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REDUCED SPHERICAL POLYGONS
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MAREK LASSAK (Bydgoszcz)

Abstract. For every hemisphere K supporting a spherically convex body C of the
d-dimensional sphere Sd we consider the width of C determined by K. By the thickness
∆(C) of C we mean the minimum of the widths of C over all supporting hemispheres K
of C. A spherically convex body R ⊂ Sd is said to be reduced provided ∆(Z) < ∆(R) for
every spherically convex body Z ⊂ R different from R. We characterize reduced spherical
polygons on S2. We show that every reduced spherical polygon is of thickness at most π/2.
We also estimate the diameter of reduced spherical polygons in terms of their thickness.
Moreover, a few other properties of reduced spherical polygons are given.

1. Introduction. Let Sd be the unit sphere in the (d+ 1)-dimensional
Euclidean space Ed+1, where d ≥ 2. The common part of Sd with any
hyper-subspace of Ed+1 is called a (d − 1)-dimensional great sphere of Sd.
In particular, for S2 the 1-dimensional great spheres are called great circles.
By a pair of antipodes of Sd we mean any pair of points of intersection of Sd
with a one-dimensional subspace of Ed+1. Observe that if two different points
a, b are not antipodes, there is exactly one great circle containing them. By
the arc ab connecting a and b we mean the shorter part of the great circle
containing a and b. The spherical distance |ab|, or briefly distance, of these
points is the length of the arc connecting them. By the spherical ball of radius
r ≤ π/2 and center c we mean the set B = {p : |pc| ≤ r}. For every point
c ∈ Sd, by the hemisphere with center c we mean the spherical ball of radius
π/2. An open hemisphere is the interior of the hemisphere. Two hemispheres
whose centers are antipodes are called opposite.

We say that a set C ⊂ Sd is spherically convex, or briefly convex, if it
does not contain any pair of antipodes and if together with any two points it
contains the whole arc connecting them. By a spherically convex body on Sd
we mean a closed spherically convex set with non-empty interior. For a short
survey of other definitions of convexity on Sd we refer to [2, Section 9.1].
The literature concerning this subject is very large; for instance see [3]–[5],
[10], [13] and [14].
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Clearly, the intersection of every family of spherically convex sets is also
a spherically convex set. Thus for every set D ⊂ Sd which is a subset of an
open hemisphere there exists a unique smallest convex set containing D. It
is called the convex hull of D.

If a (d− 1)-dimensional great sphere F of Sd has a common point p with
a convex body C ⊂ Sd and if its intersection with the interior of C is empty,
we say that F is a supporting (d− 1)-dimensional great sphere of C passing
through p. We also say that F supports C at p. If p is the only point of
support, we say that F strictly supports C at p. In particular, if C ⊂ S2, we
call F a supporting great circle of C. If H is the hemisphere bounded by F
and containing C, we say that H supports C at p.

By a spherically convex polytope we mean the convex hull of a finite
number of points of Sd which is a spherically convex body. For d = 2, we get
the notion of a spherically convex polygon. The convex hull V of k ≥ 3 points
on S2 such that none of them belongs to the convex hull of the remaining
points is called a spherically convex k-gon. These points are called vertices
of V . We write V = v1 . . . vk when v1, . . . , vk are the successive vertices of V ,
when we go around the boundary of V in the positive direction. When we
take k ≥ 3 successive points on a spherical circle of radius less than π/2 on
S2 with equal distances of any two successive points, we obtain a regular
spherical k-gon.

The set of points of a great circle of S2 which are at distance at most π/2
from a fixed point p of this great circle is called a semicircle. We say that p is
the center of this semicircle. We say that a semicircle supports (respectively,
strictly supports) a spherical convex body C ⊂ S2 at a point if this point
belongs to this semicircle and if the great circle containing this semicircle
supports (respectively, strictly supports) C at this point.

If hemispheres G and H of Sd are different and not opposite, then L =
G ∩H is called a lune of Sd. This notion is considered in many books and
papers (see for instance [12, p. 18]). Later we consider only lunes on S2.
The semicircles bounding L and contained in the great circles bounding G
and H, respectively, are denoted by G/H and H/G. The distance of the
centers of G/H and H/G is called the thickness of L. The midpoint of these
two centers is called the center of L.

Let a be a point in a hemisphere different from its center and let F be
the great circle bounding the hemisphere. By the projection of a on F we
mean the point p ∈ F such that the distance |ap| is the smallest of all |ac|,
where c ∈ F .

By rotation of a set K ⊂ S2 around a point p ∈ S2 we mean rotation of
K around the straight line through the origin of E3 and p.

Let K be a supporting hemisphere of a convex body C ⊂ Sd. Let us
recall the notion of width of C determined by K, presented in [8]. We are
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just looking for hemispheres K∗ supporting C such that the lunes K∩K∗ are
of minimum thickness. By compactness arguments we immediately see that
at least one such hemisphere K∗ exists, and thus at least one corresponding
lune K ∩K∗ exists. Theorem 1 of [8] explains how to find K∗ and thus the
lune or lunes K ∩ K∗. Denote by widthK(C) the thickness of the lune (or
lunes) K ∩ K∗; we call it the width of C determined by K. This notion of
width of C ⊂ Sd is an analogue of the notion of width of a convex body
of Ed. The thickness ∆(C) of C is the minimum of the widths of C over all
supporting hemispheres K of C.

Following [8] we say that a spherically convex body R ⊂ Sd is reduced
if ∆(Z) < ∆(R) for every convex body Z ⊂ R different from R. This is an
analogue of the notion of a reduced body in Euclidean space, given in [6]. See
also the survey article [9]. Examples of reduced spherical bodies are bodies
of constant width on Sd (for the definition see e.g. [8]), and in particular
spherical balls of radius smaller than π/2. Each of the 2d parts of a spherical
ball B ⊂ Sd dissected by d great pairwise orthogonal (d − 1)-dimensional
spheres through the center of B, called a 1/2d-part of the ball, is also a
reduced spherical body. In particular, for d = 2, it is called a quarter of a
spherical disk. Every regular spherical odd-gon of thickness at most π/2 is a
reduced spherical body.

In this paper we continue the research on width and thickness of spher-
ically convex bodies started in [8]. This time we limit the considerations
to the spherically convex polygons on S2, and especially reduced polygons.
The main Theorem 3.2 presents a characterization of them. It is similar to
Theorem 8 from [7] giving a characterization of reduced polygons in E2.
But this time we cannot apply a theorem analogous to Theorem 3 from [7]
and its consequences on the shape of reduced bodies in E2. The proof of
[7, Theorem 3] applied the notion of parallelism, which does not exist on the
sphere. The author has not been able to repeat the proof of an analogous
theorem on the sphere, so the present approach is partially different. From
Theorem 3.2 a number of corollaries on reduced polygons follow. Moreover,
we show that every reduced spherically convex polygon is of thickness at
most π/2. We also estimate the diameter of reduced spherical polygons in
terms of their thickness.

2. Width and thickness of spherical polygons

Proposition 2.1. Let V ⊂ S2 be a spherically convex polygon and let
L be a lune of thickness ∆(V ) containing V . Then at least one of the two
semicircles bounding L contains a side of V . If ∆(V ) < π/2, then the center
of this semicircle belongs to the relative interior of that side.
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Fig. 1. Rotation of G around g, and of H around h

Proof. Our lune L has the form G ∩ H, where G and H are different
non-opposite hemispheres.

Let us prove the first statement. Assume the contrary, i.e., each of the
two semicircles bounding L contains exactly one vertex of V . Denote by g the
vertex contained by G/H, and by h the vertex contained by H/G. Claim 2
from [8] says that if L is a lune of minimum thickness containing a convex
body C ⊂ Sd, then both the centers of the (d− 1)-dimensional hemispheres
bounding L belong to C. We infer that g is the center of G/H and h is the
center of H/G. Now rotate G around g, and H around h, both in the same
direction and by the same angle. Since G/H and H/G strictly support V ,
after any sufficiently small rotation of both in the same direction, we obtain
a new lune L′ = G′ ∩H ′, where G′ and H ′ are the images of G and H under
the corresponding rotations (see Figure 1). It still contains V and has only
g and h in common with the boundary of V . But since now g and h are
not the centers of the semicircles G′/H ′, H ′/G′ which bound L′ and they
are symmetric with respect to the center of L′, we get ∆(L′) < ∆(L). This
contradicts the assumption that ∆(L) = ∆(V ). We conclude that the first
part of our proposition holds true.

For the second part, assume the contrary: the center of the semicircle
bounding L does not belong to the relative interior of the side S contained
in that semicircle. Corollary 2 of [8], which says that the center belongs
to S, now implies that it must be an end-point of S, and thus a vertex of V .
Apply ∆(V ) < π/2. After sufficiently small rotations of G around g, and H
around h, both in the same direction, we get a lune narrower than L still
containing V , a contradiction.

If ∆(V ) = π/2, then the center of the semicircle in the formulation
of Proposition 2.1 may be an end-point of a side of V . This happens, for
instance, for the regular triangle of thickness π/2.

Proposition 2.2. Let V ⊂ S2 be a spherically convex polygon of thick-
ness > π/2 and let L be a lune of thickness ∆(V ) containing V . Then each of
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the two semicircles bounding L contains a side of V . Moreover, the centers of
these semicircles belong to the relative interiors of the sides of V contained
in the semicircles.

Proof. Our argument is partially similar to that in the proof of Proposi-
tion 2.1. Assume the opposite to the first statement: at least one the semi-
circles G/H,H/G, say the former, contains exactly one vertex of V , say g.
By a similar argument to one in the proof of Proposition 2.1, g is the center
of G/H.

After a sufficiently small rotation of G around g, we obtain a new lune L′
as the intersection of the new hemisphere G′ with H, which still contains V .
This and ∆(L) > π/2 imply ∆(L′) < ∆(L), which contradicts the assump-
tion of our proposition that L is of thickness ∆(V ). Hence each of the two
semicircles bounding L contains a side of V .

To show the second statement, assume the contrary: the center of a semi-
circle bounding L, say g, does not belong to the relative interior of the side
S of V which is in this semicircle. Then g does not belong to S, or is an
end-point of S. After a sufficiently small rotation of G around g, we obtain
a new lune L′ as the intersection of the new hemisphere G′ with H, which
still contains V . Since ∆(L′) < ∆(L), we get a contradiction.

3. Reduced spherical polygons

Theorem 3.1. Every reduced spherical polygon is of thickness at most
π/2.

Proof. Assume that there exists a spherically convex polygon V of thick-
ness larger than π/2. Let L ⊃ V be a lune of thickness ∆(V ). By Propo-
sition 2.2 both the semicircles bounding L have with V some sides of V
in common, and both their centers belong to the relative interiors of those
sides. Thus after we cut off a piece of V by a great circle passing sufficiently
close to an end-point of one of these two sides, we obtain a convex polygon
Z ⊂ V different from V such that ∆(Z) = ∆(V ). Hence V is not reduced,
and the proof is finished.

For a convex odd-gon V = v1 . . . vn, the opposite side to the vertex vi is
the side vi+(n−1)/2vi+(n+1)/2. The indices are taken modulo n.

Theorem 3.2. Every reduced spherical polygon is an odd-gon of thick-
ness at most π/2. A spherically convex odd-gon V with ∆(V ) < π/2 is
reduced if and only if the projection of each of its vertices on the great circle
containing the opposite side belongs to the relative interior of that side and
the distance of this vertex from that side is ∆(V ).

Proof. Let V = v1 . . . vn be a reduced spherical polygon. By Theorem 3.1
it is of thickness at most π/2. By [8, Theorem 4] for every vertex vi there
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exists a lune Li of thickness ∆(V ) containing V one of whose bounding semi-
circles, say Si, strictly supports V at vi. Moreover, vi is the center of this
semicircle. By Proposition 2.1 the opposite semicircle S′i bounding Li con-
tains a side of V , which we denote by Ti. Moreover, the center ti of S′i belongs
to the relative interior of Ti. Of course, ti is the projection of vi on S′i.

Since the segments v1t1, . . . , vntn pairwise intersect, the sides T1, . . . , Tn
are different and consecutive. Thus n is odd and Ti = vi+(n−1)/2vi+(n+1)/2,
so Ti is the opposite side to vi. Of course the distance from vi to Ti is ∆(V ).

On the other hand, consider a convex spherical odd-gon V = v1 . . . vn
fulfilling the “if” part assumptions in the second sentence of the theorem.
For every i ∈ {1, . . . , n} the projection of vi on the great circle containing
the opposite side vi+(n−1)/2vi+(n+1)/2 belongs to the relative interior of that
side. Moreover, the projection of vi+(n−1)/2 on the great circle containing
the opposite side vi−1vi belongs to its relative interior, and the projection of
vi+(n+1)/2 on the great circle containing the opposite side vivi+1 belongs to
its relative interior. Thus the lune whose centers of bounding semicircles are
vi and ti strictly supports V at vi. This holds true for i = 1, . . . , n. Hence
by the assumption, the distance of every vertex of V to the opposite side
is ∆(V ). As a result, for every convex body Z ⊂ V different from V we have
∆(Z) < ∆(V ). Consequently, V is a reduced spherical polygon.

In Figure 2 we see a spherically convex pentagon. By Theorem 3.2, it is
reduced.

Fig. 2. A reduced spherical pentagon

Corollary 3.3. Every spherical regular odd-gon of thickness at most
π/2 is reduced.

Corollary 3.4. The only reduced spherical triangles are the regular tri-
angles of thickness at most π/2.
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Proof. By Corollary 3.3 regular triangles of thickness at most π/2 are
reduced. Assume that there exists a reduced spherical triangle W which is
not regular. Hence some two of its three heights are different, which implies
that the corresponding orthogonal widths are different. The smallest of the
three heights equals ∆(W ). We may cut off a sufficiently small piece ofW at
a vertex of W which is not an end-point of the shortest height, so that the
resulting smaller spherically convex body still has thickness ∆(W ). Since W
is assumed to be reduced, we get a contradiction.

Corollary 3.5. If K is a supporting hemisphere of a reduced spherical
polygon V whose bounding circle contains a side of V , then widthK(V )
= ∆(V ).

We say that two sets on S2 are symmetric with respect to a great circle
if they are symmetric with respect to the plane of E3 containing that circle.

Corollary 3.6. For every reduced odd-gon V = v1 . . . vn with ∆(V ) <
π/2 we have |viti+(n+1)/2| = |tivi+(n+1)/2| for i = 1, . . . , n, where ti denotes
the projection of vi on the opposite side.

Proof. We apply Theorem 3.2. Let i ∈ {1, . . . , n}. Take the lune Li of
thickness ∆(V ) such that V ⊂ Li, one of whose bounding semicircles con-
tains the side vi+(n−1)/2vi+(n+1)/2 and in particular the spherical segment
tivi+(n+1)/2 (see Figure 3). Denote the bounding semicircles of Li by Si and

Fig. 3. The lunes Li and Li+(n+1)/2

S′i so that the first contains vi+(n−1)/2vi+(n+1)/2 (and so tivi+(n+1)/2), and
the second supports V at vi. Also take the lune Li+(n+1)/2 of thickness ∆(V )
such that V ⊂ Li+(n+1)/2, and one of whose bounding semicircles contains
the side vivi+1 and in particular the spherical segment viti+(n+1)/2. Denote
the bounding semicircles of Li+(n+1)/2 by Si+(n+1)/2 and S′i+(n+1)/2 so that
the first contains vivi+1 and the second supports V at vi+(n+1)/2.

Let wi be the point of intersection of Si and Si+(n+1)/2, and let wi+(n+1)/2

be the point of intersection of S′i and S
′
i+(n+1)/2. The common part of Li and
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Li+(n+1)/2 is the spherical quadrangle viwivi+(n+1)/2wi+(n+1)/2. Denote by oi
the intersection of viti and vi+(n+1)/2ti+(n+1)/2. Clearly, oi is the midpoint of
wiwi+(n+1)/2. Consider the great circle Fi containing wiwi+(n+1)/2, and thus
also oi. Observe that Li and Li+(n+1)/2 are symmetric with respect to Fi.
In particular, vi and vi+(n+1)/2 are symmetric, i.e., their projections on Fi
coincide and are at equal distances from vi and vi+(n+1)/2. Also ti+(n+1)/2

and ti are symmetric. Hence the triangles vioiti+(n+1)/2 and vi+(n+1)/2oiti
are symmetric with respect to Fi. Thus |viti+(n+1)/2| = |tivi+(n+1)/2|.

Theorem 3.2 together with Corollary 3.6 allows one to construct reduced
spherical polygons of thickness below π/2. For instance, see the reduced
spherical pentagon in Figure 2. The author does not know if there are non-
regular reduced polygons of thickness π/2.

In the proof of Corollary 3.6 it is shown that the triangles vioiti+(n+1)/2

and vi+(n+1)/2oiti are symmetric. This implies the following corollary.

Corollary 3.7. In every reduced odd-gon V =v1 . . . vn with ∆(V )<π/2,
for every i ∈ {1, . . . , n} we have ∠ti+(n+1)/2viti = ∠tivi+(n+1)/2ti+(n+1)/2.

By Corollary 3.6 applied n times, the sum of the lengths of the bound-
ary spherical segments of V from vi to ti (with positive orientation) is
equal to the sum of the boundary spherical segments of V from ti to vi
(with positive orientation). Let us formulate this statement as the following
corollary.

Corollary 3.8. Let V be a reduced spherical odd-gon and let i ∈
{1, . . . , n}. The spherical segment viti halves the perimeter of V .

In a spherically convex odd-gon V = v1 . . . vn, for every i ∈ {1, . . . , n}
we set αi = ∠vi+1viti and βi = ∠tivivi+(n+1)/2.

Corollary 3.9. If V = v1 . . . vn is a reduced spherical polygon with
∆(V ) < π/2, then βi ≤ αi for every i ∈ {1, . . . , n}.

Proof. Denote by ui the intersection of the great circles containing vivi+1

and vi+(n−1)/2vi+(n+1)/2 such that vi+1 ∈ viui. By Corollaries 3.6 and 3.8 the
lengths of the fragments of the boundary of V from ti+(n+1)/2 to ti and from
vi+(n+1)/2 to vi are equal. Moreover, the boundary of V from ti+(n+1)/2 to
ti is in the triangle ti+(n+1)/2uiti, which implies that its length is at most
|ti+(n+1)/2ui| + |uiti|. Similarly, the length of the boundary from vi+(n+1)/2

to vi is at least |vi+(n+1)/2vi|. Consequently, |vi+(n+1)/2vi| ≤ |ti+(n+1)/2ui|
+ |uiti|. By Corollary 3.6 we get |vivi+(n+1)/2| < |viui|. Since the triangles
vivi+(n+1)/2ti and viuiti have the common side viti and right angles at ti,
this implies βi ≤ αi.
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Corollary 3.10. For every reduced polygon and every i we have αi >
π/6 + E and βi < π/6 + E, where E denotes the excess of the triangle
vitivi+(n+1)/2.

The proof of the corollary is left to the reader. The inequality for αi
is stronger, but the one for βi is weaker than those in [7, Theorem 8]. For
instance, in the regular spherical triangle of sides of length π/2 we have
αi = βi = π/4.

Recall the problem from [7], repeated in [9], of whether there are reduced
polytopes in Ed for d ≥ 3. For example, simplices are not reduced bodies
(see [11]), and in [1] larger classes of Euclidean polytopes containing no
reduced polytopes are characterized. For Sd the analogous question has a
positive answer. The spherical simplex which is the 1/2d-part of the ball of
radius π/2 is a reduced spherical polytope. This follows from the fact that
it is also a spherical body of constant width. The problem of whether there
are other spherical polytopes on Sd, where d ≥ 3, remains open.

4. Diameter of reduced spherical polygons

Proposition 4.1. The diameter of any reduced spherical n-gon is re-
alized only for some pairs of vertices whose indices (modulo n) differ by
(n− 1)/2 or (n+ 1)/2.

Proof. We apply Theorem 3.2. We see that n is odd. Let V = v1 . . . vn
be our reduced odd-gon. Of course, the diameter of V equals the maxi-
mum distance between its vertices. It is sufficient to show that this max-
imum distance is of the form |vivi+(n−1)/2| or |vivi+(n+1)/2|, where i ∈
{1, . . . , n}.

Recall that Theorem 3 of [8] says that the diameter of a spherically convex
body equals its maximum width. So in order to prove the proposition it is
sufficient to show that for every vertex vi of V and for every hemisphere H
supporting V at vi the only vertices of V that may be on the semicircle
H∗/H are vi+(n−1)/2 and vi+(n+1)/2.

When changing the supporting hemisphere H of V from the position
where the bounding great circle contains the side Ti+(n−1)/2 to the position
where the bounding great circle contains Ti+(n+1)/2 (by rotating H around
vi), we see that the hemisphere H first supports V only at the points of
the spherical segment Ti+(n−1)/2, then it supports V only at the point vi,
and finally it supports V at the points of Ti+(n+1)/2. Thus by Theorem 3.2
and Corollary 3.3, and also by Theorems 1 and 2 of [8] and their proofs,
the corresponding hemisphere H∗ first supports V only at vi+(n−1)/2, then
it supports V once at the side Ti, and at the end only at vi+(n+1)/2 for some
time. Hence during the above described change of position of H, each H∗/H
supports V only at vi+(n−1)/2 or vi+(n+1)/2.
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Theorem 4.2. For every reduced spherical polygon V on the sphere we
have

diam(V ) ≤ arccos

(√
1−
√
2

2
sin∆(V ) · cos∆(V )

)
,

with equality for V being a regular spherical triangle.

Proof. We apply Proposition 4.1. Assume that diam(V ) = |vivi+(n+1)/2|
for an i ∈ {1, . . . , n} (the case when diam(V ) = |vivi+(n−1)/2| is analogous).

Set pi = |tivi+(n+1)/2|, si = |vivi+(n+1)/2| and γi = ∠tivi+(n+1)/2vi.
By Corollary 3.7 we have γi = αi+βi. Corollary 3.9 now implies γi ≥ 2βi.

From |viti| = ∆(V ) and the sine theorem on the sphere we have
sin pi
sinβi

=
sin∆(V )

sin γi
.

Thus from γi ≥ 2βi we get
sin pi
sinβi

≤ sin∆(V )

sin 2βi
, so sin pi ≤

sin∆(V )

2 cosβi
.

Moreover we have βi ≤ π/4, since otherwise from βi ≤ αi (Corollary 3.9)
and γi = αi + βi it follows that γi > 2βi > π/2, which is impossible because
by Theorem 3.2 we have ∆(V ) ≤ π/2.

Thus sin pi ≤
√
2
2 sin∆(V ). Hence sin2 pi ≤ 1

2 sin
2∆(V ). So√

1− 1

2
sin2∆(V ) ≤ cos pi.

Moreover, by the Pythagorean theorem on the sphere we have cos si =
cos pi cos∆(V ). Consequently,

cos si ≥

√
1−
√
2

2
sin∆(V ) · cos∆(V ).

Proposition 4.1 now gives the desired inequality.
If V is a regular spherical triangle, then vivi+(n+1)/2, where i ∈ {1, 2, 3},

are the sides of V . The distance of the end-points of each of them is just

arccos
(√

1−
√
2
2 sin∆(V ) · cos∆(V )

)
, by the Pythagorean theorem on the

sphere.

By Theorem 4.2 every reduced spherical polygon of thickness π/4 is of
diameter at most π/3. Clearly, the regular triangle of thickness π/4 has
diameter π/3.

We conjecture that equality in Theorem 4.2 holds only for regular tri-
angles. We also conjecture that the diameter of every reduced convex body
C ⊂ S2, where ∆(C) ≤ π/2, is at most arccos(cos2∆(C)), which would
imply that diam(C) ≤

√
2∆(C). The only extreme case seems to be the
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quarter Q of a disk. Its diameter is just arccos(cos2∆(Q)). By L’Hospital’s
rule we find that arccos(cos2∆(Q))/∆(Q) tends to

√
2 as ∆(Q) tends to 0.

So the limit factor is as in the planar case (see [7, Theorem 9]).
We conjecture that the perimeter of every reduced spherical polygon V

is not larger than for the spherical regular triangle of the same thickness, so
it is at most

6 arccos
cos∆(V ) +

√
8 + cos2∆(V )

4
,

and that it is attained only for this regular triangle. We expect that of
all reduced spherical polygons of fixed thickness and with at most n ver-
tices, only the regular spherical n-gon has the minimal perimeter. We also
conjecture that the area of every reduced spherical polygon V is less than
2
(
1− cos ∆(V )

2

)
π and that this estimate cannot be improved in general. This

is the limit value for the area of the regular spherical odd-gons whose num-
ber of vertices tends to infinity. We also expect that every reduced spherical
non-regular n-gon of fixed thickness has area smaller than the regular spher-
ical n-gon of that thickness.
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