = |Br|λ.
Putting together the above estimates we obtain

�

Br

Φ

(
Mf(x)

2C‖f‖BΦ,λ

)
dx ≤ |Br|λ,

and so
‖Mf‖BΦ,λ ≤ 2C‖f‖BΦ,λ ,

where C = max(C1 · 2nλ, 4n).
(ii) If Φ is an Orlicz function, then there exists a constant C2 > 1 such

that the weak-type modular inequality (9) holds. Moreover, for any r ≥ 1,
C = max(C22

nλ, 4n) and 0 6= f ∈ BΦ,λ(Rn) we have

2Φ(u)

∣∣∣∣{x ∈ Br :
Mf(x)

4C‖f‖BΦ,λ
> u

}∣∣∣∣
≤ Φ(2u)

∣∣∣∣{x ∈ Br :
Mf(x)

4C‖f‖BΦ,λ
> u

}∣∣∣∣
≤ Φ(2u)

∣∣∣∣{x ∈ Br :
M (1)f(x)

4C‖f‖BΦ,λ
>
u

2

}∣∣∣∣
+ Φ(2u)

∣∣∣∣{x ∈ Br :
M (2)f(x)

4C‖f‖BΦ,λ
>
u

2

}∣∣∣∣
≤ Φ(2u)

∣∣∣∣{x ∈ Br :
M (1)f(x)

4C22nλ‖f‖BΦ,λ
>
u

2

}∣∣∣∣
+ Φ(2u)

∣∣∣∣{x ∈ Br :
M (2)f(x)

4 · 4n‖f‖BΦ,λ
>
u

2

}∣∣∣∣
=: I3 + I4.
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To estimate I3 and I4 we will apply the same argument as in (i). First,
from the weak-type modular inequality (9) it follows that

I3 ≤ Φ(2u)

∣∣∣∣{x ∈ Br :
M(fχB2r)(x)

4C22nλ‖f‖BΦ,λ
>
u

2

}∣∣∣∣
≤

�

Rn
Φ

(
|f(x)|χB2r(x)

2nλ‖f‖BΦ,λ

)
dx ≤ |Br|λ.

Second, from Lemma 5, the Jensen inequality and 0 ≤ λ ≤ 1 we obtain

I4 ≤ Φ(2u)

∣∣∣∣{x ∈ Br :
1

4‖f‖BΦ,λ
sup
B′03x

1

|B′0|

�

B′0

|f(y)| dy > u

2

}∣∣∣∣
≤ Φ

(
1

‖f‖BΦ,λ
sup
B′03x

1

|B′0|

�

B′0

|f(y)| dy
)
· |Br|

≤ |Br|Φ
(

sup
B′03x

1

|B′0|

�

B′0

|f(y)|
‖f‖BΦ,λ

dy

)

≤ |Br| sup
B′03x

1

|B′0|

�

B′0

Φ

(
|f(y)|
‖f‖BΦ,λ

)
dy ≤ |Br| |B′0|λ−1 ≤ |Br|λ.

Putting the above estimates together we get

Φ(u)

∣∣∣∣{x ∈ Br :
Mf(x)

4C‖f‖BΦ,λ
> u

}∣∣∣∣ ≤ |Br|λ
for all u > 0. Therefore, ‖Mf‖Φ,λ,Br,∞ ≤ 4C‖f‖BΦ,λ and

‖Mf‖WBΦ,λ ≤ 4C‖f‖BΦ,λ ,

where C = max(C22
nλ, 4n) ≤ max(3n2nλ, 4n) ≤ 6n.

The proofs of the boundedness estimates in ḂΦ,λ(Rn) are the same as
above.

Theorem 6, when λ = 1, gives the following strong-type and weak-type
estimates on BΦ(Rn) and ḂΦ(Rn).

Corollary 7. Let M be the Hardy–Littlewood maximal operator and Φ
be an Orlicz function.

(i) If Φ∗ ∈ ∆2, then M is bounded on BΦ(Rn), that is, ‖Mf‖BΦ ≤
C6‖f‖BΦ for all f ∈ BΦ(Rn) with C6 ≤ 2 max(C12

n, 4n) =
2n+1 max(C1, 2

n).
(ii) M is bounded from BΦ(Rn) to WBΦ(Rn), that is, ‖Mf‖WBΦ ≤

C5‖f‖BΦ for all f ∈ BΦ(Rn) with C5 ≤ 4 · 6n.

The same conclusions hold for homogeneous spaces ḂΦ(Rn).
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We think that the condition Φ∗ ∈ ∆2 in (i) of Theorem 6 is necessary,
but we do not have the proof.
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