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Abstract. Let G be a finite abelian group of rank r and let X be a zero-sum
free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that
|Σ(X)| ≥ 2r−1(|X| − r + 2)− 1 for r ≤ 3. We show that this result also holds for abelian
groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.

1. Introduction. Let G be a finite abelian group. By a sequence over
G we mean a finite sequence of terms from G where repetition is allowed
and the order is disregarded. In 1972, Eggleton and Erdős [1] first tackled
the problem of determining the minimal cardinality of the set Σ(X) of
subsums of zero-sum free sequences over G. In 1977, Olson and White [?]
obtained a lower bound for |Σ(X)|, where X is a zero-sum free sequence over
G and supp(X) generates a noncyclic group. Subsequently, several authors
[2, 6, 7, 8] obtained a huge variety of results. In particular, we refer the reader
to Part II of the recent monograph [5] by Grynkiewicz. In 2009, Pixton [6,
Lemma 1.1 and Theorems 1.3 and 1.7] proved the following theorem.

Theorem A. Let G be a finite abelian group of rank r ≤ 3, and let X
be a zero-sum free sequence over G whose support generates G. Then

|Σ(X)| ≥ 2r−1(|X| − r + 2)− 1

where |X| denotes the length of X.

In this paper, we show that the bound given in Theorem A also holds
for a class of abelian groups of rank 4.

Main Theorem 1.1. Let G be a finite abelian group of rank 4 and let
X be a zero-sum free sequence over G whose support generates G. If the
smallest prime p dividing |G| satisfies p ≥ 13, then

|Σ(X)| ≥ 8|X| − 17.
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Let G be a nontrivial finite abelian group, say G ∼= Cn1 ⊕ · · · ⊕Cnr with
1 < n1 | · · · |nr. Then r = r(G) is the rank of G.

Suppose that r = 4. Then the lower bound given in Theorem 1.1 is
best possible. Indeed, if (e1, e2, e3, e4) is a basis of G, then the sequence

S = e1e2e3e
ord(e4)−1
4 is zero-sum free, |S| = ord(e4) + 2, and |Σ(S)| =

23 ord(e4)−1 = 8|S|−17. We do not know whether the result holds true for
groups G having a prime divisor q which is smaller than 13. Note that we
have no information on the maximal length or on the structure of zero-sum
free sequences over groups of rank 4. We only want to recall that there are
zero-sum free sequences S over groups of rank 4 whose lengths are strictly
larger than

∑4
i=1(ni − 1) (see [4]).

2. Preliminaries. Let N denote the set of positive integers and N0 =
N ∪ {0}. Let Z denote the set of integers. For a, b ∈ Z with a ≤ b, we define
[a, b] = {x ∈ Z | a ≤ x ≤ b}. Let G be an additively written finite abelian
group. Let F (G) be the free abelian monoid, multiplicatively written, with
basis G. The elements of F (G) are called sequences over G.

We write a sequence S ∈ F (G) in the form

S =
∏
g∈G

gvg(S) with vg(S) ∈ N0 for all g ∈ G.

We call vg(S) the multiplicity of g in S. We say that S contains g if vg(S) > 0.
The unit element 1 ∈ F (G) is called the empty sequence. A sequence S1 is
called a subsequence of S if S1 |S in F (G) (equivalently, vg(S1) ≤ vg(S) for
all g ∈ G). Let S1, S2 ∈ F (G); we denote by S1S2 the sequence∏

g∈G
gvg(S1)+vg(S2) ∈ F (G),

and by S1S
−1
2 the sequence∏

g∈G
gvg(S1)−min{vg(S1),vg(S2)} ∈ F (G).

If a sequence S ∈ F (G) is written in the form S = g1 · . . . · gl, we tacitly
assume that l ∈ N0 and g1, . . . , gl ∈ G. For

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F (G),

we call

• |S| = l =
∑

g∈G vg(S) ∈ N0 the length of S,

• σ(S) =
∑l

i=1 gi =
∑

g∈G vg(S)g ∈ G the sum of S,
• supp(S) = {g ∈ G | vg(S) > 0} ⊆ G the support of S,
• Σ(S) = {

∑
i∈I gi | ∅ 6= I ⊆ [1, n]} the set of sub(sequence) sums of S.
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The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• a zero-sum free sequence if 0 6∈ Σ(S),
• a minimal zero-sum sequence if |S| ≥ 1, σ(S) = 0, and S contains no

proper and nontrivial zero-sum subsequence.

If G1 is a group and ϕ : G→ G1 a map, then ϕ(S) = ϕ(g1) · . . . · ϕ(gl) is a
sequence over G1.

We set D(G) = max{|S| | S is a minimal zero-sum sequence over G},
the Davenport constant of G.

For any integer-valued function f : A → Z defined on a finite set A, we
write min(f) = min{f(a) | a ∈ A} and max(f) = max{f(a) | a ∈ A}.

Next we list some necessary lemmas.

Lemma 2.1 ([6, Lemma 4.4]). Let G be a finite abelian group and X ⊆
G \ {0} be a generating set for G. Suppose that f : G → Z is a function
on G. Then∑

x∈X, g∈G
max{f(g + x)− f(g), 0} ≥ (max(f)−min(f))|X|.

Lemma 2.2. Let G be a finite abelian group, H ⊆ G a subgroup, S ⊆ G
a subset, and let f : G/H → Z be defined by f(a + H) = |(a + H)

⋂
S| for

all a ∈ G. Suppose that X ⊆ G \ {0} is a generating set for G and satisfies
|(S + x) \ S| ≤ 7 for all x ∈ X. Then

min(f) ≥ max(f)− 7.

In particular, if there exists an element b ∈ G such that f(b+H) ≥ 8, then
f(a+H) ≥ 1 for all a ∈ G.

Proof. Obviously, the assertion holds for H = {0} and for H = G.
Suppose that {0} ( H ( G. Let A ⊆ G be such that G =

⋃
a∈A(a + H)

and |A| = |G/H|. Since {x + H | x ∈ X} is a generating set for G/H,
choose X ′ ⊆ X such that {x+H | x ∈ X ′} is a generating set for G/H and
|{x+H | x ∈ X ′}| = |X ′|.

From |(S + x) \ S| ≤ 7 for all x ∈ X we deduce

7|X ′| ≥
∑
x∈X′

|(S + x) \ S| =
∑
x∈X′

∑
a∈A

∣∣((S + x) ∩ (a+H)
)
\
(
S ∩ (a+H)

)∣∣
≥
∑
x∈X′

∑
a∈A

max{f(a− x+H)− f(a+H), 0}

=
∑

x∈−X′

∑
a∈A

max{f(a+H + x+H)− f(a+H), 0}.

Since {x+H | x ∈ X ′} is a generating set for G/H, so is {x+H | x ∈ −X ′}.
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Therefore, by Lemma 2.1,

7|X ′| ≥
∑

x∈−X′

∑
a∈A

max{f(a+H + x+H)− f(a+H), 0}

≥ (max(f)−min(f))|X ′|.

From |X ′| 6= 0 we obtain

min(f) ≥ max(f)− 7.

In particular, if f(b + H) ≥ 8 for some b ∈ G, then for all a ∈ G,
f(a+H) ≥ min(f) ≥ max(f)− 7 ≥ f(b+H)− 7 ≥ 1.

We also need the following simple and well-known result.

Lemma 2.3. Let G be a finite abelian group and S be a zero-sum free
sequence over G. Then

(1) |Σ(S)| ≥ |S|,
(2) D(G) ≤ |G|.

Proof. (1) Suppose S = g1 · . . . · gl. Then g1, g1 + g2, . . . , g1 + . . .+ gl are
all distinct. It follows that |Σ(S)| ≥ l = |S|.

(2) Assume to the contrary that X is a zero-sum free sequence over G
with length |G|. Then by (1), |Σ(X)| ≥ |G|, which implies that 0 ∈ Σ(X),
a contradiction.

Lemma 2.4. Let G be a finite abelian group and X = X1X2 be a zero-
sum free sequence over G. Then

(1) |Σ(X)| ≥ |Σ(X1)|+ |Σ(X2)|.
(2) Let H = 〈supp(X1)〉 and let ϕ : G→ G/H be the canonical epimor-

phism. If ϕ(X2) is a zero-sum free sequence over G/H, then

|Σ(X)| ≥ (|Σ(X1)|+ 1)(|X2|+ 1)− 1.

Proof. (1) This follows by [3, Theorem 5.3.1].

(2) Since ϕ(X2) is a zero-sum free sequence over G/H, we deduce that
H ∩Σ(X2) = ∅ and |Σ(ϕ(X2))| ≥ |X2| by Lemma 2.3(1). Thus for any a in
Σ(X2),

|Σ(X0) ∩ (a+H)| ≥ |(Σ(X1) + a) ∪ {a}| = |Σ(X1)|+ 1.

Therefore

|Σ(X0)| ≥ |Σ(X0) ∩H|+
∑

a+H∈Σ(ϕ(X2))

|Σ(X0) ∩ (a+H)|

≥ |Σ(X1)|+ (|Σ(X1)|+ 1)|Σ(ϕ(X2))| ≥ (|Σ(X1)|+ 1)(|X2|+ 1)− 1.
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3. The proof of Theorem 1.1. For the simplicity of formulations, we
define C-sequences and C-groups. To begin with, a sequence X over a finite
abelian group G is called a C-sequence if:

(i) 〈supp(X)〉 = G,
(ii) X is zero-sum free,

(iii) |
∑

(X)| ≤ 8|X| − 18.

Furthermore, a finite abelian group G is called a C-group if:

(i) r(G) = 4,
(ii) the smallest prime p dividing |G| satisfies p ≥ 13,
(iii) there exists a C-sequence over G.

Proof of Theorem 1.1. If Theorem 1.1 does not hold, then there exists
a C-group. Let G0 be the C-group with minimal order and let X0 be a
C-sequence over G0 with minimal length.

We proceed by the following four claims:

Claim A. Let X be a zero-sum free sequence over G0 and H=〈supp(X)〉
with r = r(H). If |H| < |G0| or |X| < |X0|, then

|Σ(X)| ≥ 2r−1(|X| − r + 2)− 1.

Proof. By Theorem A and the hypotheses about G0 and X0, this follows
directly.

Claim B.

(1) Let H be a subgroup of G0. Then for any a ∈ G0,

|Σ(X0)∩ (a+H)| ≥ max
g∈G0

|Σ(X0)∩ (g +H)| − 7 ≥ |Σ(X0)∩H| − 7.

(2) Suppose that X0 has a factorization X0 = X1X2 such that H =
〈supp(X1)〉 is a proper subgroup of G. If |Σ(X1)| ≥ 7, then

|Σ(X0)| ≥ (Σ(X1) + 1)|G/H| − 1.

Proof. (1) For any x |X0, denote Hx = 〈supp(X0x
−1)〉. Then r(Hx) ≥

r(G0)− 1 = 3. By Claim A and |X0x
−1| < |X0|, we get

|Σ(X0x
−1)| ≥ min

{
4(|X0| − 1− 3 + 2)− 1, 8(|X0| − 1− 4 + 2)− 1

}
= 4|X0| − 9.

If Hx 6= G0, then x /∈ Hx. Thus |Σ(X0)| ≥ 2|Σ(X0x
−1)| + 1 ≥ 8|X0| − 17

by Lemma 2.4(2), a contradiction to X0 being a C-sequence.

Therefore Hx = G0 and r(Hx) = 4. By Claim A and |X0x
−1| < |X0|,

|Σ(X0x
−1)| ≥ 8(|X0| − 1)− 17 = 8|X0| − 25.
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Let S = Σ(X0). Then |S| ≤ 8|X0| − 18 and for all x |X0,

|(S + x) \ S| = |S \ (S − x)| ≤ |S \Σ(X0x
−1)|

≤ |S| − |Σ(X0x
−1)| ≤ (8|X0| − 18)− (8|X0| − 25) ≤ 7.

By 〈supp(X0)〉 = G0 and Lemma 2.2, for any a ∈ G,

|Σ(X0) ∩ (a+H)| ≥ max
g∈G0

|Σ(X0) ∩ (g +H)| − 7 ≥ |Σ(X0) ∩H| − 7.

(2) Since H is a proper subgroup of G0, there exists x |X2 such that
x 6∈ H. Then

|Σ(X0) ∩ (x+H)| ≥ |(Σ(X1) + x) ∪ {x}| ≥ |Σ(X1)|+ 1 ≥ 8.

For any a ∈ G0 \H, we get |Σ(X0)∩ (a+H)| ≥ |Σ(X0)∩ (x+H)| − 7 ≥ 1
by (1), which implies that Σ(X2) ∩ (a+H) 6= ∅.

Choose b ∈ Σ(X2) ∩ (a + H). Then we have |Σ(X0) ∩ (a + H)| ≥
|(Σ(X1) + b) ∪ {b}| = |Σ(X1)|+ 1 for all a ∈ G0 \H. Therefore

|Σ(X0)| ≥ |Σ(X1)|+ (|Σ(X1)|+ 1)(|G/H| − 1)

≥ (|Σ(X1)|+ 1)(|G/H|)− 1.

Claim C. Let X be a subsequence of X0. If H = 〈supp(X)〉 is a proper
subgroup of G0, then r(H) ≤ 3.

Proof. Assume to the contrary that r(H) = 4. Then |X| ≥ 4.

Let ϕ : G0 → G0/H denote the canonical epimorphism from G0 to
G0/H with ker(ϕ) = H. Then ϕ(X0) is a sequence over G0/H. We can get
a factorization of X0,

X0 = X ·X1 · . . . ·Xα ·X ′,
such that for 1 ≤ i ≤ α, ϕ(Xi) is a minimal zero-sum sequence over G0/H
and ϕ(X ′) is a zero-sum free sequence over G0/H. Thus |Σ(ϕ(X ′))| ≥ |X ′|
and |X0| ≤ |X|+ αD(G/H) + |X ′| ≤ |X|+ α|G/H|+ |X ′| by Lemma 2.3.

Let Y = X · σ(X1) · . . . · σ(Xα). Then Y is a zero-sum free sequence
over H. From H < G0 and Claim A we have

|Σ(X0) ∩H| ≥ |Σ(Y ) ∩H| ≥ 8|Y | − 17.

For any a ∈ Σ(X ′), we get a 6∈ H and

|Σ(X0) ∩ (a+H)| ≥ |Σ(Y · a) ∩ (a+H)| ≥ |Σ(Y ) ∩H|+ 1 ≥ 8|Y | − 16.

Let A′ ⊆ Σ(X ′) satisfy {a + H | a ∈ Σ(X ′)} = {a + H | a ∈ A′}
and |A′| = |ϕ(Σ(X ′))|. Let A ⊆ G0 be a subset with A ⊇ A′ such that
G0 =

⋃
a∈A(a+H) and |A| = |G0/H|. Then for any b ∈ A \ (A′ ∪H),

|Σ(X0) ∩ (b+H)| ≥ |Σ(X0) ∩H| − 7 ≥ 8|Y | − 24,

by Claim B(1).
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Therefore,

|Σ(X0)| =
∑
a∈A
|Σ(X0) ∩ (a+H)|

≥ 8|Y | − 17 + (8|Y | − 16)|Σ(ϕ(X ′))|
+ (8|Y | − 24)(|G/H| − 1− |Σ(ϕ(X ′))|)
≥ (8|Y | − 24)|G/H|+ 8|Σ(ϕ(X ′))|+ 7

≥ 8(|X| − 3)(|G|/|H| − 1) + 8(|X|+ α|G|/|H|+ |X ′|)− 17

≥ 8|X0| − 17,

a contradiction.

Claim D. Let Y be a subsequence of X0 with length 4. Then 〈supp(Y )〉
= G0.

Proof. Let X be the longest subsequence of X0 such that 〈supp(X)〉 6=
G0. Denote H = 〈supp(X)〉. Then r(H) = 3 by Claim C and |G0/H| ≥ 13
since G0 is a C-group. Let ϕ : G0 → G0/H denote the canonical epimor-
phism.

We only need to prove that |X| ≤ 3. Assume to the contrary that |X| ≥ 4.
We distinguish three cases.

Case 1: |X0| ≤ ((|X| − 1)|G0/H| + 4)/2. From H < G0 and Claim A,
we have |Σ(X)| ≥ 4(|X| − 1)− 1 ≥ 11. Then by Claim B(2),

|Σ(X0)| ≥ (|Σ(X)|+ 1)|G0/H| − 1 ≥ 4(|X| − 1)|G0/H| − 1,

which implies that |Σ(X0)| ≥ 8|X0|−17 since |X0| ≤ ((|X|−1)|G0/H|+4)/2,
a contradiction.

Case 2: There exists no zero-sum free subsequence of ϕ(X0X
−1) with

length 6. Since ϕ(X0) is a sequence over G0/H, we can get a factorization
of X0,

X0 = X ·X1 · . . . ·Xα ·X ′,
such that for 1 ≤ i ≤ α, ϕ(Xi) is a minimal zero-sum sequence over G0/H
and ϕ(X ′) is a zero-sum free sequence over G0/H. Thus |X0| = |X|+ |X1|+
· · ·+ |Xα|+ |X ′| ≤ |X|+ |X ′|+ 6α and |Σ(ϕ(X ′))| ≥ |X ′| by Lemma 2.3.

Let Y = X · σ(X1) · . . . · σ(Xα). Then Y is a zero-sum free sequence
over H. By Claim A and H < G0 , we have

|Σ(X0) ∩H| ≥ |Σ(Y ) ∩H| ≥ 4|Y | − 5.

For any a ∈ Σ(X ′), we obtain a 6∈ H and

|Σ(X0) ∩ (a+H)| ≥ |Σ(Y · a) ∩ (a+H)| ≥ |Σ(Y ) ∩H|+ 1 ≥ 4|Y | − 4.

Let A′ ⊆ Σ(X ′) satisfy {a + H | a ∈ Σ(X ′)} = {a + H | a ∈ A′}
and |A′| = |ϕ(Σ(X ′))|. Let A ⊆ G0 be a subset with A ⊇ A′ such that
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G0 =
⋃
a∈A(a+H) and |A| = |G0/H|. Then for any b ∈ A \ (Σ(X ′) ∪H),

|Σ(X0) ∩ (b+H)| ≥ |Σ(X0) ∩H| − 7 ≥ 4|Y | − 12,

by Claim B(1). Therefore,

|Σ(X0)| =
∑
a∈A
|Σ(X0) ∩ (a+H)|

≥ 4|Y | − 5 + (4|Y | − 4)|Σ(ϕ(X ′))|
+ (4|Y | − 12)(|G/H| − 1− |Σ(ϕ(X ′))|)
≥ (4|Y | − 12)|G/H|+ 8|Σ(ϕ(X ′))|+ 7

≥ (4|X|+ 4α− 12)|G/H|+ 8|X ′|+ 7.

Since |X| ≥ 4, |G/H| ≥ 13, and |X0| ≤ |X| + |X ′| + 6α, we conclude that
|Σ(X0)| ≥ 8|X0| − 17, a contradiction.

Case 3: |X0| > ((|X| − 1)|G/H| + 4)/2 and there exists a subsequence
X1 of X0X

−1 such that ϕ(X1) is a zero-sum free subsequence over G0/H of
length 6. Since |X0| > ((|X| − 1)|G/H|+ 4)/2, we obtain

|X0| − 2|X| > |X|(|G/H| − 4)− |G/H|+ 4

2
≥ 7.

Denote

X2 = X0(XX1)
−1.

Then |X2| = |X0|− |XX1| > |X|+1. Thus 〈X2〉 = G0 since X is the longest
subsequence of X0 such that 〈supp(X)〉 6= G0. Hence |Σ(X2)| ≥ 8|X2| − 17
from |X2| < |X0| and Claim A.

By H < G0 and Claim A, |Σ(X)| ≥ 4(|X| − 1) − 1. It follows that
|Σ(XX1)| ≥ 4(|X| − 1)(|Σ(ϕ(X1))|+ 1)− 1 ≥ 8|XX1| from Lemma 2.4(2),
|X| ≥ 4 and |X1| = 6.

Therefore by Lemma 2.4(1),

|Σ(X0)| ≥ |Σ(XX1)|+ |Σ(X2)| ≥ 8|XX1|+ 8|X2| − 17 = 8|X0| − 17,

a contradiction.

Now we finish the proof of Theorem 1.1 by distinguishing the following
two cases.

Suppose that |X0| ≥ 13. Denote X0 = x1 · . . . · xn. Then by Claim D,
any four elements of X0 are independent, which implies that xi, xj + xk,
1 ≤ i ≤ n, 1 ≤ j < k ≤ n, are all different elements in G0. Therefore,

|Σ(X0)| ≥ n+ n(n− 1)/2 ≥ 8|X0| − 17,

a contradiction.

Suppose that |X0| ≤ 12. Let X be a subsequence of X0 of length 3 and
H = 〈supp(X)〉 be a proper subgroup of G0. Then by Claim D, the three
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elements of X must be independent, which implies that |Σ(X)| = 7. It
follows by Claim B(2) that

|Σ(X0)| ≥ (|Σ(X)|+ 1)|G0/H| − 1 ≥ 8 · 13− 1 ≥ 8|X0| − 17,

a contradiction.
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