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Abstract. The purpose of this paper is to describe a unified approach to proving
vector-valued inequalities without relying on the full strength of weighted theory. Our
applications include the Fefferman–Stein and Córdoba–Fefferman inequalities, as well as
the vector-valued Carleson operator. Using this approach we also produce a proof of the
boundedness of the classical bi-parameter multiplier operators, which does not rely on
product theory. Our arguments are inspired by the vector-valued restricted type interpo-
lation used by Bateman and Thiele (2013).

1. The General Principle. In this paper we describe an alternative
approach to a few well known vector-valued inequalities. One of them leads to
an alternative way to estimate bi-parameter linear operators. This approach
has already played a crucial role in recent work in the linear setting [1] but
also in the context of bilinear operators [14], where weighted estimates were
not available. At its core lies restricted type vector-valued interpolation as
encoded by the following principle:

Theorem 1.1 (The General Principle [1]). Let p0, p1 ∈ (1,∞) be such
that p0 < p1 and let {Tj}j be a (possibly finite) sequence of sublinear operators
on Rn which are uniformly bounded on L2. Assume that for p ∈ {p0, p1} there
is Cp > 0 with the following property:

(P) for any finite non-zero measure sets H,G ⊂ Rn there exist subsets
H ′ ⊂ H and G′ ⊂ G with

(1.1) |H ′| ≥ 1
2 |H|, |G′| ≥ 1

2 |G|

such that

(1.2)
�
|Tj(f1H′)|21G′ ≤ Cp

(
|G|
|H|

)1−2/p �
|f |2

for each j and each f ∈ L2(Rn).
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Then

(1.3)
∥∥∥(∑

j

|Tjfj |2
)1/2∥∥∥

q
.q

∥∥∥(∑
j

|fj |2
)1/2∥∥∥

q

for each p0 < q < p1 and any fj.

It is important to note that the choice of the subsets H ′, G′ as well as the
constant Cp are independent of j. In our applications we can always work
with either G′ = G or H ′ = H for a given value of p. However we believe
that this more general form of the principle may one day find applications.

The hypothesis that supj ‖Tj‖L2→L2 < ∞ can be easily relaxed, but
works fine with our applications.

We use Theorem 1.1 to obtain vector-valued estimates for a family of
operators by proving uniform L2 estimates for a related family of operators.
Indeed, if we define

Sj,G′,H′(f) = Tj(f1H′)1G′ ,

then the estimate (1.2) can be written as

‖Sj,G′,H′‖L2→L2 .p (|G|/|H|)1/2−1/p.

We prove Theorem 1.1 in Section 2. Note that when p 6= 1/2, one of
the exponents of |H| and |G| becomes negative, so using Lp estimates for Tj
with Hölder’s inequality does not give the above L2 estimates for Sj,G′,H′ .

In Sections 4, 5 and 6 we give new proofs for three classical results using
Theorem 1.1 and elements of the approach described in Section 3. Sections
5 and 6 contain proofs for two classical bi-parameter problems: boundedness
of bi-parameter multiplier operators and the Córdoba–Fefferman inequality.
We reduce both these problems to vector-valued estimates for single scale
operators and then use Theorem 1.1 to prove these vector-valued estimates.
The key advantage of this approach is that we avoid product theory or
explicit weighted theory and reduce bi-parameter problems to essentially
single-parameter problems.

Our first application in Section 4 is a proof of the Fefferman–Stein in-
equality that avoids explicit use of weighted theory. This proof follows the
line of argument from Section 3 in a much simpler setting. In Section 7 we
give a similar proof for the vector-valued estimates for the Carleson operator.

Our proofs are in general not easier than the classical ones. This is mostly
due to technicalities associated with various decompositions. To keep the ex-
position as transparent as possible, we choose to focus mainly on how the
General Principle 1.1 works in each case, and less on various other technical-
ities. We caution the reader that various parts of the argument need to be
worked out in more detail and draw attention to the large body of literature
where most of these details are explained in related contexts.
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Our hope is that the approach relying on Theorem 1.1 described in this
paper will find further applications. We point out that the employment of
this method was critical to the theorems proved in [1] and [14].

2. Proof of Theorem 1.1. A proof appears in [1], but we include it
here too, for the reader’s convenience.

Using generalized restricted type interpolation in the vector-valued set-
ting, to obtain (1.3) it is enough to show that the l2-valued sublinear operator
T defined by

T(f) = (Tj(fj))j

for each f = (fj)j is restricted weak-type (p, p) for p ∈ {p1, p2}. By this we
mean that given any positive measure sets G,H ⊂ Rn, we have

�

G

‖T(f)(x)‖l2 dx ≤ Ap|H|1/p|G|1/p
′
,

with a constant Ap independent of G and H, whenever

‖f(x)‖l2 ≤ 1H(x), a.e. x.

Note that to prove this for a fixed p it suffices to prove the following
superficially weaker statement: Let γ = γ(p) = 6max(p,p′). Then given any
positive measure sets G,H ⊂ Rn, there exist subsets H ′ ⊂ H and G′ ⊂ G
with |H ′| ≥ γ−1

γ |H| and |G
′| ≥ γ−1

γ |G| such that

(2.1)
�

G′

‖T(f)(x)‖l2 dx ≤ Bp|H|1/p|G|1/p
′
,

with a constant Bp independent of G and H, whenever

‖f(x)‖l2 ≤ 1H′(x), a.e. x.

Indeed, note first that
�

G

‖T(f)(x)‖l2 dx ≤
�

G′

‖T(f1H′)(x)‖l2 dx+
�

G\G′
‖T(f1H′)(x)‖l2 dx

+
�

G′

‖T(f1H\H′)(x)‖l2 dx+
�

G\G′
‖T(f1H\H′)(x)‖l2 dx.

The first term on the right hand side can be bounded by Bp|H|1/p|G|1/p
′ .

For the remaining three terms we iterate the decomposition. Note that
after k iterations the error term is the sum of 3k integrals of the form	
G∗ ‖T(f1H∗)(x)‖l2 dx with |G∗| |H∗| ≤ (γ−1)k|G| |H|. Since the Tj are uni-
formly bounded on L2, each of these integrals is bounded by C|G∗|1/2|H∗|1/2.
The choice of γ forces the error term to go to zero.
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By repeating the argument we are led to the upper bound
∞∑
k=0

Bpγ
−kmin(1/p,1/p′)3k|H|1/p|G|1/p′ ≤ Ap|H|1/p|G|1/p

′
.

Let now G′, H ′ be the subsets provided by property (P) in Theorem 1.1.
Using Hölder’s inequality, to verify (2.1) it is enough to show that

(2.2)
∥∥∥(∑

j

|Tj(fj)|21G′
)1/2∥∥∥

2
.p |H|1/p|G|1/p

′−1/2.

Then using the fact that {fj}j satisfy
∑

j |fj |2 ≤ 1H′ , in order to get (2.2)
it is enough to show that

(2.3)
∑
j

‖Tj(fj)1G′‖22 .p

(
|G|
|H|

)1−2/p∑
j

‖fj‖22.

But this follows from (1.2).

3. Some results from time frequency analysis. In this section we
briefly recall the main tools used in the proof in [8] of Carleson’s theorem.
These tools will be used in simpler settings to prove our results in the follow-
ing sections. Let us start by recalling that the Carleson operator is defined by

(3.1) Cf(x) =
�

R

f(x+ t)
eiN(x)t

t
dt,

where N : R→ R is an arbitrary measurable choice function.
The approach developed in [8] relies on a size lemma, a mass lemma,

a single tree estimate, as well as on arguments involving obtaining better
control over size and mass by removing exceptional sets.

We refer the reader to [8] and [16] for the proofs of these results in the
Fourier case. The discussion of the simpler Walsh case can be found in [3].

A first crucial idea in [8] is to decompose the Carleson operator into
discrete model operators, where wave packets are used to capture both fre-
quency and spatial localizations.

Definition 3.1 (Tiles and bi-tiles). A tile s is a product of two dyadic
intervals with area 1, that is, s = Is × ωs with |Is| × |ωs| = 1. The dyadic
intervals Is and ωs are respectively called the spatial interval and the fre-
quency interval of s. A bi-tile P = (P1, P2) is a pair of tiles P1, P2 with
IP1 = IP2 = IP and such that the intervals ωP1 and ωP2 have the same dyadic
parent. We denote the frequency interval of the bi-tile P by ωP = ωP1 ∪ωP2 .
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Given a finite interval I ⊂ R we denote its center by c(I) and by χ̃I the
cutoff function given by

(3.2) χ̃I(x) =

(
1 +

(
x− c(I)
|I|

)2)−1/2
.

Definition 3.2 (Wave packet associated to a tile). Let s = Is×ωs be a
tile. A wave packet on s is a smooth function ϕs which has Fourier support
in ωs and obeys the spatial decay estimates∣∣∣∣ dαdxα [e−ic(ωs)xϕs(x)]

∣∣∣∣ .M,α |Is|−1/2−αχ̃MIs (x), x ∈ R,

for all M > 0 and all non-negative integers α.

The following Fefferman ordering of bi-tiles is used in combinatorial ar-
guments involving organizing the collection of bi-tiles.

Definition 3.3 (Partial ordering of bi-tiles). Given a pair of bi-tiles
P, P ′ we define P < P ′ to mean

IP ⊂ IP ′ , ωP ′ ⊂ ωP .

Remark 3.4. One may similarly define product tiles and wave pack-
ets in higher dimensions. The combinatorics in that context is much more
difficult, in part due to the fact that there is no good substitute for the
above partial ordering. To avoid this difficulty, in our forthcoming analysis
of the bi-parameter operators we first use Littlewood–Paley theory to reduce
matters to one-dimensional vector-valued estimates.

It turns out that the Carleson operator can be written as a superposition
of discrete operators of the type

(3.3)
∑
P

〈f, ϕP1〉ϕP2(x)1N−1(ωP2 )
(x),

where N−1(ωP2) = {x ∈ R : N(x) ∈ ωP2}.
To prove the boundedness of Carleson’s operator it suffices to prove uni-

form weak type bounds for the model operator in (3.3), where one can restrict
attention to a finite, convex collection of bi-tiles (see [8]). “P0 is a convex
collection of bi-tiles” means that P ′ ∈ P0 whenever P ≤ P ′ ≤ P ′′ and
P, P ′′ ∈ P0. Let us fix such a finite collection P0.

Next we define a tree. This is a collection of tiles whose associate model
sum plays the role of the Hilbert transform in the discrete setting.

Definition 3.5 (Tree). A tree T with top data (ξT , IT ) is a convex
collection of bi-tiles such that for all P ∈ T we have IP ⊂ IT and ξT ∈ ωP .

Next we recall the notion of size.
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Definition 3.6 (Size). Let S ⊂ P0 be a collection of bi-tiles and let
f ∈ L2(R). The size of S with respect to f is defined by

size(S, f) = sup
T

(
1

|IT |
∑
P∈T
|〈f, ϕP1〉|2

)1/2

,

where sup is taken over all the trees T in S with top data (ξT , IT ) that satisfy
ξT ∈ ωP2 for each P ∈ T.

The following lemma is used to partition a collection of bi-tiles into fur-
ther subcollections with good control over size.

Lemma 3.7 (Size Lemma [8]). Given a convex collection S of bi-tiles and
f ∈ L2(R) there exists a decomposition S = Sbig ∪ Ssmall such that Ssmall is
convex, size(Ssmall) ≤ 1

2size(S) and Sbig =
⋃
T∈F T , where F is a collection

of trees (a forest) with ∑
T∈F
|IT | . (size(S))−2‖f‖2.

Next we recall the concept of mass. Given a measurable function N :
R→ R, a bi-tile P and a set E ⊂ R, define

EP = E ∩ {x : N(x) ∈ ωP }.
Definition 3.8 (Mass). The mass of a convex collection of bi-tiles S is

given by

mass(S, E) = sup
P∈S

1

|IP |

�

EP

χ̃100
IP

(x) dx,

Similar to the size decomposition lemma, we have a mass decomposition
lemma.

Lemma 3.9 (Mass Lemma [8]). Given a convex collection S of bi-tiles
there exists a decomposition S = Sbig ∪ Ssmall such that Ssmall is convex,
mass(Ssmall) ≤ 1

2mass(S) and Sbig =
⋃
T∈F T , where F is a collection of

trees with ∑
T∈F
|IT | . (mass(S))−1|E|.

The Mass Lemma and the Size Lemma can be iterated to decompose a
given convex collection S of bi-tiles as

(3.4) S =
⋃

2−n≤size(S)

⋃
2−m≤mass(S)

Sn,m,

where Sn,m consists of a collection Fn,m of trees whose size and mass are
bounded by 2−n and 2−m respectively and such that∑

T∈Fn,m

|IT | . min(22n‖f‖22, 2m|E|).
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We also recall

Lemma 3.10 (Tree Estimate [8]). For every tree T ,∑
P∈T
|〈f, ϕP1〉〈1E , ϕP21N−1(ωP2 )

〉| . |IT | size(T, f)mass(T,E).

The final ingredient of the proof of the Carleson theorem is the argument
involving removing exceptional sets to get better bounds for the size and
mass of a collection of bi-tiles. We need the following estimate on size. Note
first that we have the trivial estimate size(S, f) . ‖f‖∞.

Lemma 3.11 (Size Estimate). If S is a convex collection of bi-tiles then

size(S, f) . sup
P∈S

inf
x∈IP

M(f)(x),

where M is the Hardy–Littlewood maximal function.

When we remove exceptional sets to obtain a better bound for mass, we
use the following estimate. Note also that we always have the trivial estimate
mass(S) . 1.

Lemma 3.12 (Mass Estimate). Let S be a collection of bi-tiles and E⊂R.
Then

mass(S) . sup
P∈S

inf
x∈IP

M(1E)(x).

The argument of removing exceptional sets involves decomposing the
collection S of bi-tiles into further subcollections Sk, k ≥ 0, based on the
position relative to the exceptional sets and using Lemma 3.11 or Lemma
3.12 to obtain better estimates for the size and mass of those subcollections.
In the arguments from our paper we simply state the bounds we get for the
subcollection S0, and we refer the reader to [11, p. 442] for details on how
to deal with Sk, k > 0.

The proof of the boundedness in Carleson’s theorem will follow by com-
bining the decomposition (3.4) with the Tree, Size and Mass Lemmas which
become effective outside certain small exceptional sets. The result is a con-
vergent double geometric sum. We refer the reader to [3, Section 6] for the
details.

4. The Fefferman–Stein inequality. In this section we give a proof
for the Fefferman–Stein inequality in the dyadic case, using Theorem 1.1
and a very rudimentary version of the time-frequency tools recalled in the
previous section. Let

Mf(x) := sup
x∈I

1

|I|

�

I

|f(y)| dy
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be the dyadic maximal function, where I runs over all dyadic intervals con-
taining x.

Theorem 4.1 (Fefferman–Stein [5]). For each 1 < p <∞ and any fj,∥∥∥(∑
j

|Mfj |
)1/2∥∥∥

p
.
∥∥∥(∑

j

|fj |
)1/2∥∥∥

p
.

Proof. We first give the proof in the range p > 2, where the classical
argument relies on elementary weighted theory. We prove (1.2) for fixed
G,H. Since p > 2 it suffices to consider the case |G| . |H|. Define

H ′ := H \
⋃

I: |I∩G|/|I|≥c|G|/|H|

I,

for sufficiently large c, so that (1.1) holds. Fix an arbitrary measurable

κ : R→ {2n : n ∈ Z}.
For a dyadic interval I define VI = {x ∈ I : |I| = κ(x)}. It suffices to check
the General Principle with

Tjf(x) =
∑
I

1

|I|
〈f, 1I〉1VI (x),

where the sum runs over all dyadic I. Note that in this case all Tj are the
same. We will prove (1.2) for each p > 2 using restricted interpolation. More
precisely, we show that∑

I

1

|I|
|〈1E∩H′ , 1I〉〈1F∩G, 1VI 〉| .

(
|G|
|H|

)1/s

|E|1/s|F |1/s′

for each 1 < s <∞. Note that we can restrict the sum to the collection I of
intervals I which intersect H ′.

In this case tiles are indexed by intervals and we have the following
analogs of size and mass:

size(I) :=
1

|I|
|〈1E∩H′ , 1I〉|, mass(I) :=

1

|I|
|〈1F∩G, 1VI 〉|.

Of course size(I) . 1 and moreover mass(I) . |G|/|H| for each I ∈ I. The
latter inequality is due to the fact that I ∩ H ′ 6= ∅, an instance of Lemma
3.12.

Let I∗n,m be the collection of the maximal intervals in

In,m := {I ∈ I : size(I) ∼ 2−n,mass(I) ∼ 2−m}.
For J ∈ I∗n,m the collection {I ∈ In,m : I ⊂ J} plays the role of a tree, while
the collections I∗n,m play the role of forests from Section 3. Next we prove
the following analogue of the single tree estimate (see Lemma 3.10). First



NEW LIGHT ON CLASSICAL RESULTS 137

note that for each J ∈ I∗n,m,∑
I⊂J : I∈In,m

1

|I|
|〈1E∩H′ , 1I〉〈1F∩G, 1VI 〉| =

�

R

∑
I⊂J : I∈In,m

1

|I|
〈1E∩H′ , 1I〉1F∩G1VI .

The support of the integral is actually a subset of J∩F ∩G, and since each x
receives contribution from only one I, we see that the function we integrate
is bounded by 2−n. Thus, the integral is bounded by

2−nmass(J)|J | . 2−n−m|J |.

We easily get estimates similar to the ones in the Size Lemma and the
Mass Lemma from the previous section. Since each such J ∈ I∗n,m is a subset
of {M1E > 2−n} and of {M1F > 2−m} we have∑

J∈I∗n,m

|J | . min{2n|E|, 2m|F |}.

Note the improvement 2n|E| versus 22n|E| in the Size Lemma. This comes
from exploiting disjointness of supports (L1 orthogonality) versus L2 orthog-
onality.

Combining all these estimates we get∑
2−n.1

∑
2−m.|G|/|H|

∑
I∈In,m

1

|I|
|〈1E∩H′ , 1I〉〈1F∩G, 1VI 〉|

.
∑

2−n.1

∑
2−m.|G|/|H|

2−n−mmin{2n|E|, 2m|F |} .
(
|G|
|H|

)1/s

|E|1/s|F |1/s′

for each 1 < s <∞. This shows that the operator MH′,G(f) :=M(f1H′)1G
satisfies restricted weak type bounds on Ls. Using the log convexity of
the implicit constants in restricted type interpolation, we immediately get
‖MH′,G‖2→2 . (|G|/|H|)1/2. This implies (1.2) for each p > 2 and as a result
the Fefferman–Stein inequality follows in the 2 < p <∞ range.

To get the 1 < p < 2 range one has to repeat the above argument with

G′ := G \
⋃

I: |H∩I|/|I|≥c|H|/|G|

I

for sufficiently large c. We can of course assume |H| . |G| in this case. By
restricting attention to the intervals I which intersect G′ we get an improved
estimate for the size:

size(I) . |H|/|G|.
The previous computations will give ‖MH,G′‖2→2 . (|H|/|G|)1/2. This im-
plies (1.2) for each p < 2 and as a result the Fefferman–Stein inequality
follows in the 1 < p < 2 range.
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5. Bi-parameter multipliers. Consider multipliers m defined on R2

which satisfy the following bi-parameter Hörmander–Mikhlin multiplier con-
dition:

|∂αξ ∂βηm(ξ, η)| . 1

|ξ|α|η|β

for ξ, η 6= 0 and sufficiently many α, β. It is known that the bilinear multiplier
operator associated to m given by

Tf(x, y) :=
�
f̂(ξ, η)m(ξ, η)e2πi(xξ+yη) dξ dη

is bounded on Lp for 1 < p <∞. The classical proofs rely on product BMO
and product H1. Here we give a different proof, whose only use of product
theory is via the boundedness of the strong maximal function.

The boundedness of the operator T can be reduced to that of model sums
of the form

(5.1)
∑
R

〈f, φR〉ψR,

the sum being taken over all dyadic rectangles R = IR × JR ⊂ R2. Here

(5.2) |∂α1
x ∂α2

y FR(x, y)| .M,α |IR|−1/2−α1 |JR|−1/2−α2χ̃MIR(x)χ̃
M
JR

(y)

for all M > 0 and sufficiently many non-negative integers αi, where FR ∈
{φR, ψR}. Moreover, both φ̂R and ψ̂R are supported in rectangles of the form
ωR,1 × ωR,2 with |ωR,1| |IR| ∼ 1, |ωR,2| |JR| ∼ 1 and dist(ωR,i, 0) ∼ |ωR,i|.
See [10] for details.

We prove the following

Theorem 5.1. For each 2 < p <∞ and each fj we have∥∥∥(∑
j∈Z

∣∣∣ ∑
R=I×J : |J |=2j

〈fj , φR〉ψR
∣∣∣2)1/2∥∥∥

p
.
∥∥∥(∑

j

|fj |2
)1/2∥∥∥

p
.

The boundedness of the model sums in (5.1) for p > 2 will follow by using
the Littlewood–Paley square function estimate in the second coordinate, that
is, by applying the above vector-valued inequality to fj := S2

j f , where

Ŝ2
j f(ξ, η) = f̂(ξ, η)1ωj (η),

and dist(ωj , 0) ∼ |ωj | ∼ 2−j . The boundedness for 1 < p < 2 will follow by
duality.

Proof of Theorem 5.1. We apply Theorem 1.1 to

Tjf :=
∑

R=I×J : |J |=2j

〈f, φR〉ψR.
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Since the scale of J is fixed, this is essentially a one-parameter multiplier and
the bound ‖Tj‖p→p for each 1 < p <∞ follows via classical one-dimensional
theory. It remains to check (1.2) for p ∈ (2,∞).

Given G and H, we note that (1.2) with any G′ ⊂ G and H ′ ⊂ H follows
from the bound ‖Tj‖p→p . 1 in the case |G| & |H|. Thus it suffices to assume
|G| . |H|. In this case define

H ′ := H \
⋃

R: |R∩G|/|R|>cε(|G|/|H|)1−ε
R,

where ε > 0 is small enough (it will depend on p) while cε is large enough so
that (1.1) holds. This can be achieved since the strong maximal function

M∗f(x, y) := sup
(x,y)∈R

1

|R|

�

R

|f |

maps Lp to Lp for p > 1. Also note that the choice of the set H ′ is indepen-
dent of j, as desired.

Now consider the operator

(5.3) Sj,G,H′(f) = Sj(f) =
∑

R=IR×JR: |JR|=2j

〈f1H′ , φR〉ψR1G.

Recall that we have to prove that for each δ > 0,

(5.4) ‖Sj,G,H′(f)‖2 .δ

(
|G|
|H|

)1/2−δ
‖f‖2.

Using the log convexity of the implicit constants in restricted type inter-
polation, to prove (5.4) it is enough to show that for E,F ⊂ R with finite
measure and functions f, g with |f | ≤ 1E , |g| ≤ 1F ,

(5.5) ∑
R=IR×JR: |JR|=2j

|〈f1H′ , φR〉| |〈ψR, g1G〉| .ε,p

(
|G|
|H|

)1−ε/p
|E|1/p|F |1/p′

for each 2 < p < ∞. Indeed, it will suffice to interpolate this with the
following consequence of the one-dimensional type bound ‖Tj‖q→q . 1 (use
q < 2 < p with p much closer to 2 than q):

(5.6)
∑

R=IR×JR: |JR|=2j

|〈f1H′ , φR〉| |〈ψR, g1G〉| .q |E|1/q|F |1/q
′
.

The proof of (5.5) follows a simpler version of the approach described in
Section 3. We will briefly sketch the details here.

The nice feature of the operators Sj is that they are essentially one-
dimensional. In particular, the rectangles Rj := {R : |JR| = 2j} are nicely
ordered with respect to inclusion. Note that since φR is mostly concentrated
in R, the term 〈f1H′ , φR〉 will be small if R ∩ H ′ = ∅. This can be made
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precise, as described for example in [11]. To keep technicalities to a minimum
we will focus only on the contribution coming from the collection Rj of
rectangles such that R ∩H ′ 6= ∅.

We have the following versions of the definitions and lemmas from Sec-
tion 3.

Definition 5.2. A collection R ⊂ Rj is called convex if R ⊂ R′ ⊂ R′′

and R,R′′ ∈ R imply that R′ ⊂ R. A tree T with top RT is a convex
collection of rectangles in Rj such that R ⊂ RT for each R ∈ T.

Definition 5.3. The size of a finite collection R ⊂ Rj is defined by

size(R) := max
T⊂R

(
1

|RT|
∑
R∈T
|〈f1H′ , φR〉|2

)1/2

,

where the maximum is taken over all the trees T in R.

Definition 5.4. The mass of a convex collection R ⊂ Rj is

mass(R) := max
R∈R

1

|R|

�

F∩G
χ̃100
R .

Lemma 5.5. For each tree T we have

(5.7)
∑
R∈T
|〈f1H′ , φR〉| |〈ψR, g1G〉| . |RT| size(T)mass(T).

By using limiting arguments we can and will assume that the sum in
(5.5) is over a finite convex collection R of rectangles.

A key element of our construction of H ′ is that we have the following
improvement over the trivial O(1) bound on the mass:

mass(Rj) .ε

(
|G|
|H|

)1−ε
.

The functions φR are almost orthogonal. As a consequence, Littlewood–Paley
theory immediately implies that

size(Rj) . 1.

Iterate Lemmas 3.7 and 3.9 (see again [8] for details) to decompose

R =
⋃

2−n.1

⋃
2−m.ε(|G|/|H|)1−ε

Rn,m, size(Rn,m) ≤ 2−n, mass(Rn,m) ≤ 2−m,

where each Rn,m is the union of a family Fn,m of trees satisfying∑
T∈Fn,m

|RT| . min{22n|E|, 2m|F |}.
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The final computations are as follows:∑
R∈R
|〈f1H′ , φR〉| |〈ψR, g1G〉|

=
∑

2−n.1

∑
2−m.ε(|G|/|H|)1−ε

∑
T∈Fn,m

∑
R∈T
|〈f1H′ , φR〉| |〈ψR, g1G〉|

.
∑

2−n.1

∑
2−m.ε(|G|/|H|)1−ε

∑
T∈Fn,m

|RT|2−n2−m

.
∑

2−n.1

∑
2−m.ε(|G|/|H|)1−ε

2−n2−m(22n|E|)1/p(2m|F |)1/p′

. ε,p

(
|G|
|H|

)(1−ε)/p
|E|1/p|F |1/p′ .

A similar approach can extend the range in Theorem 5.1 to 1 < p <∞;
the details are left to the reader.

6. The Córdoba–Fefferman inequality. For a direction v ∈ R2 and
f : R2 → C define

Ĥvf(ξ, η) := f̂(ξ, η)1Sv(ξ, η),

where Sv is the half-plane through the origin with normal vector v.
For any collection Σ := {vj : j ∈ Z} ∈ R2 of directions define

MΣf(x, y) = sup
(x,y)∈R

1

|R|

�

R

|f |,

where the supremum is taken over all rectangles R containing (x, y) and
whose axes point in the directions (v, v⊥) with v ∈ Σ. In this section we
reprove the following result due to Córdoba and Fefferman.

Theorem 6.1 ([2]). Consider a collection Σ := {vj : j ∈ Z} of directions
such that ‖MΣ‖Lp→Lp,∞ <∞ for some fixed 1 < p <∞. Then

(6.1)
∥∥∥(∑

j

|Hvjfj |2
)1/2∥∥∥

q
.
∥∥∥(∑

j

|fj |2
)1/2∥∥∥

q

for q in the range ∣∣∣∣1− 2

q

∣∣∣∣ < 1

p
.

The implicit constant depends on ‖MΣ‖Lp→Lp,∞.

Proof. To simplify the exposition we work with the case p = 2. The result
is immediate when q = 2. Using the fact that Hv is self-dual and the fact
that the dual of Lq(l2) is Lq′(l2), it will suffice to assume 2 < q < 4.
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Let Sk be appropriate smooth annular truncations supported in the set
{(ξ, η) ∈ R2 : |(ξ, η)| ∼ 2k} and such that∑

k∈Z
Skf = f.

In particular, by Littlewood–Paley theory

(6.2)
∥∥∥(∑

k

|Skf |2
)1/2∥∥∥

q
∼ ‖f‖q

for each 1 < q <∞.
We next remark that when q > 2 we also have, for arbitrary fj ,∥∥∥(∑

j

∑
k

|Skfj |2
)1/2∥∥∥

q
∼
∥∥∥(∑

j

|fj |
)1/2∥∥∥

q
.

This follows from a standard argument based on randomization with a doub-
ly indexed Rademacher sequence. Indeed, on the one hand (see [15, Ap-
pendix D]),

� ∣∣∣∑
k

∑
j

rk(ω1)rj(ω2)Skfj(x)
∣∣∣q dx dω1 dω2 ∼

�(∑
k,j

|Skfj(x)|2
)q/2

dx.

On the other hand, using (6.2) we get
� ∣∣∣∑

k

∑
j

rk(ω1)rj(ω2)Skfj(x)
∣∣∣q dx dω1 dω2

=
� ∣∣∣∑

k

rk(ω1)Sk

(∑
j

rj(ω2)fj

)
(x)
∣∣∣q dω1 dx dω2

∼
�(∑

k

∣∣∣Sk(∑
j

rj(ω2)fj

)
(x)
∣∣∣2)q/2 dx dω2

∼
� ∣∣∣∑

j

rj(ω2)fj(x)
∣∣∣q dω2 dx

∼
�(∑

j

|fj(x)|2
)q/2

dx.

Next we prove that∥∥∥(∑
j

∑
k

|Tj,kfj,k|
)1/2∥∥∥

q
.
∥∥∥(∑

j

∑
k

|fj,k|
)1/2∥∥∥

q
,

where Tj,k = SkHvj . Note that (6.1) follows from this if we take fj,k := S′kfj ,
with S′k an appropriate modification of Sk.
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We will apply the General Principle to the operators Tj,k, with p0 = 2
and p1 = 4− ε. Note that the multiplier mj,k of Tj,k satisfies (1)

|∂αξ ∂βηmj,k(Rotvj (ξ, η))| .
1

|ξ|α|η|β
,

where Rotv is the rotation around the origin which maps the x-axis to the
line with direction v. As explained in Section 5, we can assume

Tj,kf =
∑

R∈Sj,k

〈f, φR〉ψR,

where Sj,k consists of rectangles in the direction of vj , with one side of
fixed length 2−k. Also φR(Rotvj (x)) and ψR(Rotvj (x)) will satisfy the same
properties as the functions FR from the previous section.

Let L := ‖MΣ‖L2→L2,∞ . Given H and G such that |G| . |H| define

H ′ := H \
⋃
j,k

⋃
R∈Sj,k: |R∩G|/|R|≥c(n|G|/|H|)1/2L

R.

It is easy to see that (1.1) is satisfied if c is large enough. Define

Cj,kf := Tj,k(f1H′)1G.

We will prove (1.2) with p1 arbitrarily close to (but less than) 4. That is,

‖Cj,k‖2→2 .

(
|G|
|H|

)α
for each 0 < α < 1/4. We rely on restricted type interpolation.

The argument described in Section 5 will apply here too. Fix E,F ⊂ R
with finite measure and functions f, g with |f | ≤ 1E , |g| ≤ 1F . We focus
again only on those R ∈ Sj,k which intersect H ′. Thus, for each 2 < p <∞,∑

R∈Sj,k

|〈f1H′ , φR〉| |〈ψR, g1G〉|

.
∑

2−m.(|G|/|H|)1/2L

∑
2−n.1

2−n2−mmin{2m|F |, 22n|E|}

. |E|1/p|F |1/p′
(
|G|
|H|

)1/(2p)

L1/p.

Using restricted type interpolation we get the following for each p > 2:

‖Cj,k‖p→p .
(
|G|
|H|

)1/(2p)

L1/p.

(1) In reality the multiplier is only singular with respect to the v axis, but to make
the argument more symmetric we pretend it is also singular with respect to the v⊥ axis.
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Interpolating the above bound for p very close to 2 with the easy one-
dimensional bound ‖Cj,k‖s→s . 1 for (any) fixed s ∈ (1, 2) one gets, for each
ε > 0 small enough,

‖Cj,k‖2→2 .ε

(
|G|
|H|

)1/4−δ1(ε)
L1/2−δ2(ε),

where δi(ε)→ 0 as ε→ 0.

The refinement from [6, Section 6.8] of the proof of the Córdoba–Feffer-
man result, combined with the sharp estimate for the Hilbert transform in
weighted spaces [12], proves the following stronger result. In particular it
recovers the endpoints |1−2/q| = 1/p, but the bound depends on the strong
rather than the weak Lp norm of the maximal function. Since our approach
relies on interpolation, it does not recover this stronger form of the result.
We present this argument for the reader’s convenience.

Theorem 6.2. Consider a collection Σ := {vj : j ∈ Z} of vectors such
that ‖MΣ‖Lp→Lp <∞ for some fixed 1 < p <∞. Then for any functions fj
and each q such that ∣∣∣∣1− 2

q

∣∣∣∣ ≤ 1

p

we have

(6.3)
∥∥∥(∑

j

|Hvjfj |2
)1/2∥∥∥

q
. ‖MΣ‖p|1−2/q|p→p

∥∥∥(∑
j

|fj |2
)1/2∥∥∥

q
.

Proof. First, recall a general result about weights u on R. Assume that
u is an A1 weight, that is,

Mu(x) ≤ ‖u‖A1u(x), a.e. x.

Then

‖u‖A2 := sup
I⊂R: I interval

(
1

|I|

�

I

u(x) dx

)(
1

|I|

�

I

u−1(x) dx

)
≤ sup

I⊂R: I interval
2 inf
x∈I

Mu(x) sup
x∈I

1

u(x)
≤ 2‖u‖A1 .

Using this and the sharp result in [12] we deduce that

(6.4)
�
|Hf |2u ≤ C‖u‖2A1

�
|f |2u,

where H is the Hilbert transform, and C is independent of f and u.
By duality it suffices to assume q ≥ 2. Take g ∈ Lp(R2). Define

w(x) =

∞∑
k=0

1

(2‖MΣ‖Lp→Lp)k
Mk
Σg(x),
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where Mk
Σ is the composition of MΣ with itself k times. Note that

MΣw(x) ≤ 2‖MΣ‖Lp→Lpw(x), g(x) ≤ w(x), ‖w‖p ≤ 2‖g‖p.
Using these and also (6.4) we get�

|Hvjfj |2g ≤
�
|Hvjfj |2w ≤ 4C‖MΣ‖2Lp→Lp

�
|fj |2w.

Next note that by interpolation it is enough to consider the endpoint q = 2p′.
This case follows from∥∥∥(∑

j

|Hvjfj |2
)1/2∥∥∥2

2p′
=
∥∥∥∑

j

|Hvjfj |2
∥∥∥
p′
= sup

g∈Lp, ‖g‖p≤1

�∑
j

|Hvjfj |2g

. ‖MΣ‖2Lp→Lp sup
g∈Lp, ‖g‖p=1

�∑
j

|fj |2w . ‖MΣ‖2Lp→Lp
∥∥∥(∑

j

|fj |2
)1/2∥∥∥2

2p′
,

where in the last inequality we have used the fact that ‖w‖p ≤ 2‖g‖p ≤ 2.

7. Vector-valued estimates for the Carleson operator. In this
section we sketch the proof of the vector-valued estimates for the Carleson
operator defined in (3.1).

Theorem 7.1 ([13]). Let 1 < p <∞. Then for any fj,∥∥∥(∑
j

|Cfj |2
)1/2∥∥∥

p
.
∥∥∥(∑

j

|fj |2
)1/2∥∥∥

p
.

The classical proof from [13] relies on weighted estimates for the Carleson
operator; see also [7] and [9, Section 8, Remark 1]. Our approach relies on
the fact that Carleson’s operator is bounded and on standard refinements of
the proof of its boundedness. We again refer the reader to Section 3 for the
relevant tools.

Proof of Theorem 7.1. For two sets A,B the operator SA,B is defined by

SA,B(f) = T (f1B)1A.

Here T is the model sum operator in (3.3). First consider the case when
p > 2. Given sets G,H with |G| . |H| define H ′ = H \ {M1G & |G|/|H|}.
It is enough to prove that for ε > 0,

(7.1) ‖SG,H′‖L2→L2 .ε

(
|G|
|H|

)1/2−ε
.

As before, to keep the argument as non-technical as possible we only focus on
the main contribution, the one coming from bi-tiles whose spatial intervals
intersect H ′.

Let t > 2. Fix |f | ≤ 1E , |g| ≤ 1F . Then using the bound for the mass
2−m . |G|/|H| guaranteed by the definition of H ′ and Lemma 3.12, the
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trivial bound on the size 2−n . 1 and the machinery described in Section 3
we get

|〈SG,H′(f), g〉| = |〈T (f1H′), g1G〉|

.
∑

2−n.1

∑
2−m.|G|/|H|

2−n−m(2m|F |)1/t′(22n|E|)1/t

.

(
|G|
|H|

)1/t

|E|1/t|F |1/t′ .

Interpolate this bound for t > 2 very close to 2 with the classical O(1) re-
stricted bound below 2 for the Carleson operator to get the desired estimate.

Assume now p < 2. In this case we remove an exceptional set from G.
Given |G| & |H| define G′ = G \ {M1H & |H|/|G|}. It will suffice to prove
the operator norm estimate

‖SG′,H‖L2→L2 .ε

(
|H|
|G|

)1/2−ε

for each ε > 0. We only focus on the bi-tiles whose spatial intervals inter-
sect G′.

Let t > 2. Fix |f | ≤ 1E , |g| ≤ 1F . Then using the bound for the size
2−n . |H|/|G| guaranteed by the definition of G′ and Lemma 3.11, the
trivial bound on the mass 2−m . 1 and the machinery described in Section 3
we get

|〈SG′,H(f), g〉| = |〈C(f1H), 1G′g〉|

.
∑

2−m.1

∑
2−n.|H|/|G|

2−n−m(2m|F |)1/t′(22n|E|)1/t

.

(
|H|
|G|

)1−2/t
|E|1/t|F |1/t′ .

Interpolate this bound for t → ∞ with the classical O(1) restricted bound
for T near L1 to get again the desired estimate.
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