REPRESENTATION NUMBERS OF FIVE SEXTENARY QUADRATIC FORMS

BY
ERNEST X. W. XIA (Zhenjiang), OLIVIA X. M. YAO (Zhenjiang) and A. F. Y. ZHAO (Nanjing)

Abstract

For nonnegative integers a, b, c and positive integer n, let $N(a, b, c ; n)$ denote the number of representations of n by the form $$
\sum_{i=1}^{a}\left(x_{i}^{2}+x_{i} y_{i}+y_{i}^{2}\right)+2 \sum_{j=1}^{b}\left(u_{j}^{2}+u_{j} v_{j}+v_{j}^{2}\right)+4 \sum_{k=1}^{c}\left(r_{k}^{2}+r_{k} s_{k}+s_{k}^{2}\right) .
$$

Explicit formulas for $N(a, b, c ; n)$ for some small values were determined by Alaca, Alaca and Williams, by Chan and Cooper, by Köklüce, and by Lomadze. We establish formulas for $N(2,1,0 ; n), N(2,0,1 ; n), N(1,2,0 ; n), N(1,0,2 ; n)$ and $N(1,1,1 ; n)$ by employing the (p, k)-parametrization of three 2 -dimensional theta functions due to Alaca, Alaca and Williams.

1. Introduction. Let $\mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}$ and \mathbb{C} denote the sets of positive integers, nonnegative integers, integers and complex numbers, respectively. For $a, b, c \in \mathbb{N}_{0}$ and $n \in \mathbb{N}$, let $N(a, b, c ; n)$ denote the number of representations of n by the form

$$
\sum_{i=1}^{a}\left(x_{i}^{2}+x_{i} y_{i}+y_{i}^{2}\right)+2 \sum_{j=1}^{b}\left(u_{j}^{2}+u_{j} v_{j}+v_{j}^{2}\right)+4 \sum_{k=1}^{c}\left(r_{k}^{2}+r_{k} s_{k}+s_{k}^{2}\right)
$$

For some small values of a, b, c, explicit formulas for $N(a, b, c ; n)$ were established, for example, by Alaca, Alaca and Williams AAW1, Chan and Cooper [CC], Köklüce [K1, K2, K3], Lomadze [L], Xia [X] and Xia and Yao [XY]. In particular, Lomadze [L] proved that for $n \in \mathbb{N}$,

$$
\begin{equation*}
R(3,0,0 ; n)=27 G_{3}(n)-9 H_{3}(n) \tag{1.1}
\end{equation*}
$$

where $G_{3}(n)$ and $H_{3}(n)$ are defined by

$$
\begin{equation*}
G_{3}(n)=\sum_{d \in \mathbb{N}, d \mid n}\left(\frac{-3}{n / d}\right) d^{2} \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
H_{3}(n)=\sum_{d \in \mathbb{N}, d \mid n}\left(\frac{-3}{d}\right) d^{2} \tag{1.3}
\end{equation*}
$$

\]

Let $N \in \mathbb{N}$ and $\operatorname{gcd}(6, N)=1$. Set $N=\prod_{p \mid N} p^{\alpha_{p}}$ be the prime factorization of N. Alaca, Alaca and Williams AAW2 proved that

$$
\begin{equation*}
G_{3}(N)=N^{2} \prod_{P \mid N} \frac{1-\left(\frac{-3}{p}\right)^{\alpha_{p}+1} p^{-2 \alpha_{p}-2}}{1-\left(\frac{-3}{p}\right) p^{-2}} \tag{1.4}
\end{equation*}
$$

where $\left(\frac{-3}{k}\right)(k \in \mathbb{N})$ is the Legendre-Jacobi-Kronecker symbol for discriminant -3 , that is,

$$
\left(\frac{-3}{k}\right)= \begin{cases}1 & \text { if } k \equiv 1(\bmod 3) \tag{1.5}\\ -1 & \text { if } k \equiv 2(\bmod 3) \\ 0 & \text { if } k \equiv 0(\bmod 3)\end{cases}
$$

The aim of this paper is to determine explicit formulas for $N(2,1,0 ; n)$, $N(2,0,1 ; n), N(1,2,0 ; n), N(1,0,2 ; n)$ and $N(1,1,1 ; n)$. The main results can be stated as follows.

Theorem 1.1. Set $n=2^{\alpha} 3^{\beta} N \in \mathbb{N}$, where $\alpha, \beta \in \mathbb{N}_{0}$, $N \in \mathbb{N}$ and $\operatorname{gcd}(N, 6)=1$. Let $N=\prod_{p \mid N} p^{\alpha_{p}}$ be the prime factorization of N and let $G_{3}(N)$ be defined by (1.4). Then
(1.6) $N(2,1,0 ; n)=\frac{3}{5}\left(2^{2 \alpha+3}-3(-1)^{\alpha}\right)\left(3^{2 \beta+1}+(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N)$,
$N(2,0,1 ; n)= \begin{cases}\frac{3}{2}\left(3^{2 \beta+1}-\left(\frac{-3}{N}\right)\right) G_{3}(N)+9 f(n) & \text { if } 2 \nmid n, \\ \frac{9}{5}\left(3 \cdot 2^{2 \alpha-1}+(-1)^{\alpha}\right)\left(3^{2 \beta+1}-(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N) \text { if } 2 \mid n,\end{cases}$
$N(1,2,0 ; n)=\frac{3}{5}\left(2^{2 \alpha+1}+3(-1)^{\alpha}\right)\left(3^{2 \beta+1}-(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N)$,
$N(1,0,2 ; n)= \begin{cases}\frac{3}{4}\left(3^{2 \beta+1}-\left(\frac{-3}{N}\right)\right) G_{3}(N)+\frac{9}{2} f(n) & \text { if } 2 \nmid n, \\ \frac{9}{5}\left(2^{2 \alpha-2}+(-1)^{\alpha}\right)\left(3^{2 \beta+1}-(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N) & \text { if } 2 \mid n,\end{cases}$

$$
\begin{equation*}
N(1,1,1 ; n)=T(\alpha)\left(3^{2 \beta+1}+(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N) \tag{1.10}
\end{equation*}
$$

where

$$
\begin{align*}
T(\alpha) & =\frac{3}{20}\left(2^{2 \alpha}-6(-1)^{\alpha}\right)\left(1+(-1)^{2^{\alpha}}\right)+\frac{3}{4}\left(1-(-1)^{2^{\alpha}}\right) \tag{1.11}\\
f(n) & =\frac{1}{2} \sum_{\substack{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \\
x_{1}^{2}+3 x_{2}^{2}=n}}\left(x_{1}^{2}-3 x_{2}^{2}\right)
\end{align*}
$$

From (1.7) and (1.9), we obtain the following corollary:
Corollary 1.2. If $n \geq 1$ is an odd integer, then

$$
\begin{equation*}
N(2,0,1 ; n)=2 N(1,0,2 ; n) \tag{1.13}
\end{equation*}
$$

2. The (p, k)-parametrization of 2-dimensional theta functions. The aim of this section is to recall the (p, k)-parametrization of three 2-dimensional theta functions due to Alaca, Alaca and Williams AAW1.

Jonathan and Peter Borwein $[\overline{B B}$ introduced the following three 2dimensional theta functions:

$$
\begin{equation*}
a(q):=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
b(q):=\sum_{m, n=-\infty}^{\infty} \omega^{m-n} q^{m^{2}+m n+n^{2}} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
c(q):=\sum_{m, n=-\infty}^{\infty} q^{(m+1 / 3)^{2}+(m+1 / 3)(n+1 / 3)+(n+1 / 3)^{2}} \tag{2.3}
\end{equation*}
$$

where $\omega=e^{2 \pi i / 3}$. Alaca, Alaca and Williams AAW1] defined

$$
\begin{align*}
& p=p(q):=\frac{\varphi^{2}(q)-\varphi^{2}\left(q^{3}\right)}{2 \varphi^{2}\left(q^{3}\right)} \tag{2.4}\\
& k=k(q):=\frac{\varphi^{3}\left(q^{3}\right)}{\varphi(q)} \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
\varphi(q):=\sum_{n \in \mathbb{Z}} q^{n^{2}} \tag{2.6}
\end{equation*}
$$

Alaca, Alaca and Williams AAW1 also established the parametric representations of $a\left(q^{m}\right), b\left(q^{m}\right)$ and $c\left(q^{m}\right)(m \in\{1,2,4\})$ in terms of p and k. Theorems 1, 2, and 4 in AAW1 state:

$$
\begin{align*}
a(q) & =\left(1+4 p+p^{2}\right) k \tag{2.7}\\
a\left(q^{2}\right) & =\left(1+p+p^{2}\right) k \tag{2.8}\\
a\left(q^{4}\right) & =\left(1+p-p^{2} / 2\right) k \tag{2.9}
\end{align*}
$$

$$
\begin{align*}
b(q) & =2^{-1 / 3}(1-p)^{4 / 3}(1+2 p)^{1 / 3}(2+p)^{1 / 3} k \tag{2.10}\\
b\left(q^{2}\right) & =2^{-2 / 3}(1-p)^{2 / 3}(1+2 p)^{2 / 3}(2+p)^{2 / 3} k \tag{2.11}\\
b\left(q^{4}\right) & =2^{-4 / 3}(1-p)^{1 / 3}(1+2 p)^{1 / 3}(2+p)^{4 / 3} k \tag{2.12}\\
c(q) & =2^{-1 / 3} 3 p^{1 / 3}(1+p)^{4 / 3} k \tag{2.13}\\
c\left(q^{2}\right) & =2^{-2 / 3} 3 p^{2 / 3}(1+p)^{2 / 3} k \tag{2.14}\\
c\left(q^{4}\right) & =2^{-4 / 3} 3 p^{4 / 3}(1+p)^{1 / 3} k \tag{2.15}
\end{align*}
$$

3. Some identities involving $a(q), b(q)$ and $c(q)$. In this section, we establish five identities involving $a(q), b(q)$ and $c(q)$ by employing the (p, k)-parametrization of $a(q), b(q)$ and $c(q)$. Those identities are used to prove the main results of this paper.

Theorem 3.1. We have

$$
\begin{align*}
a^{2}(q) a\left(q^{2}\right)= & -\frac{1}{3} b^{3}(q)+\frac{4}{3} b^{3}\left(q^{2}\right)+\frac{1}{3} c^{3}(q)+\frac{4}{3} c^{3}\left(q^{2}\right), \tag{3.1}\\
a^{2}(q) a\left(q^{4}\right)= & \frac{1}{6} b^{3}(q)-\frac{1}{2} b^{3}\left(q^{2}\right)+\frac{4}{3} b^{3}\left(q^{4}\right) \tag{3.2}\\
& +\frac{1}{6} c^{3}(q)+\frac{1}{2} c^{3}\left(q^{2}\right)+\frac{4}{3} c^{3}\left(q^{4}\right)+9 f(q), \\
a(q) a^{2}\left(q^{2}\right)= & \frac{1}{3} b^{3}(q)+\frac{2}{3} b^{3}\left(q^{2}\right)+\frac{1}{3} c^{3}(q)-\frac{2}{3} c^{3}\left(q^{2}\right), \tag{3.3}\\
a(q) a^{2}\left(q^{4}\right)= & \frac{1}{12} b^{3}(q)+\frac{1}{4} b^{3}\left(q^{2}\right)+\frac{2}{3} b^{3}\left(q^{4}\right) \tag{3.4}\\
& +\frac{1}{12} c^{3}(q)-\frac{1}{4} c^{3}\left(q^{2}\right)+\frac{2}{3} c^{3}\left(q^{4}\right)+\frac{9}{2} f(q), \\
a(q) a\left(q^{2}\right) a\left(q^{4}\right)= & -\frac{1}{6} b^{3}(q)-\frac{1}{6} b^{3}\left(q^{2}\right)+\frac{4}{3} b^{3}\left(q^{4}\right) \tag{3.5}\\
& +\frac{1}{6} c^{3}(q)-\frac{1}{6} c^{3}\left(q^{2}\right)-\frac{4}{3} c^{3}\left(q^{4}\right),
\end{align*}
$$

where $f(q)$ is defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} f(n) q^{n}:=f(q)=q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{3}\left(1-q^{6 n}\right)^{3} \tag{3.6}
\end{equation*}
$$

Proof. We just prove (3.2). The rest can be proved similarly. Alaca, Alaca and Williams AAW2] established the representations of $q^{j / 24} \prod_{n=1}^{\infty}\left(1-q^{n j}\right)$ $(j \in\{2,6\})$ in terms of p and k. It follows from AAW2, (2.11) and (2.14)] that

$$
\begin{align*}
& q^{1 / 12} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right) \tag{3.7}\\
& \quad=2^{-1 / 3} p^{1 / 12}(1-p)^{1 / 4}(1+p)^{1 / 12}(1+2 p)^{1 / 4}(2+p)^{1 / 4} k^{1 / 2}
\end{align*}
$$

$$
\begin{align*}
& q^{1 / 4} \prod_{n=1}^{\infty}\left(1-q^{6 n}\right) \tag{3.8}\\
& \quad=2^{-1 / 3} p^{1 / 4}(1-p)^{1 / 12}(1+p)^{1 / 4}(1+2 p)^{1 / 12}(2+p)^{1 / 12} k^{1 / 2}
\end{align*}
$$

By (3.6)-(3),

$$
\begin{equation*}
f(q)=\frac{p(1-p)(1+p)(1+2 p)(2+p)}{4} k^{3} \tag{3.9}
\end{equation*}
$$

In view of $2.10-2.15$ and (3.9), it is easy to check that

$$
\begin{array}{r}
\frac{1}{6} b^{3}(q)-\frac{1}{2} b^{3}\left(q^{2}\right)+\frac{4}{3} b^{3}\left(q^{4}\right)+\frac{1}{6} c^{3}(q)+\frac{1}{2} c^{3}\left(q^{2}\right)+\frac{4}{3} c^{3}\left(q^{4}\right)+9 f(q) \tag{3.10}\\
=\left(1+9 p+\frac{51}{2} p^{2}+22 p^{3}-3 p^{5}-\frac{1}{2} p^{6}\right) k^{3} .
\end{array}
$$

From (2.7) and (2.9), we have

$$
\begin{equation*}
a^{2}(q) a\left(q^{4}\right)=\left(1+9 p+\frac{51}{2} p^{2}+22 p^{3}-3 p^{5}-\frac{1}{2} p^{6}\right) k^{3} . \tag{3.11}
\end{equation*}
$$

Identity (3.2) follows from (3.10) and (3.11).
4. Proof of Theorem 1.1. In this section, we present a proof of Theorem 1.1 by employing Theorem 3.1. We deduce (1.7) from (3.2). The rest can be proved similarly.

By the definition of $N(a, b, c ; n)$ and (2.1), it is easy to see that the generating function of $N(a, b, c ; n)$ is

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} N(a, b, c ; n) q^{n}=a^{a}(q) a^{b}\left(q^{2}\right) a^{c}\left(q^{4}\right) . \tag{4.1}
\end{equation*}
$$

Setting $a=2, b=0$ and $c=1$ in (4.1) and using (3.2), we obtain

$$
\begin{align*}
1+\sum_{n=1}^{\infty} N(2,0,1 ; n) q^{n}= & \frac{1}{6} b^{3}(q)-\frac{1}{2} b^{3}\left(q^{2}\right)+\frac{4}{3} b^{3}\left(q^{4}\right)+\frac{1}{6} c^{3}(q) \tag{4.2}\\
& +\frac{1}{2} c^{3}\left(q^{2}\right)+\frac{4}{3} c^{3}\left(q^{4}\right)+9 f(q) .
\end{align*}
$$

Alaca, Alaca and Williams AAW2 proved that

$$
\begin{array}{r}
27 \sum_{n=1}^{\infty} G_{3}(n) q^{n}=c^{3}(q), \\
1-9 \sum_{n=1}^{\infty} H_{3}(n) q^{n}=b^{3}(q), \tag{4.4}
\end{array}
$$

where $G_{3}(n)$ and $H_{3}(n)$ are defined by (1.2) and (1.3), respectively. By means of (3.6) and (4.2)-(4.4),

$$
\begin{align*}
1+\sum_{n=1}^{\infty} N(2,0,1 ; n) q^{n}= & \frac{1}{6}\left(1-9 \sum_{n=1}^{\infty} H_{3}(n) q^{n}\right)-\frac{1}{2}\left(1-9 \sum_{n=1}^{\infty} H_{3}(n) q^{2 n}\right) \tag{4.5}\\
+ & \frac{4}{3}\left(1-9 \sum_{n=1}^{\infty} H_{3}(n) q^{4 n}\right)+\frac{9}{2} \sum_{n=1}^{\infty} G_{3}(n) q^{n} \\
+ & \frac{27}{2} \sum_{n=1}^{\infty} G_{3}(n) q^{2 n}+36 \sum_{n=1}^{\infty} G_{3}(n) q^{4 n}+9 \sum_{n=1}^{\infty} f(n) q^{n}
\end{align*}
$$

$$
\begin{aligned}
= & 1-\frac{3}{2} \sum_{n=1}^{\infty} H_{3}(n) q^{n}+\frac{9}{2} \sum_{n=1}^{\infty} H_{3}(n) q^{2 n}-12 \sum_{n=1}^{\infty} H_{3}(n) q^{4 n} \\
& +\frac{9}{2} \sum_{n=1}^{\infty} G_{3}(n) q^{n}+\frac{27}{2} \sum_{n=1}^{\infty} G_{3}(n) q^{2 n}+36 \sum_{n=1}^{\infty} G_{3}(n) q^{4 n}+9 \sum_{n=1}^{\infty} f(n) q^{n},
\end{aligned}
$$

where $f(n)$ is defined by (3.6). Equating the coefficients of q^{n} on both sides of 4.5), we find that for $n \in \mathbb{N}$,

$$
\begin{align*}
N(2,0,1 ; n)= & -\frac{3}{2} H_{3}(n)+\frac{9}{2} H_{3}(n / 2)-12 H_{3}(n / 4)+\frac{9}{2} G_{3}(n) \tag{4.6}\\
& +\frac{27}{2} G_{3}(n / 2)+36 G_{3}(n / 4)+9 f(n) .
\end{align*}
$$

Set $n=2^{\alpha} 3^{\beta} N \in \mathbb{N}$, where $\alpha, \beta \in \mathbb{N}_{0}, N \in \mathbb{N}$ and $\operatorname{gcd}(N, 6)=1$. It is easy to show that

$$
\begin{align*}
G_{3}(n) & =\frac{1}{5}\left(2^{2 \alpha+2}+(-1)^{\alpha}\right) 3^{2 \beta} G_{3}(N) \tag{4.7}\\
H_{3}(n) & =\frac{1}{5}(-1)^{\alpha}\left(2^{2 \alpha+2}+(-1)^{\alpha}\right) 3^{2 \beta} H_{3}(N) \tag{4.8}\\
H_{3}(N) & =\left(\frac{-3}{N}\right) G_{3}(N) \tag{4.9}
\end{align*}
$$

Employing (4.6)-4.9), we deduce that if $\alpha=0$, then $2 \nmid n$ and

$$
\begin{align*}
N(2,0,1 ; n) & =-\frac{3}{2} H_{3}(n)+\frac{9}{2} G_{3}(n)+9 f(n) \tag{4.10}\\
& =\frac{3}{2}\left(3^{2 \beta+1}-\left(\frac{-3}{N}\right)\right) G_{3}(N)+9 f(n) .
\end{align*}
$$

Recently, Chan, Cooper and Liaw CCL have proved that

$$
\begin{equation*}
f(n)=\frac{1}{2} \sum_{\substack{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \\ x_{1}^{2}+3 x_{2}^{2}=n}}\left(x_{1}^{2}-3 x_{2}^{2}\right) \tag{4.11}
\end{equation*}
$$

see also Williams [W]. Combining 4.10 and 4.11, we find that if $n \in \mathbb{N}$ and $2 \nmid n$, then

$$
\begin{equation*}
N(2,0,1 ; n)=\frac{3}{2}\left(3^{2 \beta+1}-\left(\frac{-3}{N}\right)\right) G_{3}(N)+\frac{9}{2} \sum_{\substack{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \\ x_{1}^{2}+3 x_{2}^{2}=n}}\left(x_{1}^{2}-3 x_{2}^{2}\right) \tag{4.12}
\end{equation*}
$$

By (3.6), it is easy to see that if $2 \mid n$, then

$$
\begin{equation*}
f(n)=0 \tag{4.13}
\end{equation*}
$$

Define

$$
g(\alpha):= \begin{cases}0 & \text { if } \alpha=1 \tag{4.14}\\ 1 & \text { if } \alpha \geq 2\end{cases}
$$

Using (4.6)-(4.9), (4.13) and (4.14), we deduce that if $\alpha \geq 1$, then $2 \mid n$ and

$$
\begin{align*}
N(2,0,2 ; n)= & \frac{9}{2} G_{3}(n)+\frac{27}{2} G_{3}(n / 2)+36 G_{3}(n / 4) \tag{4.15}\\
& -\frac{3}{2} H_{3}(n)+\frac{9}{2} H_{3}(n / 2)-12 H_{3}(n / 4) \\
= & \frac{9}{10}\left(2^{2 \alpha+2}+(-1)^{\alpha}\right) 3^{2 \beta} G_{3}(N) \\
& -\frac{3}{10}(-1)^{\alpha}\left(2^{2 \alpha+2}+(-1)^{\alpha}\right)\left(\frac{-3}{N}\right) G_{3}(N) \\
& +\frac{27}{10}\left(2^{2 \alpha}-(-1)^{\alpha}\right) 3^{2 \beta} G_{3}(N) \\
& -\frac{9}{10}(-1)^{\alpha}\left(2^{2 \alpha}-(-1)^{\alpha}\right)\left(\frac{-3}{N}\right) G_{3}(N) \\
& +\frac{36}{5} g(\alpha)\left(2^{2 \alpha-2}+(-1)^{\alpha}\right) 3^{2 \beta} G_{3}(N) \\
& -\frac{12}{5} g(\alpha)(-1)^{\alpha}\left(2^{2 \alpha-2}+(-1)^{\alpha}\right)\left(\frac{-3}{N}\right) G_{3}(N) \\
= & S(\alpha)\left(3^{2 \beta+1}-(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N),
\end{align*}
$$

where

$$
\begin{align*}
S(\alpha)= & \frac{3}{10}\left(2^{2 \alpha+2}+(-1)^{\alpha}\right)+\frac{9}{10}\left(2^{2 \alpha}-(-1)^{\alpha}\right) \tag{4.16}\\
& +\frac{12}{5} g(\alpha)\left(2^{2 \alpha-2}+(-1)^{\alpha}\right) .
\end{align*}
$$

Therefore, by (4.14) and (4.16),

$$
\begin{align*}
S(\alpha) & = \begin{cases}9 & \text { if } \alpha=1 \\
\frac{9}{5}\left(3 \cdot 2^{2 \alpha-1}+(-1)^{\alpha}\right) & \text { if } \alpha \geq 2\end{cases} \tag{4.1.1}\\
& =\frac{9}{5}\left(3 \cdot 2^{2 \alpha-1}+(-1)^{\alpha}\right) .
\end{align*}
$$

It follows from 4.15 and 4.17 that if $1 \mid n$, then

$$
\begin{equation*}
N(a, b, c ; n)=\frac{9}{5}\left(3 \cdot 2^{2 \alpha-1}+(-1)^{\alpha}\right)\left(3^{2 \beta+1}-(-1)^{\alpha}\left(\frac{-3}{N}\right)\right) G_{3}(N) . \tag{4.18}
\end{equation*}
$$

Combining (4.12) and 4.18), we arrive at (1.7).
Acknowledgements. This work was supported by CPSFFP (No. 2014M551506) and the National Science Foundation of China (No. 11401260 and 11401316).

REFERENCES

[AAW1] A. Alaca, Ş. Alaca and K. S. Williams, On the two-dimensional theta functions of the Borweins, Acta Arith. 124 (2006), 177-195.
[AAW2] A. Alaca, Ş. Alaca and K. S. Williams, Some new theta function identities with applications to sextenary quadratic forms, J. Combin. Number Theory 1 (2009), 91-100.
[BB] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691-701.
[CC] H. H. Chan and S. Cooper, Powers of theta functions, Pacific J. Math. 235 (2008), 1-14.
[CCL] H. H. Chan, S. Cooper and W.-C. Liaw, On $\eta^{3}(a \tau) \eta^{3}(b \tau)$ with $a+b=8$, J. Austral. Math. Soc. 84 (2008), 301-313.
[K1] B. Köklüce, The representation numbers of three octonary quadratic forms, Int. J. Number Theory 9 (2013), 505-516.
[K2] B. Köklüce, The representation numbers of certain octonary quadratic forms, Int. J. Number Theory 9 (2013), 1125-1139.
[K3] B. Köklüce, Representation numbers of two octonary quadratic forms, Int. J. Number Theory 9 (2013), 1641-1648.
[L] G. A. Lomadze, Representation of numbers by sums of the quadratic forms $x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$, Acta Arith. 54 (1989), 9-36 (in Russian).
[W] K. S. Williams, Quadratic forms and a product-to-sum formula, Acta Arith. 158 (2013), 79-97.
[X] E. X. W. Xia, On the number of representations of a positive integer by certain quadratic forms, Colloq. Math. 135 (2014), 139-145.
[XY] E. X. W. Xia and O. X. M. Yao, On the representations of integers by certain quadratic forms, Int. J. Number Theory 9 (2013), 189-204.

Ernest X. W. Xia, Olivia X. M. Yao
Department of Mathematics
Jiangsu University
Zhenjiang, Jiangsu 212013, P. R. China
E-mail: ernestxwxia@163.com yaoxiangmei@163.com
A. F. Y. Zhao

School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P. R. China E-mail: alinazhao@njnu.edu.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11E25; Secondary 11E20, 11A25.
 Key words and phrases: (p, k)-parametrization, quadratic form, 2-dimensional theta functions.

