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THE DEFOCUSING ENERGY-CRITICAL
KLEIN–GORDON–HARTREE EQUATION

BY

QIANYUN MIAO (Beijing) and JIQIANG ZHENG (Nice)

Abstract. We study the scattering theory for the defocusing energy-critical Klein–
Gordon equation with a cubic convolution utt − ∆u + u + (|x|−4 ∗ |u|2)u = 0 in spatial
dimension d ≥ 5. We utilize the strategy of Ibrahim et al. (2011) derived from concentra-
tion compactness ideas to show that the proof of the global well-posedness and scattering
can be reduced to disproving the existence of a soliton-like solution. Employing the tech-
nique of Pausader (2010), we consider a virial-type identity in the direction orthogonal to
the momentum vector to exclude such a solution.

1. Introduction. This paper is devoted to the Cauchy problem for the
defocusing energy-critical Klein–Gordon–Hartree equation

(1.1)

{
ü−∆u+ u+ f(u) = 0, (t, x) ∈ R× Rd, d ≥ 5,

u(0, x) = u0(x), ut(0, x) = u1,

where f(u) = (V (x) ∗ |u|2)u with V (x) = |x|−4. Here u is a real-valued
function defined in Rd+1, the dot denotes the time derivative, ∆ is the
Laplacian in Rd, V (x) is called the potential, and ∗ denotes the spatial
convolution in Rd.

Formally, the solution u of (1.1) conserves the energy,

E(u(t), u̇(t)) =
1

2

�

Rd
(|u̇(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2) dx

+
1

4

� �

Rd×Rd

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy

= E(u0, u1),

and the momentum,

P (u)(t) =
�

Rd
ut(t, x)∇u(t, x) dx = P (u)(0).
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For the equation (1.1) with nonlinearity f(u) = µ(|x|−γ ∗ |u|2)u,
µ = ±1, using the ideas of Strauss [30], [31] and Pecher [29], Mochizuki [24]
showed that if d ≥ 3 and 2 ≤ γ < min(d, 4), then global well-posedness and
scattering results with small data hold in the energy space H1(Rd)×L2(Rd).
For general initial data, we refer to [23] where we develop a complete scatter-
ing theory in the energy space for (1.1) with a subcritical nonlinearity (i.e.
2 < γ < min(d, 4)) for both the defocusing (µ = 1) and focusing (µ = −1)
cases in spatial dimension d ≥ 3. In this paper, we will focus on the energy-
critical case, i.e. γ = 4 and d ≥ 5.We refer also to Miao–Zhang [21] where the
low regularity for the cubic convolution defocusing Klein–Gordon–Hartree
equation is discussed.

Before stating our main results, we recall the scattering theory for the
classical Klein–Gordon equation, i.e. (1.1) with nonlinearity f(u) = µ|u|p−1u.
For µ = 1 and

1 +
4

d
< p < 1 +

4γd
d− 2

, γd =

{
1, 3 ≤ d ≤ 9,
d

d+ 1
, d ≥ 10,

Brenner [5] established scattering results in the energy space in dimension
d ≥ 10. Thereafter, Ginibre and Velo [7] exploited the Birman–Solomyak
space `m(Lq, I, B) of [3] and delicate estimates to improve the results in [5],
which covered all subcritical cases. Finally, K. Nakanishi [25] obtained scat-
tering results for the energy-critical case by the strategy of induction on
energy [6] and a new Morawetz-type estimate. And recently, S. Ibrahim,
N. Masmoudi, and K. Nakanishi [10,11] utilized the concentration compact-
ness ideas to give the scattering threshold for the focusing (i.e. µ = −1)
nonlinear Klein–Gordon equation. We remark that their method also works
for the defocusing case. We will utilize their argument to study the scatter-
ing theory for the defocusing energy-critical Klein–Gordon–Hartree equa-
tion.

On the other hand, the scattering theory for the Hartree equation

iu̇ = −∆u+ (|x|−γ ∗ |u|2)u
has also been studied by many authors (see [9, 15–19]). For the energy-
subcritical case, i.e. γ < 4, Ginibre and Velo [9] obtained the asymp-
totic completeness in the energy space H1(Rd) by deriving the associated
Morawetz inequality and a useful Birman–Solomyak-type estimate. Nakan-
ishi [26] improved the results by using a new Morawetz estimate. For the
energy-critical case (γ = 4 and d ≥ 5), Miao, Xu, and Zhao [16] took advan-
tage of a new kind of a localized Morawetz estimate to rule out the possibility
of energy concentration at the origin and established scattering results in
the energy space for radial data. We also refer to [17–19] for general data
and also for the mass-critical case.
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Compared with the classical Klein–Gordon equation with the local non-
linearity f(u) = |u|p−1u, the nonlinearity f(u) = (V (·) ∗ |u|2)u is nonlocal,
which brings many difficulties. The main difficulty is the absence of Lorentz
invariance which could be used to control the momentum efficiently. We will
overcome this difficulty by considering a virial-type identity in the direction
orthogonal to the momentum vector, following the technique of [28].

Now we introduce the definition of a strong solution for (1.1).

Definition 1.1 (Solution). A function u : I × Rd → R on a nonempty
time interval 0 ∈ I is a strong solution to (1.1) if for any compact J ⊂ I,
(u, ut) ∈ C0

t (J ;H1(Rd)× L2(Rd)) and

u ∈W (J), W (J) := L
2(d+1)
d−1

t (J ;B
1/2
2(d+1)
d−1

,2
(Rd)),

and for each t ∈ I, (u(t), u̇(t)) satisfies the following Duhamel formula:(
u(t)

u̇(t)

)
= V0(t)

(
u0(x)

u1(x)

)
−

t�

0

V0(t− s)
(

0

f(u(s))

)
ds,

where

V0(t) =

(
K̇(t),K(t)

K̈(t), K̇(t)

)
, K(t) =

sin(tω)

ω
, ω = (1−∆)1/2.

The interval I is called the lifespan of u. Moreover, if the solution u cannot
be extended to any strictly larger interval, then u is a maximal-lifespan
solution. We say that u is a global solution if I = R.

Remark 1.2. From Remark 2.5 below, we find that the solution u lies
in the space W (I) locally in time. Also, the finiteness of the norm on the
maximal lifespan implies that the solution is global and scatters in both
time directions, by a standard argument. In view of this, we define

(1.2) SI(u) = ‖u‖ST (I) = ‖u‖[W ](I)

to be the scattering size of u.

Our main result is the following global well-posedness and scattering
result in the energy space.

Theorem 1.3. Assume that d ≥ 5, and (u0, u1) ∈ H1(Rd) × L2(Rd).
Then there exists a unique global solution u(t) of (1.1) which scatters in the
sense that there exist solutions v± of the free Klein–Gordon equation

v̈ −∆v + v = 0

with (v±(0), v̇±(0)) ∈ H1 × L2 such that

‖(u(t), u̇(t))− (v±(t), v̇±(t))‖H1×L2 → 0 as t→ ±∞.
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Let us outline the proof of Theorem 1.3: we define

Λ(E) = sup{‖u‖ST (I) | E(u, ut) ≤ E}

where the supremum is taken over all strong solutions u of (1.1) on any
interval I with energy not greater than E, and set

Emax = sup{E | Λ(E) <∞}.

The small data scattering (Theorem 2.4 below) tells us that Emax > 0. Our
goal next is to prove that Emax =∞. We show that if Emax <∞, then there
exists a nonlinear solution of (1.1) with energy exactly Emax. Moreover,
this solution has some strong compactness properties. This is completed in
Section 4 where we utilize the profile decomposition established in [10], and
a strategy introduced by Kenig and Merle [13]. We consider a virial-type
identity in the direction orthogonal to the momentum vector following the
technique of [28] to obtain a contradiction. We refer to Section 5 for more
details.

The paper is organized as follows. In Section 2, we deal with the local
theory for equation (1.1). In Section 3, we give the linear and nonlinear pro-
file decomposition and show some properties of the profile. In Section 4, we
show that nonscattering entails the existence of a critical solution. Finally,
in Section 5, we preclude the critical solution, which completes the proof of
Theorem 1.3.

2. Preliminaries

2.1. Notation. First, we give some notation which will be used through-
out this paper. We always assume the spatial dimension d ≥ 5 and let
2∗ = 2d/(d− 2). For any 1 ≤ r ≤ ∞, we denote by ‖ · ‖r the norm in
Lr = Lr(Rd), and by r′ the conjugate exponent defined by 1/r + 1/r′ = 1.
For any s ∈ R, we denote by Hs(Rd) the usual Sobolev space. Let ψ ∈ S(Rd)
be such that supp ψ̂ ⊆ {ξ | 1/2 ≤ |ξ| ≤ 2} and

∑
j∈Z ψ̂(2−jξ) = 1 for ξ 6= 0.

Define ψ0 by ψ̂0 = 1 −
∑

j≥1 ψ̂(2−jξ). Thus supp ψ̂0 ⊆ {ξ | |ξ| ≤ 2} and

ψ̂0 = 1 for |ξ| ≤ 1. We denote by ∆j and P0 the convolution operators whose

symbols are respectively ψ̂(ξ/2j) and ψ̂0(ξ). For s ∈ R and 1 ≤ r ≤ ∞, the
inhomogeneous Besov space Bs

r,2(Rd) is defined by

Bs
r,2(Rd) =

{
u ∈ S ′(Rd) | ‖P0u‖2Lr +

∥∥2js‖∆ju‖Lr
∥∥2
l2j∈N

<∞
}
.

For details on Besov spaces, we refer to [2]. For any interval I ⊂ R and
any Banach space X we denote by C(I;X) the space of strongly continuous
functions from I to X, and by Lq(I;X) the space of strongly measurable
functions from I to X with ‖u(·);X‖ ∈ Lq(I). Given d, we define, for 2 ≤
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r ≤ ∞,

δ(r) = d

(
1

2
− 1

r

)
.

Sometimes we abbreviate δ(r), δ(ri) to δ, δi respectively. We denote by 〈·, ·〉
the scalar product in L2. We let Lp∗ denote the weak Lp space.

2.2. Strichartz estimate. In this section, we consider the Cauchy
problem for equation (1.1),

(2.1)

{
ü−∆u+ u+ f(u) = 0,

u(0) = u0, u̇(0) = u1.

The integral equation for the Cauchy problem (2.1) can be written as

u(t) = K̇(t)u0 +K(t)u1 −
t�

0

K(t− s)f(u(s)) ds,

or (
u(t)

u̇(t)

)
= V0(t)

(
u0(x)

u1(x)

)
−

t�

0

V0(t− s)
(

0

f(u(s))

)
ds,

where

K(t) =
sin(tω)

ω
, V0(t) =

(
K̇(t),K(t)

K̈(t), K̇(t)

)
, ω = (1−∆)1/2.

Let U(t) = eitω. Then

K̇(t) =
U(t) + U(−t)

2
, K(t) =

U(t)− U(−t)
2iω

.

Now we recall the following dispersive estimate for the operator U(t) = eitω.

Lemma 2.1 ( [5, 7]). Let 2 ≤ r ≤ ∞ and 0 ≤ θ ≤ 1. Then

‖eiωtf‖
B
−(d+1+θ)(1/2−1/r)/2
r,2

≤ µ(t)‖f‖
B

(d+1+θ)(1/2−1/r)/2

r′,2
,

where

µ(t) = C min{|t|−(d−1−θ)(1/2−1/r)+ , |t|−(d−1+θ)(1/2−1/r)}, a+ := max{a, 0}.

Combining the above lemma, the abstract duality and an interpolation
argument (see [8, 12]) yields the following Strichartz estimates.

Lemma 2.2 ( [5,7,20]). Let 0 ≤ θi ≤ 1, ρi ∈ R, 2 ≤ qi, ri ≤ ∞, i = 1, 2.
Assume that (θi, d, qi, ri) 6= (0, 3, 2,∞) satisfy the following admissibility
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conditions:

0 ≤ 2

qi
≤ min

{
(d− 1 + θi)

(
1

2
− 1

ri

)
, 1

}
, i = 1, 2,

ρ1 + (d+ θ1)

(
1

2
− 1

r1

)
− 1

q1
= µ,

ρ2 + (d+ θ2)

(
1

2
− 1

r2

)
− 1

q2
= 1− µ.

Then, for f ∈ Hµ, we have

‖U(·)f‖Lq1 (R;Bρ1r1,2)
≤ C‖f‖Hµ ,

‖K ∗ f‖Lq1 (I;Bρ1r1,2)
≤ C‖f‖

Lq
′
2 (I;B

−ρ2
r′2,2

)
,

‖KR ∗ f‖Lq1 (I;Bρ1r1,2)
≤ C‖f‖

Lq
′
2 (I;B

−ρ2
r′2,2

)
,

where the subscript R stands for “retarded”, and

K ∗ f =
�

R

K(t− s)f(u(s)) ds, KR ∗ f =

t�

0

K(t− s)f(u(s)) ds.

In addition to the W -norm defined in (1.2), we also need the following
space:

[W ]∗(I) = L
2(d+1)
d+3

t (I;B
1/2
2(d+1)
d+3

,2
(Rd)).

Now we give a nonlinear estimate which will be applied to show small
data scattering.

Lemma 2.3. We have

(2.2) ‖(V (·) ∗ |u|2)v‖[W ]∗(I) + ‖(V (·) ∗ (uv))u‖[W ]∗(I)

≤ C‖v‖[W ](I)‖u‖
2(d−3)
d−1

L∞t (I;Ḣ1
x)
‖u‖

4
d−1

[W ](I)

+ C‖u‖
1+ 2

d−1

[W ](I) ‖u‖
d−3
d−1

L∞t (I;Ḣ1
x)
‖v‖

d−3
d−1

L∞t (I;Ḣ1
x)
‖v‖

2
d−1

[W ](I).

In particular,

‖(V (·) ∗ |u|2)u‖[W ]∗(I) ≤ C‖u‖
1+ 4

d−1

[W ](I) ‖u‖
2(d−3)
d−1

L∞(I;H1)
.

Proof. We only need to estimate ‖(V (·) ∗ |u|2)v‖[W ]∗(I), since estimating

‖(V (·) ∗ (uv))u‖[W ]∗(I) is similar. From the Sobolev embedding W s,p(Rd) ↪→
Bs
p,2(Rd), p ≤ 2, and Bs

q,2(Rd) ↪→ W s,q(Rd), q ≥ 2, the fractional Leibniz
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rule [14], and the Hölder and Young inequalities, we have

‖(V ∗ |u|2)v‖
Lq′ (I;B

1/2

r′,2)

. ‖V ‖Lp∗‖v‖Lq(I;B1/2
r,2 )
‖u‖2Lk(I;Ls)+‖V ‖Lp∗‖u‖Lq(I;B1/2

r,2 )
‖u‖Lk(I;Ls)‖v‖Lk(I;Ls),

where the exponents satisfy
d

p
= 2δ(r) + 2δ(s),

2

q
+

2

k
= 1.

Since V (x) = |x|−4 ∈ Ld/4∗ , if we take the admissible pair q = r = 2(d+1)
d−1

and δ(s) = 1 + 1/k (then δ(r) = d/(d+ 1), k = d+ 1), then

‖(V ∗ |u|2)v‖
Lq
′ (I;B

1/2

q′,2)
. ‖v‖[W ](I)‖u‖2Lk(I;Ls)(2.3)

+ ‖u‖[W ](I)‖u‖Lk(I;Ls)‖v‖Lk(I;Ls).
The Hölder inequality and the Sobolev embedding theorem yield

(2.4) ‖v‖Lk(I;Ls) ≤ ‖v‖
d−3
d−1

L∞t L
2∗
x
‖v‖

2
d−1

L

2(d+1)
d−1

t L

2d(d+1)

d2−2d−1
x

. ‖v‖
d−3
d−1

L∞t Ḣ
1
x
‖v‖

2
d−1

[W ](I).

Plugging (2.4) into (2.3), we get

‖(V ∗ |u|2)v‖
Lq′ (I;B

1/2

q′,2)
. ‖v‖[W ](I)‖u‖

2(d−3)
d−1

L∞t Ḣ
1
x
‖u‖

4
d−1

[W ](I)

+ ‖u‖
1+ 2

d−1

[W ](I) ‖u‖
d−3
d−1

L∞t Ḣ
1
x
‖v‖

d−3
d−1

L∞t Ḣ
1
x
‖v‖

2
d−1

[W ](I).

Now, we can state the local well-posedness for (1.1) with large initial
data and small data scattering in the energy space H1 × L2.

Theorem 2.4 (Small data scattering). Assume that d ≥ 5 and (u0, u1)
is in H1(Rd)× L2(Rd). There exists a small constant δ = δ(E) such that if
‖(u0, u1)‖H1×L2 ≤ E and I is an interval such that

‖K̇(t)u0 +K(t)u1‖W (I) ≤ δ,

then there exists a unique strong solution u to (1.1) in I × Rd, with u in
C(I;H1) ∩ C1(I;L2) and

‖u‖W (I) ≤ 2Cδ.

Let (T−(u0, u1), T+(u0, u1)) be the maximal time interval on which u is well-
defined.

Remark 2.5. (1) There exists δ̃ such that if ‖(u0, u1)‖H1×L2 ≤ δ̃, the
conclusion of Theorem 2.4 applies to any interval I. Indeed, by Strichartz
estimates, ‖K̇(t)u0 +K(t)u1‖W (I) ≤ Cδ̃ and the claim follows.
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(2) Given (u0, u1) ∈ H1 ×L2, there exists (0 ∈) I such that the hypoth-
esis of Theorem 2.4 is satisfied on I. This is clear because, by Strichartz
estimates, ‖K̇(t)u0 +K(t)u1‖W (R) <∞.

We conclude this subsection by recalling the following standard finite
blow-up criterion.

Lemma 2.6 (Standard finite blow-up criterion). If T+(u0, u1) <∞, then

‖u‖W ([0,T+(u0,u1))) =∞.

A corresponding result holds for T−(u0, u1).

The proof is similar to the one of [13, Lemma 2.11].

2.3. Perturbation lemma. In this part, we give a perturbation result
for solutions of (1.1) with a global space-time estimate. First we recall some
notation of [10].

With any real-valued function u(t, x), we associate the complex-valued
function ~u(t, x) by

~u = 〈∇〉u− iu̇, u = Re 〈∇〉−1~u.

Then the free and nonlinear Klein–Gordon equations can be given by{
(�+ 1)u = 0⇔ (i∂t + 〈∇〉)~u = 0,

(�+ 1)u = −f(u)⇔ (i∂t + 〈∇〉)~u = −f(〈∇〉−1 Re ~u),

and the energy can be written as

Ẽ(~u) = E(u, u̇) =
1

2

�

Rd
(|u̇|2 + |∇u|2 + |u|2) dx

+
1

4

� �

Rd×Rd

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy.

Lemma 2.7. Let I be a time interval, t0 ∈ I, and ~u, ~w ∈ C(I;L2(Rd))
satisfy

(i∂t + 〈∇〉)~u = −f(u) + eq(u),

(i∂t + 〈∇〉)~w = −f(w) + eq(w).

for some functions eq(u), eq(w). Assume that for some constants M,E > 0,
we have

‖w‖ST (I) ≤M, ‖~u‖L∞t L2
x(I×Rd) + ‖~w‖L∞t L2

x(I×Rd) ≤ E.

Let t0 ∈ I, and let (u(t0), ut(t0)) be close to (w(t0), wt(t0)) in the sense that

‖(u(t0)− w(t0), ut(t0)− wt(t0))‖H1×L2 ≤ E′.
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Let ~γ0 = ei〈∇〉(t−t0)(~u − ~w)(t0) and assume also that we have the smallness
condition

(2.5) ‖γ0‖ST (I) + ‖(eq(u), eq(w))‖ST ∗(I) ≤ ε,

where 0 < ε < ε1 = ε1(M,E) is a small constant and

ST ∗(I) = [W ]∗(I) + L1
t (I;L2

x(Rd)).

Then

‖u− w‖ST (I) ≤ C(M,E)ε

and

‖u‖ST (I) ≤ C(M,E,E′).

Proof. Since ‖w‖ST (I) ≤ M , there exists a partition of I to the right
of t0:

t0 < t1 < · · · < tN , Ij = (tj , tj+1), I ∩ (t0,∞) = (t0, tN ),

such that N ≤ C(L, δ) and for any j = 0, 1, . . . , N − 1, we have

(2.6) ‖w‖ST (Ij) ≤ δ � 1.

The estimate to the left of t0 is analogous; we omit it.

Let

γ(t) = u(t)− w(t), ~γj(t) = ei〈∇〉(t−tj)~γ(tj), 0 ≤ j ≤ N − 1.

Then γ satisfies the following difference equation:
(i∂t + 〈∇〉)~γ = (V ∗ |w|2)γ + 2[V ∗ (γw)] + 2[V ∗ (γw)]γ

+ (V ∗ |γ|2)w + (V ∗ |γ|2)γ + eq(u)− eq(w),
~γ(tj) = ~γj(tj),

which implies that

~γ(t) = ~γj(t)− i
t�

tj

ei〈∇〉(t−s)
(
(V ∗ |w|2)γ + 2[V ∗ (γw)]w + 2[V ∗ (γw)]γ

+ (V ∗ |γ|2)w + (V ∗ |γ|2)γ + eq(u)− eq(w)
)
ds,

~γj+1(t) = ~γj(t)− i
tj+1�

tj

ei〈∇〉(t−s)
(
(V ∗ |w|2)γ + 2[V ∗ (γw)]w + 2[V ∗ (γw)]γ

+ (V ∗ |γ|2)w + (V ∗ |γ|2)γ + eq(u)− eq(w)
)
ds.
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By Lemmas 2.2 and 2.3, we have

(2.7) ‖γ − γj‖ST (Ij) + ‖γj+1 − γj‖ST (R)
. ‖(V ∗ |w|2)γ+2[V ∗ (γw)]w+2[V ∗ (γw)]γ+(V ∗|γ|2)w+(V ∗|γ|2)γ‖[W ]∗(Ij)

+ ‖(eq(u), eq(w))‖ST ∗(Ij)

. ‖γ‖[W ](Ij)‖w‖
2(d−3)
d−1

L∞t (Ij ;Ḣ1
x)
‖w‖

4
d−1

[W ](Ij)

+ ‖w‖
1+ 2

d−1

[W ](Ij)
‖w‖

d−3
d−1

L∞t (Ij ;Ḣ1
x)
‖γ‖

d−3
d−1

L∞t (Ij ;Ḣ1
x)
‖γ‖

2
d−1

[W ](Ij)

+ ‖w‖[W ](Ij)‖γ‖
2(d−3)
d−1

L∞t (Ij ;Ḣ1
x)
‖γ‖

4
d−1

[W ](Ij)

+ ‖γ‖
1+ 2

d−1

[W ](Ij)
‖γ‖

d−3
d−1

L∞t (Ij ;Ḣ1
x)
‖w‖

d−3
d−1

L∞t (Ij ;Ḣ1
x)
‖w‖

2
d−1

[W ](Ij)

+ ‖γ‖
1+ 4

d−1

[W ](Ij)
‖γ‖

2(d−3)
d−1

L∞(Ij ;H1)
+ ‖(eq(u), eq(w))‖ST ∗(Ij).

Therefore, assuming that

(2.8) ‖γ‖ST (Ij) ≤ δ � 1, ∀j = 0, 1, . . . , N − 1,

by (2.6) and (2.7) we have

‖γ‖ST (Ij) + ‖γj+1‖ST (tj+1,tN ) ≤ C‖γj‖ST (tj ,tN ) + ε

for some absolute constant C > 0. By (2.5) and iteration on j, we obtain

‖γ‖ST (I) ≤ (2C)N ε ≤ δ/2,
if we choose ε1 sufficiently small. Hence the assumption (2.8) is justified by
continuity in t and induction on j. Then repeating the estimate (2.7) once
again, we can get the ST-norm estimate on γ, which implies the Strichartz
estimates on u.

3. Profile decomposition. In this section, we first recall the linear
profile decomposition of the sequence ofH1-bounded solutions of (1.1) which
was established in [10]. Then we utilize it to give the orthogonal analysis of
the nonlinear energy and the nonlinear profile decomposition which will be
used to construct the critical element and obtain its compactness properties.

3.1. Linear profile decomposition. First, we give some notation as
introduced in [10]. For any triple (tjn, x

j
n, h

j
n) ∈ R×Rd×(0,∞) with arbitrary

n and j, let τ jn, T
j
n, and 〈∇〉jn respectively denote the scaled time shift, the

unitary operator, and the self-adjoint operator in L2(Rd), defined by

τ jn = − t
j
n

hjn
, T jnϕ(x) = (hjn)−d/2ϕ

(
x− xjn
hjn

)
, 〈∇〉jn =

√
−∆+ (hjn)2.
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We denote the set of Fourier multipliers by

MC =
{
µ = F−1µ̃F

∣∣∣ µ̃ ∈ C(Rd), ∃ lim
|x|→∞

µ̃(x) ∈ R
}
.

Now we can state the linear profile decomposition:

Lemma 3.1 (Linear profile decomposition, [10]). Let ~vn(t) = ei〈∇〉t~vn(0)
be a sequence of free Klein–Gordon solutions with uniformly bounded L2

x

norm. Then after replacing it with some subsequence, there exist K ∈ {0, 1,
. . . ,∞} and, for each integer j ∈ [0,K), ϕj ∈ L2(Rd) and {(tjn, xjn, hjn)}n∈N
⊂ R × Rd × (0, 1] satisfying the following. Define ~vjn and ~ωkn for each j <
k ≤ K by

~vn(t, x) =
k−1∑
j=0

~vjn(t, x) + ~ωkn(t, x),

~vjn(t, x) = ei〈∇〉(t−t
j
n)T jnϕ

j(x) = T jn(e
i〈∇〉jn

t−tjn
h
j
n ϕj).

Then

(3.1) lim
k→K

lim
n→∞

‖~ωkn‖L∞(R;B−d/2∞,∞ (Rd)) = 0,

and for any µ ∈MC, any l < j < k ≤ K, and any t ∈ R,

lim
n→∞

〈µ~vln, µ~vjn〉2L2
x

= 0 = lim
n→∞

〈µ~vjn, µ~ωkn〉2L2
x
,(3.2)

lim
n→∞

(∣∣∣∣hln
hjn

∣∣∣∣+

∣∣∣∣hjnhln
∣∣∣∣+
|tjn − tkn|+ |x

j
n − xkn|

hln

)
=∞.(3.3)

Moreover, each sequence {hjn}n∈N either tends to 0 or is identically 1 for
all n.

Remark 3.2. We call {~vjn}n∈N a free concentrating wave for each j, and
~wkn the remainder. From (3.2), we have the following asymptotic orthogo-
nality:

(3.4) lim
n→∞

(
‖µ~vn(t)‖2L2 −

k−1∑
j=0

‖µ~vjn(t)‖2L2 −‖µ~ωkn(t)‖2L2

)
= 0, ∀µ ∈MC.

Next we begin the orthogonal analysis of the nonlinear energy. It follows
from Mikhlin’s theorem that for 1 < p <∞,

‖[|∇| − 〈∇〉n]ϕ‖p . hn‖〈∇/hn〉−1ϕ‖p,(3.5)

‖[|∇|−1 − 〈∇〉−1n ]ϕ‖p . ‖〈∇/hn〉−2|∇|−1ϕ‖p,(3.6)

uniformly for 0 < hn ≤ 1.

Lemma 3.3. Let ~vn be a sequence of free Klein–Gordon solutions satis-
fying ~vn(0) ∈ L2

x. Let ~vn =
∑k−1

j=0 ~v
j
n + ~ωkn be the linear profile decomposition
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given by Lemma 3.1. If limn→∞ Ẽ(~vn(0)) <∞, then ~vjn(0) ∈ L2
x for large n,

and

(3.7) lim
k→K

lim
n→∞

∣∣∣Ẽ(~vn(0))−
k−1∑
j=0

Ẽ(~vjn(0))− Ẽ(~ωkn(0))
∣∣∣ = 0.

Moreover, for all j < k,

(3.8) 0 ≤ lim
n→∞

Ẽ(~vjn(0)) ≤ lim
n→∞

Ẽ(~vjn(0)) ≤ lim
n→∞

Ẽ(~vn(0)),

where the last inequality becomes an equality only if K = 1 and ~ω1
n → 0

in L∞t L
2
x.

Proof. First, we claim that

(3.9) ‖u‖L2∗
x
. ‖u‖(d−2)/d

H1 ‖u‖2/d
B

1−d/2
∞,∞

, 2∗ =
2d

d− 2
.

In fact, on the one hand, by the Hölder and Bernstein equalities, we have

‖P≤1u‖L2∗
x
. ‖P≤1u‖(d−2)/dL2

x
‖P≤1u‖2/dL∞x

. ‖u‖(d−2)/d
H1 ‖u‖2/d

B
1−d/2
∞,∞

.

On the other hand, from sharp interpolation [1], we know that

‖P>1u‖L2∗
x
. ‖P>1u‖(d−2)/dL2

x
‖P>1u‖2/d

Ḃ
1−d/2
∞,∞

. ‖u‖(d−2)/d
H1 ‖u‖2/d

B
1−d/2
∞,∞

,

which gives the claim.
Thus, by (3.9) and (3.1), we obtain

lim
k→K

lim
n→∞

‖ωkn‖L2∗
x
≤ lim

k→K
lim
n→∞

‖ωkn‖
(d−2)/d
H1 ‖ωkn‖

2/d

B
1−d/2
∞,∞

= 0,

where ωkn = Re 〈∇〉−1~ωkn. This implies that if there exists i ∈ {1, 2, 3, 4}
such that ui = ωkn, then by the Hölder and the Hardy–Littlewood–Sobolev
inequalities, we get

lim
k→K

lim
n→∞

‖(V (x) ∗ (u1u2))(u3u4)‖L1
x
≤ lim

k→K
lim
n→∞

4∏
i=1

‖ui‖L2∗
x

= 0.

This together with (3.4) reduces our task to proving

lim
k→K

lim
n→∞

∣∣∣F(∑
j<k

vjn(0)
)
−
∑
j<k

F (vjn(0))
∣∣∣ = 0

where F (u) = ‖(V (x) ∗ |u|2)|u|2‖L1
x
.

Moreover, using the decay of eit〈∇〉 in S → L2∗
x uniform with respect to

n and the Sobolev embedding Ḣ1(Rd) ⊂ L2∗(Rd), we have

‖vjn‖L2∗
x
≤ ‖〈∇〉−1e−i〈∇〉

j
nτ
j
nϕj(x)‖L2∗

x
→ 0 as n→∞.

Thus, we can discard those j where τ jn = −tjn/hjn →∞.



KLEIN–GORDON–HARTREE EQUATION 43

Hence, up to a subsequence, we may assume that τ jn → τ j∞ ∈ R for all j.
Let

ψj := Re e−i〈∇〉
j
∞τ

j
∞ϕj ∈ L2

x(Rd).
We have

(3.10)
∣∣∣F(∑

j<k

vjn(0)
)
−
∑
j<k

F (vjn(0))
∣∣∣

≤
∣∣∣F(∑

j<k

vjn(0)
)
− F

(∑
j<k

〈∇〉−1T jnψj
)∣∣∣

+
∣∣∣∑
j<k

F (vjn(0))−
∑
j<k

F (〈∇〉−1T jnψj)
∣∣∣

+
∣∣∣F(∑

j<k

〈∇〉−1T jnψj
)
−
∑
j<k

F (〈∇〉−1T jnψj)
∣∣∣.

By the continuity of the operator eit〈∇〉 in t in H1, we have

vjn(0)− 〈∇〉−1T jnψj → 0 in H1(Rd) as n→∞.
This together with the nonlinear estimate

(3.11) ‖(V (·) ∗ (g1g2))g3g4‖L1
x
.

4∏
j=1

‖gj‖L2∗
x

shows that as n→∞,∣∣∣F(∑
j<k

vjn(0)
)
− F

(∑
j<k

〈∇〉−1T jnψj
)∣∣∣→ 0,∣∣∣∑

j<k

F (vjn(0))−
∑
j<k

F (〈∇〉−1T jnψj)
∣∣∣→ 0.

Now we consider the last term on the right hand side of (3.10). Let

ψ̂j =

{
|∇|−1ψj if hjn → 0,

〈∇〉−1ψj if hjn ≡ 1.

Then ψ̂j ∈ L2∗
x and∣∣∣F(∑

j<k

〈∇〉−1T jnψj
)
−
∑
j<k

F (〈∇〉−1T jnψj)
∣∣∣

.
∣∣∣F(∑

j<k

〈∇〉−1T jnψj
)
− F

(∑
j<k

hjnT
j
nψ̂

j
)∣∣∣

+
∣∣∣∑
j<k

F (〈∇〉−1T jnψj)−
∑
j<k

F (hjnT
j
nψ̂

j)
∣∣∣

+
∣∣∣F(∑

j<k

hjnT
j
nψ̂

j
)
−
∑
j<k

F (hjnT
j
nψ̂

j)
∣∣∣.
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By (3.5), one has

‖〈∇〉−1T jnψj− hjnT jnψ̂j‖L2∗
x

=

{
‖〈∇〉−1T jnψj− hjnT jn|∇|−1ψj‖L2∗

x
if hjn→0,

‖〈∇〉−1T jnψj− hjnT jn〈∇〉−1ψj‖L2∗
x

if hjn ≡ 1

=

{
‖(〈∇〉jn)−1ψj − |∇|−1ψj‖L2∗

x
if hjn → 0,

0 if hjn ≡ 1

→ 0 as n→∞.
Combining this with (3.11), we find that as n→∞,∣∣∣F(∑

j<k

〈∇〉−1T jnψj
)
− F

(∑
j<k

hjnT
j
nψ̂

j
)∣∣∣→ 0,∣∣∣∑

j<k

F (〈∇〉−1T jnψj)−
∑
j<k

F (hjnT
j
nψ̂

j)
∣∣∣→ 0.

Thus it suffices to show that as n→∞,

(3.12)
∣∣∣F(∑

j<k

hjnT
j
nψ̂

j
)
−
∑
j<k

F (hjnT
j
nψ̂

j)
∣∣∣→ 0.

Now we define ψ̂jn,R for any R� 1 by

ψ̂jn,R(x) = χR(x)ψ̂j
∏{

(1− χ
hj,ln R

)(x− xj,ln )
∣∣ 1 ≤ l < k, hlnR < hjn

}
,

where (hj,ln , x
j,l
n ) = (hln, x

j
n−xln)/hjn, and χR(x) = χ(x/R) with χ ∈ C∞c (Rd)

satisfying χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Then ψ̂jn,R → χRψ̂
j

in L2∗
x as n → ∞, since either hj,ln → 0 or |xj,ln | → ∞ by (3.3). Moreover,

χRψ̂
j → ψ̂j in L2∗

x as R→∞.

Hence we may replace ψ̂j by ψ̂jn,R in (3.12). Since {supp(t,x) h
j
nT

j
nψ̂

j
n,R}

are mutually disjoint for large n, it follows that for large n,∣∣∣∑
j<k

hjnT
j
nψ̂

j
n,R

∣∣∣2 =
∑
j<k

|hjnT jnψ̂
j
n,R|

2.

Then∣∣∣F(∑
j<k

hjnT
j
nψ̂

j
n,R

)
−
∑
j<k

F (hjnT
j
nψ̂

j
n,R)

∣∣∣
≤
∑
j 6=l

∥∥∥(V (·) ∗ |hjnT jnψ̂
j
n,R|

2)|hlnT lnψ̂ln,R|2
∥∥∥
L1
x(Rd)

=
∑
j 6=l

(hj,ln )2−d
∥∥∥∥(V (·) ∗ |ψ̂jn,R|

2)

∣∣∣∣ψ̂ln,R(x− xj,ln
hj,ln

)∣∣∣∣2∥∥∥∥
L1
x(Rd)

→ 0 as n→∞,
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by Lebesgue’s dominated convergence theorem, since either hj,ln → 0 or
|xj,ln | → ∞ by (3.3). This concludes the proof of Lemma 3.3.

3.2. Nonlinear profile decomposition. Having established the linear
profile decomposition of a sequence of initial data in the last subsection, we
now show the nonlinear profile decomposition of a sequence of solutions of
(1.1) with the same initial data in the energy space H1(Rd) × L2(Rd) by
following the argument in [10].

First we construct a nonlinear profile corresponding to a free concentrat-
ing wave. Let ~vn be a free concentrating wave for a sequence (tn, xn, hn) in
R× Rd × (0, 1], {

(i∂t + 〈∇〉)~vn = 0,

~vn(tn) = Tnφ(x), φ ∈ L2(Rd).

Then by Lemma 3.1, we have a sequence of free concentrating waves ~vjn(t, x)

with ~vjn(tjn) = T jnϕj , ϕj ∈ L2(Rd) for j = 0, 1, . . . , k − 1, such that

~vn(t, x) =

k−1∑
j=0

~vjn(t, x) + ~ωkn(t, x) =
k−1∑
j=0

ei〈∇〉(t−t
j
n)T jnϕ

j(x) + ~ωkn(t, x)

=
k−1∑
j=0

T jne
i(
t−tjn
h
j
n

)〈∇〉jn
ϕj + ~ωkn(t, x).

Now for any concentrating wave ~vjn, we undo the group action T jn to look
for the linear profile ~V j . Let

~vjn(t, x) = T jn~V
j
n ((t− tjn)/hjn).

Then
~V j
n (t, x) = eit〈∇〉

j
nϕj .

Now let ~ujn be the nonlinear solution with the same initial data ~vjn(0),{
(i∂t + 〈∇〉)~ujn = −f(Re〈∇〉−1~ujn),

~ujn(0) = ~vjn(0) = T jn~V
j
n (τ jn),

where τ jn = −tjn/hjn. In order to look for the nonlinear profile ~U j∞ associated

with the free concentrating wave ~vjn, we also need to undo the group action.
Define

~ujn(t, x) = T jn ~U
j
n((t− tjn)/hjn);

then ~U jn satisfies the rescaled equation{
(i∂t + 〈∇〉jn)~U jn = −f(Re (〈∇〉jn)−1~U jn),
~U jn(τ jn) = ~V j

n (τ jn).
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Up to a subsequence, we may assume that there exist hj∞ ∈ {0, 1} and

τ j∞ ∈ [−∞,∞] for every j, such that as n→∞,

hjn → hj∞ and τ jn → τ j∞.

Then the limit equations are given by

~V j
∞ = eit〈∇〉

j
∞ϕj ,

{
(i∂t + 〈∇〉j∞)~U j∞ = −f(Û j∞),
~U j∞(τ j∞) = ~V j

∞(τ j∞),

where

Û j∞ := Re (〈∇〉j∞)−1~U j∞ =

{
Re 〈∇〉−1~U j∞ if hj∞ = 1,

Re |∇|−1~U j∞ if hj∞ = 0.

We remark that by using the standard iteration with the Strichartz es-
timate, we can obtain the unique existence of a local solution ~U j∞ around
t = τ j∞ in all cases, including hj∞ = 0 and τ j∞ = ±∞ (the latter corre-

sponding to the existence of the wave operators). We define ~U j∞ on the
maximal existence interval to be the nonlinear profile associated with the
free concentrating wave (~vjn; tjn, x

j
n, h

j
n).

The nonlinear concentrating wave ~uj(n) associated with ~vjn is defined by

~uj(n)(t, x) := T jn
~U j∞((t− tjn)/hjn).

It is easy to see that uj(n) solves (1.1) when hj∞ = 1. If hj∞ = 0, then uj(n)
solves{

(∂tt −∆+ 1)uj(n) = (i∂t + 〈∇〉)~uj(n) = (〈∇〉 − |∇|)~uj(n) − f(|∇|−1〈∇〉uj(n)),
~uj(n)(0) = T jn ~U

j
∞(τ jn).

The existence time interval of uj(n) may be finite and even go to 0, but at

least we have

‖~ujn(0)− ~uj(n)(0)‖L2
x

= ‖T jn~V j
n (τ jn)− T jn ~U j∞(τ jn)‖L2

x
(3.13)

≤ ‖~V j
n (τ jn)− ~V j

∞(τ jn)‖L2
x

+ ‖~V j
∞(τ jn)− ~U j∞(τ jn)‖L2

x
→ 0 as n→∞.

Let un be a sequence of (local) solutions of (1.1) around t = 0, and let vn
be the sequence of the free solutions with the same initial data. We consider
the linear profile decomposition of {~vn} given by Lemma 3.1,

~vn =

k−1∑
j=0

~vjn + ~ωkn, ~vjn = ei〈∇〉(t−t
j
n)T jnϕ

j .

Definition 3.4 (Nonlinear profile decomposition). Let {~vjn}n∈N be the

free concentrating waves, and {~uj(n)}n∈N be the sequence of the nonlinear
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concentrating waves associated with {~vjn}n∈N. Then we define the nonlinear
profile decomposition of un by

(3.14) ~u<k(n) :=

k−1∑
j=0

~uj(n) =

k−1∑
j=0

T jn ~U
j
∞

(
t− tjn
hjn

)
.

We will show that ~u<k(n) + ~ωkn is a good approximation for ~un, provided

that each nonlinear profile has finite global Strichartz norm.

Next we introduce some Strichartz norms. Let ST (I) and ST ∗(I) be the
function spaces on I × Rd defined as above,

ST (I) = [W ](I) = L
2(d+1)
d−1

t (I;B
1/2
2(d+1)
d−1

,2
(Rd)),

ST ∗(I) = [W ]∗(I) + L1
t (I;L2(Rd)).

The Strichartz norm for the nonlinear profile Û j∞ depends on the scaling hj∞:

ST j∞(I) :=

{
ST (I) if hj∞ = 1,

Lqt (I; Ḃ
1/2
q,2 )

(
q = 2(d+1)

d−1
)

if hj∞ = 0.

The following two lemmas derive from Lemma 3.1 and the perturbation
lemma. The first lemma concerns orthogonality in the Strichartz norms.

Lemma 3.5. Assume that in the nonlinear profile decomposition (3.14),
we have

‖Û j∞‖ST j∞(R) + ‖~U j∞‖L∞t L2
x(R) <∞, ∀j < k.

Then, for any finite interval I and j < k, we have

lim
n→∞

‖uj(n)‖ST (I) . ‖Û
j
∞‖ST j∞(R),(3.15)

lim
n→∞

‖u<k(n)‖
2
ST (I) . lim

n→∞

k−1∑
j=0

‖uj(n)‖
2
ST (R),(3.16)

where the implicit constants do not depend on the interval I or j. Moreover,

(3.17) lim
n→∞

∥∥∥f(u<k(n))−
k−1∑
j=0

f((〈∇〉j∞)−1〈∇〉uj(n))
∥∥∥
ST ∗(I)

= 0,

where f(u) = (V (x) ∗ |u|2)u.

Proof. One can refer to [10] for the proof of (3.15) and (3.16). Now we

turn to (3.17). By the definition of uj(n) and Û j∞, we know that



48 Q. Y. MIAO AND J. Q. ZHENG

uj(n)(x, t) = Re 〈∇〉−1~uj(n)(t, x) = Re 〈∇〉−1T jn ~U j∞
(
t− tjn
hjn

)
= hjnT

j
n

〈∇〉j∞
〈∇〉jn

Û j∞

(
t− tjn
hjn

)
.

Let u<k〈n〉(t, x) =
∑

j<k u
j
〈n〉(x, t), where

uj〈n〉(x, t) :=
〈∇〉
〈∇〉j∞

uj(n) = hjnT
j
nÛ

j
∞

(
t− tjn
hjn

)
.

Then∥∥∥f(u<k(n))−
∑
j<k

f((〈∇〉j∞)−1〈∇〉uj(n))
∥∥∥
ST ∗(I)

=
∥∥∥f(u<k(n))−

∑
j<k

f(uj〈n〉)
∥∥∥
ST ∗(I)

≤ ‖f(u<k(n))− f(u<k〈n〉)‖ST ∗(I)(3.18)

+
∥∥∥f(u<k〈n〉)−

∑
j<k

f(uj〈n〉)
∥∥∥
ST ∗(I)

.(3.19)

First, we estimate (3.18). Let [G](I) = L
3(d+1)
t (I;L

6d(d+1)

3d2−3d−8
x ). It follows

from (2.2) and the Hölder inequality that (q = 2(d+ 1)/(d− 1))

(3.18) ≤ ‖f(u<k(n))− f(u<k〈n〉)‖Lq′ (I;Ḃ1/2

q′,2)
+ ‖f(u<k(n))− f(u<k〈n〉)‖Lq′t,x(I×Rd)

. ‖u<k(n) − u
<k
〈n〉‖

2
d−1

ST j∞(I)
(‖(u<k(n), u

<k
〈n〉)‖L∞t Ḣ1

x∩ST
j
∞(I)

)3−
2
d−1

+ |I|1/2‖u<k(n) − u
<k
〈n〉‖[G](I)(‖(u<k(n), u

<k
〈n〉)‖[G](I))

2

.
( ∑
j<k, hj∞=0

‖〈∇/hjn〉−2Û j∞‖ST j∞(I)

) 2
d−1

(‖(u<k(n), u
<k
〈n〉)‖L∞t Ḣ1∩ST j∞(I)

)3−
2
d−1

+ |I|1/2
∑

j<k, hj∞=0

‖〈∇/hjn〉−2Û j∞‖[G](I)(‖(u<k(n), u
<k
〈n〉)‖[G](I))

2

→ 0 as n→∞,

where we utilize (3.6) in the second last inequality and the fact that

Û j∞ ∈ L∞t Ḣ1
x ∩ ST

j
∞(I) ⊂ [G](I).

Next we estimate (3.19). For R� 1, we define

Û jn,R(t, x) = χR(t, x)Û j∞(t, x)
∏
l<k

{(1− χ
hj,ln R

)(t− tj,ln , x− xj,ln ) | hj,ln < R−1},

where (hj,ln , t
j,l
n , x

j,l
n ) = (hln, t

j
n− tln, x

j
n−xln)/hjn, and χR(t, x) = χ(t/R, x/R)

with χ ∈ C∞c (Rd+1) satisfying χ(t, x) = 1 for |(t, x)| ≤ 1 and χ(t, x) = 0 for

|(t, x)| ≥ 2. Then, noting that either hj,ln → 0 or |tj,ln |+ |xj,ln | → ∞ by (3.3),
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we obtain Û jn,R → χRÛ
j
∞ in ST j∞(R) and [G](R) as n → ∞. Furthermore,

χRÛ
j
∞ → Û j∞ in the same spaces.

Therefore, we may replace uj〈n〉 by

uj〈n〉,R := hjnT
j
nÛ

j
n,R((t− tjn)/hjn).

By the support property of uj〈n〉,R we have, for large n,(∑
j<k

uj〈n〉,R

)2
=
∑
j<k

|uj〈n〉,R|
2.

Thus, we obtain∥∥∥f(u<k〈n〉,R)−
∑
j<k

f(uj〈n〉,R)
∥∥∥
ST ∗(I)

≤
∑
j 6=l
‖(V (·) ∗ |uj〈n〉,R|

2)ul〈n〉,R‖ST ∗(I)

=
∑
j 6=l

(hj,ln )1−d/2
∥∥∥∥(V (·) ∗ |Û j〈n〉,R|

2)(t, x)Û l〈n〉,R

(
t− tj,ln
hj,ln

,
x− xj,ln
hj,ln

)∥∥∥∥
ST ∗(I)

→ 0 as n→∞,

by Lebesgue’s dominated convergence theorem, since either hj,ln → 0 or

|tj,ln |+ |xj,ln | → ∞ by (3.3). This concludes the proof of Lemma 3.5.

After these preliminaries, we now show that ~u<k(n) +~ωkn is a good approxi-

mation for ~un provided that each nonlinear profile has finite global Strichartz
norm.

Lemma 3.6. Let un be a sequence of local solutions of (1.1) around
t = 0 satisfying limn→∞E(un, u̇n) <∞. Assume that in the nonlinear profile
decomposition (3.14), for any j we have

(3.20) ‖Û j∞‖ST j∞(R) + ‖~U j∞‖L∞t L2
x(R) <∞.

Then, for large n, un is bounded in the Strichartz and the energy norms,
that is,

lim
n→∞

(‖un‖ST (R) + ‖~un‖L∞t L2
x(R×Rd)) <∞.

Proof. We only need to verify the conditions of Lemma 2.7. For this
purpose, we use the fact that

(i∂t + 〈∇〉)(~u<k(n) + ~ωkn) = −f(u<k(n) + ωkn) + eq(u<k(n), ω
k
n),
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where

eq(u<k(n), ω
k
n) =

∑
j<k

(〈∇〉 − 〈∇〉j∞)~uj(n) + f(u<k(n))−
∑
j<k

f(uj〈n〉)

+ f(u<k(n) + ωkn)− f(u<k(n)),

and uj〈n〉 = (〈∇〉j∞)−1〈∇〉uj(n) is as before.

First, by the definition of the nonlinear concentrating wave uj(n) and

(3.13), we have

‖(~u<k(n)(0) + ~wkn(0))− ~un(0)‖L2
x
≤

k−1∑
j=0

‖~uj(n)(0)− ~ujn(0)‖L2
x
→ 0

as n→∞.
Next, by the linear profile decomposition in Lemma 3.1, we get

‖~un(0)‖2L2 = ‖~vn(0)‖2L2 ≥
k−1∑
j=0

‖~vjn(0)‖2L2 + on(1)(3.21)

=
k−1∑
j=0

‖~uj(n)(0)‖2L2 + on(1).

Thus, using the small data scattering (Lemma 2.4), we find that except for

a finite set J ⊂ N, the energy of uj(n) with j 6∈ J is smaller than the iteration

threshold. Hence

‖uj(n)‖ST (R) . ‖~u
j
(n)(0)‖L2

x
, j 6∈ J.

This together with (3.15), (3.16), (3.20), and (3.21) shows that for any finite
interval I,

sup
k

lim
n→∞

‖u<k(n)‖
2
ST (I) .

∑
j∈J
‖uj(n)‖

2
ST (R) +

∑
j 6∈J
‖uj(n)‖

2
ST (R)

.
∑
j∈J
‖Û j∞‖2ST j∞(R) + lim

n→∞
‖~un(0)‖2L2 <∞.

Combining this with the Strichartz estimate for ωkn, we get

sup
k

lim
n→∞

‖u<k(n) + ωkn‖ST (I) <∞.

By Lemmas 3.1 and 3.5, we have

‖f(u<k(n) + ωkn)− f(u<k(n))‖ST ∗(I) → 0,∥∥∥f(u<k(n))−
k−1∑
j=0

f(uj(n))
∥∥∥
ST ∗(I)

→ 0,
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as n→∞. On the other hand, the linear part in eq(u<k(n), ω
k
n) vanishes when

hj∞ = 1, and is controlled when hj∞ = 0 by

‖(〈∇〉 − |∇|)~uj(n)‖L1
t (I;L

2
x)
. |I| ‖〈∇〉−1~uj(n)‖L∞t (R;L2

x)

' |I| ‖〈∇/hjn〉−1~U j∞‖L∞t (R;L2
x)

. |I|
(
‖P≤(hjn)1/2

~U j∞‖L∞t (R;L2
x)

+ (hjn)1/2‖P
>(hjn)1/2

~U j∞‖L∞t (R;L2
x)

)
→ 0

as n→∞. Thus, ‖eq(u<k(n), ω
k
n)‖ST ∗(I) → 0 as n→∞.

Therefore, for k sufficiently close to K and n large enough, the true so-
lution un and the approximate solution u<k(n) +ωkn satisfy all the assumptions

of the perturbation Lemma 2.7. Hence we obtain the desired result.

4. Concentration compactness. By the profile decomposition in the
previous section and perturbation theory, we show in this section that if
the scattering result does not hold, then there must exist a minimal energy
solution with some good compactness properties. This is the object of the
following proposition.

Proposition 4.1. Suppose that Emax < ∞. Then there exists a global
solution uc of (1.1) satisfying

E(uc) = Emax, ‖uc‖ST (R) =∞.

Moreover, there exists c : R+ → Rd such that K = {(uc, u̇c)(t, x − c(t)) |
t ∈ R+} is precompact in H1(Rd)×L2(Rd). Moreover, one can assume that
c is C1 and

|ċ(t)| .uc 1

uniformly in t.

Proof. The proof of [10] can be adopted verbatim, but we give a sketch
for completeness. By the definition of Emax, we can choose a sequence {un}
such that

(4.1) E(un, u̇n)→ Emax and ‖un‖ST (In) →∞ as n→∞.
Now we consider the linear and nonlinear profile decompositions of un, using
Lemma 3.1,

eit〈∇〉~un(0) =
k−1∑
j=0

~vjn + ~ωkn, ~vjn = ei〈∇〉(t−t
j
n)T jnϕ

j(x),

u<k(n) =

k−1∑
j=0

~uj(n), ~uj(n)(t, x) = T jn ~U
j
∞((t− tjn)/hjn),

‖~vjn(0)− ~uj(n)(0)‖L2
x
→ 0 as n→∞.



52 Q. Y. MIAO AND J. Q. ZHENG

Lemma 3.6 precludes that all the nonlinear profiles ~U j∞ have finite global
Strichartz norm. On the other hand, every solution of (1.1) with energy
less than Emax has global finite Strichartz norm by the definition of Emax.
Hence by (3.7), we deduce that there is only one profile, i.e. K = 1, and so
for large n,

Ẽ(~u0(n)) = Emax, ‖Û0
∞‖ST 0

∞(R) =∞, lim
n→∞

‖~ω1
n‖L∞t L2

x
= 0.

If h0n → 0, then Û0
∞ = Re |∇|−1~U0

∞ solves the Ḣ1-critical wave-Hartree
equation

∂ttu−∆u+ (|x|−4 ∗ |u|2)u = 0

and satisfies

E(Û0
∞(τ0∞)) = Emax <∞, ‖Û0

∞‖Lqt (R;Ḃ1/2
q,2 )

=∞, q =
2(d+ 1)

d− 1
.

But Miao–Zhang–Zheng [22] have proven that there is no such solution.
Hence h0n = 1, and so there exist a sequence (tn, xn) ∈ R×Rd and φ ∈ L2(Rd)
such that along some subsequence,

(4.2) ‖~un(0, x)− e−itn〈∇〉φ(x− xn)‖L2
x
→ 0 n→∞.

Now we show that Û0
∞ = 〈∇〉−1~U j∞ is a global solution. Assume not; then

we can choose a sequence tn ∈ R which approaches the maximal existence
time. Since Û0

∞(t+ tn) satisfies (4.1), applying the above argument to it, we
infer by (4.2) that there are ψ ∈ L2 and another sequence (t′n, x

′
n) ∈ R×Rd

such that

(4.3) ‖~U0
∞(tn)− e−it′n〈∇〉ψ(x− x′n)‖L2

x
→ 0

as n→∞. Let ~v := eit〈∇〉ψ. For any ε > 0, there exist δ > 0 such that, with
I = [−δ, δ],

‖〈∇〉−1~v(t− t′n)‖ST (I) ≤ ε,

which together with (4.3) shows that for sufficiently large n,

‖〈∇〉−1eit〈∇〉~U0
∞(tn)‖ST (I) ≤ ε.

If ε is small enough, this implies that the solution ~U0
∞ exists on [tn−δ, tn+δ]

for large n by small data theory (Lemma 2.4). This contradicts the choice
of tn. Thus Û0

∞ is a global solution and it is just the desired critical ele-
ment uc. Moreover, since (1.1) is symmetric in t, we may assume that

‖uc‖ST (0,∞) =∞.

We call such a u a forward critical element.

One can refer to [23] for the choice of c(t). This concludes the proof of
Proposition 4.1.
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As a consequence of the above proposition and the Hardy–Littlewood–
Sobolev inequality, we have

Corollary 4.2. Let u be a forward critical element, and denote

ER,c =
�

|x−c|≥R

(|u|2 + |∇u|2 + |u̇|2) dx+
� �

|x−c|≥R
y∈Rd

|u(t, x)|2|u(t, y)|2

|x− y|4
dx dy.

Then for any η > 0, there exists R(η) > 0 such that

ER(η),c(t) ≤ ηE(u, u̇) for any t > 0.

The next corollary concludes this section.

Corollary 4.3. Let u be a nonlinear strong solution of (1.1) such that
the set K defined in Proposition 4.1 is precompact in H1 × L2, and E(u, u̇)
6= 0. Then there exists a constant β = β(τ) > 0 such that, for all time t > 0,
we have

t+τ�

t

� �

Rd×Rd

|x2 − y2|2

|x− y|6
|u(s, x)|2|u(s, y)|2 dx dy ds ≥ β,

where x2 denotes the second component of x ∈ Rd. In particular,

t�

0

� �

Rd×Rd

|x2 − y2|2

|x− y|6
|u(t, x)|2|u(t, y)|2 dx dy ds & t.

Proof. One can refer to [23] for the detailed proof.

5. Extinction of the critical element. In this section, we utilize the
technique in [28] to prove that the critical solution constructed in Section 4
does not exist, thus ensuring that Emax =∞. This implies Theorem 1.3.

Proposition 5.1. Assume that d ≥ 5. Then Emax =∞.

Proof. We use a virial-type estimate in a direction orthogonal to the
momentum vector. Up to relabeling the coordinates, we might assume that
Mom(u) is parallel to the first coordinate. Thus

�

Rd
ut(t, x)∂ju(t, x) dx = 0, ∀j ≥ 2.

Let φR(x) = φ(x/R), where φ(x) is a nonnegative smooth radial function
such that supp φ ⊆ B(0, 2) and φ ≡ 1 in B(0, 1). We define the virial action

I(t) =
�

Rd
z2φR(z)∂2u(t, x)ut(t, x) dx,
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where z = x − c(t) and z2 denotes the second component of z ∈ Rd. Inte-
grating by parts we get, by (1.1),

∂tI(t) =
�

Rd
∂t(z2φR(z))∂2u(t, x)ut(t, x) dx+ 1

2

�

Rd
z2φR(z)∂2(ut(x, t))

2 dx

+
�

Rd
z2φR(z)∂2u(t, x)

(
∆u− u− (V (·) ∗ |u|2)u

)
dx

= 1
2

�

Rd

(
−|ut|2 + |u|2 + |∇u|2 + (V (·) ∗ |u|2)|u|2

)
dx−

�

Rd
|∂2u|2 dx

+ ż2
�

Rd
ut∂2u dx− 2

�

Rd
z2φR(z)|u|2

(
x2
|x|6
∗ |u|2

)
dx

+
�

|z|≥R

O1(u) dx,

where

O1(u) =
1

2

[
z2
R
φ′R − (1− φR(x))

][
−|ut|2 + |u|2 + |∇u|2 + (V (·) ∗ |u|2)|u|2

]
− (c′(t) · ∇φR)

z2
R
∂2uut − c′2(t)(1− φR(z))∂2uut − (∇φR · ∇u)z2∂2u

is supported on the set |z| ≥ R and satisfies∣∣∣ �

|z|≥R

O1(u) dx
∣∣∣ . �

|z|≥R

(|u|2 + |∇u|2 + |u̇|2) dx.

Moreover, we define the equirepartition of energy action

J(t) =
�

Rd
φR(z)u(t, x)ut(t, x) dx.

Then

∂tJ(t) =
�

Rd

(
|ut|2 − |u|2 − |∇u|2 − (V (·) ∗ |u|2)|u|2

)
dx+

�

|z|≥R

O2(u) dx,

where

O2(u) = (1− φR(z))
[
|ut|2 − |u|2 − |∇u|2 − (V (·) ∗ |u|2)|u|2

]
+ (c′(t) · ∇φR)

uut
R
− u

R
∇φR · ∇u

has the same properties as O1(u).

Considering A(t) = I(t) + 1
2J(t), we get

(5.1) |A(t)| . RE(u, u̇) for all time t,
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and

∂tA(t) = −
�

Rd
|∂2u|2 dx

− 2
� �

Rd×Rd
φR(x− c(t))(x2 − c2(t))

x2 − y2
|x− y|6

|u(t, x)|2|u(t, y)|2 dx dy

−
�

|z|≥R

(
O1(u) + 1

2O2(u)
)
dx.

And so by symmetrization, ∂tA(t) can be rewritten as

−∂tA(t) =
�

Rd
|∂2u|2 dx+

� �

Rd×Rd

|x2 − y2|2

|x− y|6
|u(t, x)|2|u(t, y)|2 dx dy

+ I2 +
�

|z|≥R

(O1(u) +O2(u)) dx,

where

I2 =
�

Rd×Rd

[
(x2 − c2(t))φR(x− c(t))− (y2 − c2(t))φR(y − c(t))− (x2 − y2)

]
× x2 − y2
|x− y|6

|u(t, x)|2|u(t, y)|2 dx dy.

We will show that I2 constitutes only a small fraction of E(u, ut). First,
by Corollary 4.2, we know that if R is sufficiently large depending on u
and η, then

ER,c(t)(u, ut) ≤ ηE(u, ut).

Let χ denote a smooth cutoff to the region |x − c(t)| ≥ R/2 such that
∇χ is bounded by R−1 and supported where |x − c(t)| ∼ R. In the region
where |x− c(t)| ∼ |y − c(t)|, we have

|x− c(t)| ∼ |y − c(t)| & R,

since otherwise I2 vanishes. Moreover, noting that

|(x2 − c2(t))φ(x− c(t))− (y2 − c2(t))φ(y − c(t))| . |x− y|,

we use the Hardy–Littlewood–Sobolev inequality and the Sobolev embed-
ding theorem to control the contribution to I2 from this regime by

� �

Rd×Rd

|χu(t, x)|2|χu(t, y)|2

|x− y|4
dx dy . ‖∇(χu)‖42 . η2.

In the region where |x− c(t)| � |y − c(t)|, we use the fact that

|x− c(t)| � |y − c(t)| ∼ |x− y| and |y − c(t)| & R
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to estimate the contribution from this regime by
� �

Rd×Rd

1

|x− y|4
|χu(t, y)|2|u(t, x)|2 dx dy . ‖∇(χu)‖2L2

x
‖∇u‖2L2

x
. η.

The last line follows from the same computation as in the first case. Finally,
since the remaining region |y − c(t)| � |x − c(t)| can be estimated in the
same way, we conclude that

I2 . η.

Choosing η sufficiently small depending on u, and R sufficiently large
depending on u and η, we obtain

(5.2) −∂tA(t) ≥
� �

Rd×Rd

|x2 − y2|2

|x− y|6
|u(t, x)|2|u(t, y)|2 dx dy − ηE(u, ut).

If Emax < ∞, then integrating (5.2) from 0 to T > 0 and using Corollary
4.3, we find that there exists α = α(1, u) > 0 such that

T�

0

� �

Rd×Rd

|x2 − y2|2

|x− y|6
|u(s, x)|2|u(s, y)|2 dx dy ds ≥ αT

for all T > 1. Thus −A(t) & T for large T , which contradicts (5.1). Hence
Emax =∞, which concludes the proof of Proposition 5.1.
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