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A NOTE ON p-ADIC VALUATIONS OF SCHENKER SUMS

PIOTR MISKA (Krakow)

Abstract. A prime number p is called a Schenker prime if there exists n € N} such
that p { n and p|an, where an = 377, (n!/5")n? is a so-called Schenker sum. T. Amde-
berhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of
an when p is a Schenker prime. In particular, they conjectured that for each k € Ny there
exists a unique positive integer njy < 5° such that U5 (Apy.5k +nk) > k for each nonnegative
integer m. We prove that for every k € N4 the inequality vs(an) > k has exactly one
solution modulo 5*. This confirms the above conjecture. Moreover, we show that if 37 tn
then vs7(an) < 1, which disproves the other conjecture of the above mentioned authors.

1. Introduction. Questions concerning the behavior of p-adic valua-
tions of elements of integer sequences are interesting subjects of research in
number theory. The knowledge of all p-adic valuations of a given number is
equivalent to its factorization. Papers [I|-[3], [6], [5] present interesting re-
sults concerning the behavior of p-adic valuations in some integer sequences.

Fix a prime number p. Every nonzero rational number x can be written
in the form = = (a/b)p’, where a € Z, b € N4, ged(a,b) = 1, p 1 ab and
t € Z. Such a representation of x is unique, so the number ¢ is well defined.
We call it the p-adic valuation of z and denote it by v,(x). By convention,
vp(0) = occ. In particular, if z € Q\ {0} then [z| =[], primepvp(x), where
vp(z) # 0 for finitely many prime numbers p. We denote by sq4(n) the sum of
digits of a positive integer n in base d, i.e. if n =" c;d’ is an expansion
of n in base d, then sq(n) = > ¢;.

In a recent paper T. Amdeberhan, D. Callan and V. Moll [I] introduced
the sequence of Schenker sums, defined by

" nl
anzz%nj, n e Ny.
§=0
They obtained an exact expression for the 2-adic valuation of a Schenker
sum:
1 when 2 { n,

n — se2(n) when 2|n.

va(ap) = {
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Moreover, they proved two results concerning the p-adic valuations of ele-
ments of the sequence (a,)nen, When p is an odd prime number:

PRrOPOSITION 1 (I Proposition 3.1]). Let p be an odd prime number
dividing a positive integer n. Then

PROPOSITION 2 ([1, Proposition 3.2|). Let p be an odd prime number
and n = pm +r, where 0 < r < p. Then p|ay, if and only if p|a,.

These propositions allow us to compute the p-adic valuation of a,, when
p|n or p{anmodp. This gives a complete description of the p-adic valuations
of a,, for some prime numbers (3,7,11,17, for example). However, the case
when ptn and p|a, for some positive integer n is much more difficult. The
first prime p such that p f n and p|a, for some n € Ny is p = 5. We have
5| asm42 for every m € N. Observe that if n # 0,2 (mod 5), then 5t a,.
From numerical experiments, the authors of [I] formulated a conjecture, an
equivalent version of which is as follows:

CoNJECTURE 1 ([I, Conjecture 4.6]). Assume that there exists a unique
positive integer ny, less than 5% such that 5* | @5k 4y, M € N Then there
exists a unique nyy1 € {ng, 5% +ng, 2-5% +ny, 355 +ny, 4-55 4-ng} such that
5RFL U514y, M € No In other words, for every k € N the inequality
vs(an) > k has a unique solution n (mod 5%) with 51 n.

5 is not the only prime number p such that p f n and p|a, for some
n € N,. The prime numbers which satisfy this condition are called Schenker
primes.

The first question which comes to mind is: what is the cardinality of
the set of Schenker primes? We will prove the following proposition using a
modification of Euclid’s proof of the infinitude of the set of prime numbers:

PROPOSITION 3. There are infinitely many Schenker primes.

Proof. Assume that there are only finitely many Schenker primes, and
let p1,...,ps be all the odd Schenker primes in ascending order. Since a; =
2, Proposition [2| implies that p1,...,ps { ap,. p.4+1. Set t := p1...ps + 1,
obviously an even number. By Proposition [I] we have

t .
tJ
! ! [ vp (1) |
2t.§t.§ G H pr®) < ¢,
=0 pprime, p|t

a contradiction. m

The main result of this paper is the following theorem:
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THEOREM 1. Let p be a prime number, let n € N be such that p { ng,
¥ | an, and set

._ ng+2, p—nE—2
Qny,p = Gng+p — Any (nk + p) r ny :

Then:

o if gn,p # 0 (mod p?), then there exists a unique ny, modulo p*+1 for
which p*™ | ap, ,, and ny1 = ny, (mod p*);

e if ¢u.p = 0 (mod p?) and p**1|a,,, then p*T! |Gy, for any mpqq
satisfying npy1 = ng (mod pF);

® if ¢u.p = 0 (mod p?) and Pt ay,,, then pFHl { Qny,y for any npgq
satisfying npy1 = nyg (mod pF).

Moreover, if p { n1, p|an, and gn,p # 0 (mod p?), then for any k € Ny
the inequality vy(an) > k has a unique solution nj modulo Pk satisfying the
congruence ny = ny (mod p).

The proof of this theorem is given in Section 2.

The authors of [I] stated another, more general conjecture concerning
the p-adic valuations of the numbers a,, when p is an odd Schenker prime.
An equivalent version of this conjecture is as follows:

CONJECTURE 2 ([I, Conjecture 4.12|). Let p be an odd Schenker prime.
Then for every k there exists a unique solution modulo p* of the inequality
vp(an) > k which is not congruent to 0 modulo p.

Using Theorem [I] we will show that for p = 37 Conjecture 2 is not
satisfied.

Convention. We assume that z =y (mod p¥) means v,(z —y) > k for p
a prime number and k an integer. This convention extends the relation of
equivalence modulo p* to all rational numbers z, y and integers k. Moreover,
we set by convention Hi_:lo = 1.

2. Proof of the main theorem. Theorem [ resembles a well known
fact concerning the p-adic valuation of a value of a polynomial with integer
coefficients (see |4, p. 44]):

THEOREM 2 (Hensel’s lemma). Let f be a polynomial with integer co-
efficients, p be a prime number and k be a positive integer. Assume that
f(ng) = 0 (mod p*) for some integer ng. Then the number of solutions n
of the congruence f(n) = 0 (mod p**1), satisfying the condition n = ng
(mod p*), is equal to:

e 1 when f'(ng) #Z 0 (mod p);
=0 (mod p) and f(ng) #Z0 (mod pF+l);
=0

(mod p) and f(ng) =0 (mod pF+1).

e 0 when f'(ng)
e p when f'(no)
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Similarity of these theorems is not accidental. Namely, we will show that
checking the p-adic valuation of values of some polynomials is sufficient for
computation of the p-adic valuation of a Schenker sum. Firstly, note that for
any coprime positive integers d, n the divisibility of a, by d is equivalent to
the divisibility of a, moap by d:

n P n 'j—l
(2.1) a,= Z nf"n] = Zn"ﬂ H(n —1)
j=0 J: j=0 i=0
() 421 -1 d—1 o -l
= n"J H(n — i) = n" 2 Z nd=i=2 H(n — 1) (mod d),
j=0 =0 j=0 =0

where the equivalence (x) follows from the fact that the product of at least
d consecutive integers contains an integer divisible by d, hence it is equal to
0 mod d. Thus for every d € Ny we define the polynomial

d—1 i—1
fa(X)=>" Xd*j*QJH(X — ).
j=0 i=0

With this notation the formula can be rewritten in the following way:
(2.2) an =n"" 2 fy(n) (mod d).

Let r = n (mod d). If d,n are coprime, then

an =n"" 2 f,(n) =0 (mod d) < f4(n) =0 (mod d)
& f4r)=0 (mod d) < a, =7""2f;(r) =0 (mod d).

If d = p” for some prime number p and positive integer k, then ([2.2) takes
the form

(2.3) an = n"_pk+2fpk (n) (mod p").

We thus see that if p  n, then vp(a,) > k if and only if vy(f,r(n)) > k.
Moreover, for any k1, ko € N satisfying k1 < ko,

n— k Y k.
n P 1+2fpk1 (n) =n P 2+2fpk2 (n) (mOd pkl)
Hence, if p{n and ky < ko, then
pk1|fpk2(n) ~ pkl |fpk1(n)

If we assume now that k& > 1, then by Fermat’s little theorem (in the form
" =n (mod p)) and the fact that the product of at least p consecutive
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integers is divisible by p, we obtain
k—1

p j—1 Jj—1 j—1
f;k(n) _ Z [(pk - Q)npkfjfii H(” — i)+ i Z H (n—1) ]

§=0 i=0 h=0i=0, i#h

2p—1 j—1 4-1
EZ[( JQH —i—nJlZ H z} (mod p).
7=0 h=01i=0,i#h

The formula above implies
(2.4) £14, (1) = flxy (n) (mod p)
for k1,ke > 1 and p 1 n. Recall that if f € Z[X], then for any xy € Z there
exists a g € Z[X| such that
F(X) = f(zo) + (X —0) f'(x0) + (X — 0)*g(X).
Using (2.3) and the equality above for f = f,2, 0 = n and X =n + p, we

obtain

25 — p‘;’;ig_p2+2 s = Ip (D)~ fp(n) = plja(n) (mod ).

If p t z, then by Euler’s theorem PP =1 (mod p?) we can simplify 1'
to get

An+p An o 2
<n+p)n+2 B nn—p+2 :pfp2 (’I’L) (mOd p )a

which leads to

1 A+ an o

Our discussion shows that

26) Jpl) £0 mod p) 5 (0 ) 20 od )

An+p Qp,

—~ 0 (mod p?
(n+p)n+2 nn—p+2 7_é (mo p)

=

an(n+ p)" 2

L #0 (mod p?)

& np — an(n+p)" 0P £ 0 (mod p?).

< Qntp —

Assume now that p* | a,, for some n; € N not divisible by p and
Anytp — Ony (N + p)"‘““nﬁfn’“*2 £ 0 (mod p?).

Then p ¢ f;Q (ng), and by l' p 1t fl’)kﬂ(nk). Using now Theorem [2| for
f = fyr+1, we conclude that there exists a unique nj41 € Z modulo phtl
satisfying p**! | ap,,, and ny1 = ny, (mod pk).
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By simple induction on k we will show that if p t n; and p|ay, together
with
nysp — G,y (nl +p)n1+2nzl)—n1—2 7—é 0 (mod pQ)’

then there exists a unique nj, modulo p* such that p* | a,, , nx = n1 (mod p)
and

1 Qnptp an, ) 1 < Any4p an, >

- - = - - — (mod p).

p<(nk+p)nk+2 nzk p+2 P (n1+p)n1+2 nng p+2
Certainly this statement is true for £ = 1. Now, if we assume that there
exists a unique ny modulo p* satisfying the conditions in the statement, then
there exists a unique ngy; modulo pFt1 such that pFt! | Anyyy Mgl = Nk
(mod p*). Using (22.6) we conclude that

1 < Anpy1+p Anyyq ) / /
- 3 — 09 | = f k+1 (nk—i-l) = f k1 (nk)
P\ (npgr +p)" T kT ! g

1 an an 1 an an,

) ((nk —I—];;Z’“H - nZ"_;H) o ((nl 4—1];;2;1+2 - n?l_;’+2> (mod ).
Summing up, we see that the first case in the statement of Theorem [I] is
proved. We prove the rest of the statement now.

Let p { ny and p* | ay,, and

ngtp — Gy (1, + P)™* 20772 = 0 (mod p?).

Since the last condition above is equivalent to divisibility of f’, (ng) by p,
p
Theorem [2] allows us to conclude that:

o if p“*1|a,,, then p**1|a, for any n = ny (mod p*);
e if p"*1 ¢t a,, , then p**1 ¢ a, for any n = ny (mod p*).

We have obtained a useful criterion for the behavior of the p-adic valua-
tion of a,. In particular, the condition

—ni—2
Anytp — Ay (1 + ) 2P £ 0 (mod p?)

is not only sufficient, but also necessary for existence of a unique solution
modulo p¥ of the inequality v,(a,) > k such that n = n; (mod p).

3. Solution of conjectures. First of all note that Theorem [I| implies
that vy(a,) = 1 for every odd positive integer n. Indeed,

Q2 =az—ay-3"2. 17172 =78 - 2.27=24=0 (mod 4)

and a; = 2, and thus if 2 { n, then va(a,) = 1. This gives an alternative
proof of Amdeberhan, Callan and Moll’s result.
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Theorem [I] allows us to prove that Conjecture [I]is true by verifying the
condition a7 — ag - 7272257272 £ 0 (mod 52): indeed,
a7 —ag-T*T2.257272 = 3309110 — 10- 2401 -2 = 3261090 = 15 # 0 (mod 25).

Let us take the next Schenker prime p = 13. If 13 { n, then 13| a,, if and
only if n = 3 (mod 13). Using Theorem (1| for p = 13 and n; = 3:
a6 — az-16°12 - 3197372 = 105224992014096760832 — 78 - 1048576 - 6561

=117 — 78-100-139 = —1084083 = 52 (mod 169),

we conclude that for every positive natural k there exists a unique solution
modulo 13* of the inequality v3(a,,) > k which is not divisible by p, and we
know that it is congruent to 3 modulo 13. This implies that if p = 13, then
Conjecture [2] is true.

Conjecture [2] states that for every odd Schenker prime p, there exists a
unique n; € Ny less than p such that p|a,, and for this n; we have

Gy tp — @y (1 + )™ F20f 72 £ 0 (mod p?).
However, it is easy to see that Conjecture [2] is not true in general. Indeed,
let p = 37. If 37 1 n, then 37|a, if and only if n = 25 (mod 37). However,
372 | aga — ags - 6227 - 2519, Moreover, ags = 851 = 23 - 37 (mod 37%), thus
v37(an) = 1 for any n = 25 (mod 37). Hence the 37-adic valuation of Schenker
sums is bounded by one on the set of positive integers not divisible by 37.
We can describe it by a simple formula:
%67(") when n = 0 (mod 37),
vsz(an) = 4 1 when n = 25 (mod 37),
0 when n # 0,25 (mod 37).

Our result shows that Conjecture [2] is false for p = 37. Moreover, there
exist prime numbers p for which the number of solutions modulo p of the

Table 1

Alp) p
1 5,13, 23, 31, 37, 43, 47, 53, 59, 61, 71, 79, 101, 103, 107, 109, 127, 137, 157, 163
173, 229, 241, 251, 257, 263, 317, 337, 349, 353, 359, 397, 421, 431, 487, 499, 503
521, 547, 571, 577, 587, 617, 619, 641, 653, 661, 727, 733, 757, 797, 811, 821, 829
881, 883, 937, 947, 967, 977, 991, 1013, 1031, 1039, 1091, 1097, 1123, 1163, 1181,
1213

2 41, 149, 181, 191, 199, 211, 271, 283, 293, 311, 367, 383, 401, 409, 419, 439, 461,
523, 541, 563, 569, 607, 613, 647, 673, 691, 709, 761, 787, 827, 929, 941, 983, 997
1021, 1051, 1061, 1087, 1117, 1151, 1153, 1223

3 179, 197, 223, 277, 509, 601, 683, 743, 887, 1201

593
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congruence a, = 0 (mod p), where p { n, is greater than 1. Denote this
number by A(p) (note that p is a Schenker prime if and only if A\(p) > 0). By
using Mathematica [7], we find that there are 126 Schenker primes among the
200 first prime numbers. In Table 1 we present the solutions of the equation
A(p) =k for k <5.

4. Questions. Although Conjecture [2]is not true, we do not know if 2
and 37 are the only primes p such that p|a, and

Qnp = Anp — An (N +P)n+2np7n72 =0 (mod p2)

for some n € N, not divisible by p. Numerical computations show that they
are unique such prime numbers among all primes less than 30000. The results
above suggest the following questions:

QUESTION 1. Is there any Schenker prime greater than 37 for which there
exists n € Ny such that ptn, p|an and ¢, =0 (mod p?)?

QUESTION 2. Are there infinitely many Schenker primes p for which
there exists n € Ny such that p{n, p|a, and gnp =0 (mod p?)?

In the light of the results presented in the table some natural questions
arise:

QUESTION 3. Are there infinitely many Schenker primes p for which
A(p) >17?

QUESTION 4. Let m be a positive integer. Is there any Schenker prime p
such that A(p) > m?

In Section 1 we gave a short proof of the infinitude of the set of Schenker
primes. It is natural to ask:

QUESTION 5. Are there infinitely many primes which are not Schenker
primes?
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