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ON WEAKLY LOCALLY UNIFORMLY ROTUND NORMS WHICH
ARE NOT LOCALLY UNIFORMLY ROTUND

BY

SZYMON DRAGA (Katowice)

Abstract. We show that every infinite-dimensional Banach space with separable
dual admits an equivalent norm which is weakly locally uniformly rotund but not locally
uniformly rotund.

1. Introduction. Recall that a norm in a Banach space is called strictly
convex (SC) if for arbitrary points x, y from the unit sphere the equality
‖x+ y‖ = 2 implies that x = y. The norm is called weakly locally uniformly
rotund (wLUR) if for any points xn (n = 1, 2, . . .) and x from the unit sphere
the equality limn→∞ ‖xn + x‖ = 2 implies the weak convergence of the
sequence (xn)

∞
n=1 to x; if the convergence is strong, then the norm is called

locally uniformly rotund (LUR). In the preceding definitions it is sufficient to
require that limn→∞ ‖xn‖ = ‖x‖ and limn→∞ ‖xn + x‖ = 2‖x‖.

It is clear that wLUR⇒ SC and LUR⇒ wLUR; it is also well-known that
none of these implications reverses. Indeed, the space `∞ can be renormed
in a strictly convex manner, but it does not admit an equivalent wLUR norm
(cf. [Di, §4.5]). M. A. Smith [Sm, Example 2] gave an example of a wLUR
norm on `2 which is not LUR; in the next section we shall present a somewhat
simpler example (which is a particular case of our main result, but slightly
different).

D. Yost [Yo, Theorem 2.1] showed that the implication wLUR⇒ SC does
not reverse in the strong sense, namely, every infinite-dimensional separable
Banach space admits an equivalent strictly convex norm which is not wLUR.
Of course, the analogous theorem does not hold for the implication LUR⇒
wLUR, because of the Schur property, e.g., of the space `1. However, it is
true when assuming that the dual of the underlying space is separable; this
is what our main result states:

Theorem 1. Every infinite-dimensional Banach space with separable
dual admits an equivalent wLUR norm which is not LUR.
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Remark 2. It is worth mentioning that the class of Banach spaces hav-
ing a wLUR renorming coincides with the class of Banach spaces having a
LUR renorming [MOT, Theorem 1.11]. However, Theorem 1 (and, all the
more, Corollary 6) suggests that in a large class of Banach spaces with a
wLUR renorming not every wLUR norm is automatically LUR.

2. An example of a wLUR norm which is not LUR. The norm

(1) |||x||| = ‖x‖∞ +
( ∞∑
n=1

2−n|x(n)|2
)1/2

for x ∈ c0,

where ‖ · ‖∞ stands for the standard supremum norm, was given in [MOT,
p. 1] as an example of a strictly convex norm which is not LUR. Nonetheless,
we shall show that this norm is wLUR.

Lemma 3. Suppose that (xn)
∞
n=1 ⊂ c0 is pointwise convergent to αx,

where α ∈ [0,∞) and x ∈ c0 \ {0}. If

lim
n→∞

(‖xn + x‖∞ − ‖xn‖∞) = ‖x‖∞

and the limit limn→∞ ‖xn‖∞ exists, then limn→∞ ‖xn‖∞ = α‖x‖∞.

Proof. We shall show that (‖xn‖∞)∞n=1 has a subsequence which is con-
vergent to α‖x‖∞.

Let
K = {k : |x(k)| = ‖x‖∞};

by our assumptions K is a non-empty finite set. Furthermore, if n and k are
positive integers such that k /∈ K, then

|(xn + x)(k)| − ‖xn‖∞ ≤ |xn(k)|+ |x(k)| − ‖xn‖∞ ≤ |x(k)|
≤ max{|x(l)| : l /∈ K} < ‖x‖∞.

This means that there is a k0 ∈ K such that |(xn+ x)(k0)| = ‖xn+ x‖∞ for
infinitely many n. Let (nl)

∞
l=1 be a strictly increasing sequence of positive

integers such that

|(xnl
+ x)(k0)| = ‖xnl

+ x‖∞ for l = 1, 2, . . . .

Letting l→∞ we obtain

(1 + α)|x(k0)| = lim
l→∞
‖xnl

+ x‖∞ = lim
l→∞
‖xnl
‖∞ + ‖x‖∞,

which completes the proof.

Proposition 4. The norm given by (1) is wLUR.
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Proof. Fix a sequence (xn)∞n=1 in the unit sphere of (c0, ||| · |||) and a point
x from this sphere such that limn→∞ |||xn+x||| = 2. We shall show that each
subsequence of (xn)∞n=1 has a subsequence which is weakly convergent to x.
To this end, fix a subsequence of (xn)∞n=1, still denoted by (xn)

∞
n=1.

Set

yn = (2−k/2xn(k))
∞
k=1 for n = 1, 2, . . . and y = (2−k/2x(k))∞k=1.

The equality

2− |||xn + x||| = |||xn|||+ |||x||| − |||xn + x|||
= ‖xn‖∞ + ‖x‖∞ − ‖xn + x‖∞ + ‖yn‖2 + ‖y‖2 − ‖yn + y‖2,

where ‖ · ‖2 stands for the norm in `2, implies that

lim
n→∞

(‖xn‖∞ + ‖x‖∞ − ‖xn + x‖∞) = 0,(2)

lim
n→∞

(‖yn‖2 + ‖y‖2 − ‖yn + y‖2) = 0.(3)

Passing to a further subsequence of (xn)∞n=1 (still denoted by (xn)
∞
n=1) we

may assume that limn→∞ ‖xn‖∞ and limn→∞ ‖yn‖2 exist. Using (3) we ob-
tain

lim
n→∞

(‖yn‖2 + ‖y‖2)2 = lim
n→∞

‖yn + y‖22 = lim
n→∞

(‖yn‖22 + 2(yn|y) + ‖y‖22),

where (·|·) stands for the real inner product. Hence

lim
n→∞

(yn|y) = lim
n→∞

‖yn‖2 · ‖y‖2 = α‖y‖22,

where α = limn→∞ ‖yn‖2/‖y‖2. Thus

lim
n→∞

‖yn − αy‖22 = lim
n→∞

(‖yn‖22 − 2α(yn|y) + α2‖y‖22)

= α2‖y‖22 − 2α2‖y‖22 + α2‖y‖22 = 0,

which means that (yn)∞n=1 converges (in `2) to αy. In particular, (yn)∞n=1 is
pointwise convergent to αy, and therefore (xn)

∞
n=1 is pointwise convergent

to αx. By (2) and Lemma 3, limn→∞ ‖xn‖∞ = α‖x‖∞. Therefore

1 = lim
n→∞

|||xn||| = lim
n→∞

‖xn‖∞ + lim
n→∞

‖yn‖2

= α‖x‖∞ + α‖y‖2 = α|||x||| = α.

Finally, (xn)∞n=1 is weakly convergent to x as it is bounded and converges
pointwise to this point.

3. The proof of the main result. Throughout this section X denotes
an infinite-dimensional Banach space. We shall need a simple lemma about
weak convergence (the trivial proof is omitted).
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Lemma 5. Assume that (xn)∞n=1 is a bounded sequence in X, Γ is a set
and {x∗γ : γ ∈ Γ} ⊂ X∗. If span{x∗γ : γ ∈ Γ} is dense in X∗ and

lim
n→∞

x∗γ(xn) = 0 for each γ ∈ Γ,

then (xn)
∞
n=1 is weakly null.

Proof of Theorem 1. Assume that X∗ is separable. According to a result
of A. Pełczyński [Pe, Remark A] there exists an M -basis (en, e

∗
n)
∞
n=1 of X

which is both bounded and shrinking. This means that

sup{‖en‖·‖e∗n‖ : n = 1, 2 . . .} <∞
and the functionals e∗n are linearly dense in X∗.

Without loss of generality we may assume that ‖en‖ = 1 for n = 1, 2, . . . .
Define a functional ‖ · ‖0 : X → [0,∞) by

‖x‖0 = max
{
1
2‖x‖, sup

n
|e∗n(x)|

}
for x ∈ X.

One can easily see that ‖ · ‖0 is a norm on X and by the boundedness of the
M -basis (en, e∗n)∞n=1 this norm is equivalent to the original one.

Define a functional ||| · ||| : X → [0,∞) by

|||x|||2 = ‖x‖20 +
∞∑
n=1

4−n|e∗n(x)|2 for x ∈ X.

One can easily observe that ||| · ||| is an equivalent norm on X. We shall show
that it is wLUR but not LUR.

To prove the first assertion, consider a sequence (xn)
∞
n=1 and a point x

in the unit sphere of (X, ||| · |||) such that limn→∞ |||xn + x||| = 2. Set

yn = (‖xn‖0, 2−1e∗1(xn), 2−2e∗2(xn), . . .) for n = 1, 2, . . . ,

y = (‖x‖0, 2−1e∗1(x), 2−2e∗2(x), . . .).
We have

‖yn + y‖22 = (‖xn‖0 + ‖x‖0)2 +
∞∑
m=1

4−m|e∗m(xn + x)|2

≥ ‖xn + x‖20 +
∞∑
m=1

4−m|e∗m(xn + x)|2 = |||xn + x|||2 −−−→
n→∞

4,

and by the local uniform rotundity of the norm in the (Hilbert) space `2, we
obtain limn→∞ ‖yn − y‖2 = 0. In particular,

lim
n→∞

e∗m(xn) = e∗m(x) for m = 1, 2, . . . .

Lemma 5 and the fact that the M -basis (en, e
∗
n)
∞
n=1 is shrinking give the

weak convergence of the sequence (xn)
∞
n=1 to x.
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To see that the norm ||| · ||| is not LUR consider the sequence (e1+ en)∞n=1

and the point e1. One can easily verify that

lim
n→∞

|||e1 + en||| = 1
2

√
5 = |||e1|||

and
lim
n→∞

|||2e1 + en||| =
√
5,

while |||en||| ≥ 1 for n = 1, 2, . . . .

Corollary 6. Every Banach space which admits an equivalent LUR
norm, in particular every separable Banach space, and has an infinite-dimen-
sional subspace with separable dual, admits an equivalent wLUR norm which
is not LUR.

Proof. Suppose that Y is an infinite-dimensional subspace of X with
separable dual. By Theorem 1 the space Y admits an equivalent wLUR norm
which is not LUR. According to Tang’s Theorem [Ta, Theorem 1.1] it extends
to an equivalent wLUR norm on the whole X. Obviously, this extension fails
to be LUR.

Remark 7. The statement of Tang’s Theorem does not include the case
of wLUR norm literally, but the theorem is also valid in this case (cf. [Ta,
Remark 1.1]). Indeed, one can easily verify that the proof works without
major changes.

Remark 8. Corollary 6 implies that every Banach space which admits
an equivalent LUR norm, in particular every separable Banach space, and
enjoys the Schur property, has no infinite-dimensional subspace with sepa-
rable dual. Of course, it is not a new result, as it is well-known that every
Banach space having the Schur property is `1-saturated. However, this fact
follows from Rosenthal’s `1-Theorem (cf. [AK, §10.2]), so its proof is much
less elementary than the one given in this paper.
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