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ON THE DISTANCE BETWEEN
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JHON J. BRAVO (Popayán), CARLOS A. GÓMEZ (Cali) and
FLORIAN LUCA (Johannesburg)

Abstract. For an integer k ≥ 2, let (F
(k)
n )n be the k-Fibonacci sequence which starts

with 0, . . . , 0, 1 (k terms) and each term afterwards is the sum of the k preceding terms.
This paper completes a previous work of Marques (2014) which investigated the spacing
between terms of distinct k-Fibonacci sequences.

1. Introduction and preliminary results. For k ≥ 2, we consider the
k-generalized Fibonacci sequence or, for simplicity, the k-Fibonacci sequence

F (k) := (F
(k)
n )n≥2−k given by the recurrence

(1.1) F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We shall refer to F
(k)
n as the nth k-Fibonacci number. We note that in fact

each choice of k produces a distinct sequence which is a generalization of
the usual Fibonacci sequence (Fn)n≥0, obtained for k = 2.

The first direct observation is that the first k + 1 nonzero terms
in F (k) are powers of two, namely

(1.2) F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1,

while the next term is F
(k)
k+2 = 2k − 1. In fact, F

(k)
n < 2n−2 for all n ≥ k + 2

(see [1]). In general, Cooper and Howard [4] proved the following nice for-
mula:

Lemma 1.1. For k ≥ 2 and n ≥ k + 2,

F (k)
n = 2n−2 +

b(n+k)/(k+1)c−1∑
j=1

Cn,j 2n−(k+1)j−2,
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where

Cn,j = (−1)j
[(
n− jk
j

)
−
(
n− jk − 2

j − 2

)]
.

In the above, we used the convention that
(
a
b

)
= 0 if either a < b or one

of a or b is negative, and denote by bxc the greatest integer less than or
equal to x. For example, if k + 2 ≤ n ≤ 2k + 2, then Cooper and Howard’s
formula becomes the identity

(1.3) F (k)
n = 2n−2 − (n− k) · 2n−k−3 for all k + 2 ≤ n ≤ 2k + 2.

In the present paper, we investigate the differences between generalized
Fibonacci numbers, extending and completing the work of D. Marques [8].
Our goal here is to remove some restrictions considered by Marques in his
work. To be more precise, we study the Diophantine equation

(1.4) F (k)
n − F (`)

m = c

in integers m,n, `, k and c with ` ≥ k ≥ 2 and n,m ≥ 2.
Marques [8] obtained the following partial result concerning the solutions

of (1.4).

Theorem 1.2. If (m,n, `, k) is a solution of (1.4) with ` ≥ k ≥ 2,
n > k + 2, m > ` + 2 and m 6= n, then max{m,n, `, k} < M for some
effectively computable constant M which can be taken as

M = max{c1, 1.9× 10146c242 log27 c2, 8× 10246}
where c1 := 5 log(|c|+ 1) + 2 and c2 := 4 log(|c|+ 5)/log 2.

For m = n, Marques showed the following result.

Theorem 1.3. If c = r2r−3 − s2s−3 where r and s are integers such
that 0 ≤ r < s, then for all k ≥ 2,

(n,m, `) = (k + s, k + s, k + s− r)
is a solution of (1.4) with k ≥ s−1. Conversely, if (1.4) has a solution with
m = n ≤ 2k + 1, then c = r2r−3 − s2s−3 for some integers r < s.

We note that the case n = k + 2 and m = `+ 2 can be included in The-
orem 1.2, whereas Theorem 1.3 only considers the case when max{m,n, `} ≤
2k + 1. Our main aim here is to complete the analysis of the case n = m in
Theorem 1.2. Furthermore, we treat the other cases involving n, k and m, `.
Our principal results are given in Section 3, in particular in Theorems 3.1
and 3.4.

To prove our main results we use lower bounds for linear forms in loga-
rithms (Baker’s theory) and a method developed by Bravo and Luca in
[1, 2], based on the fact that when k is large then the dominant root of the
characteristic polynomial of F (k) is exponentially close to 2. In addition, the
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formula of Cooper and Howard [4] is needed for some important estimates.
We follow the approach and the presentation in [8].

Before proceeding further it may be mentioned that the characteristic
polynomial of F (k), namely

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible in Q[x] and has just one zero real outside the unit circle.
Throughout this paper, α := α(k) denotes that single zero. The other roots
are strictly inside the unit circle, so α(k) is a Pisot number of degree k.
Moreover, it is also known that α(k) is between 2(1 − 2−k) and 2 (see
[6, Lemma 2.3] or [11, Lemma 3.6]). To simplify notation, we shall omit
the dependence of α on k.

We now consider the function fk(x) = (x − 1)/(2 + (k + 1)(x − 2)) for
an integer k ≥ 2 and x > 2(1− 2−k). It is easy to see that the inequalities

(1.5) 1/2 < fk(α) < 3/4 and |fk(α(i))| < 1, 2 ≤ i ≤ k,
hold, where α := α(1), . . . , α(k) are all the zeros of Ψk(x). So, by computing
norms from Q(α) to Q, for example, we see that the number fk(α) is not an
algebraic integer.

With the above notation, Dresden and Du [5] showed that

(1.6) F (k)
n =

k∑
i=1

fk(α
(i))α(i)n−1 and |F (k)

n − fk(α)αn−1| < 1/2

for all n ≥ 1 and k ≥ 2.

In addition, Bravo and Luca [2] proved that

(1.7) αn−2 ≤ F (k)
n ≤ αn−1 for all n ≥ 1 and k ≥ 2.

The observations in (1.6) and (1.7) lead us to call α the dominant zero
of F (k).

It was also proved in [2] that if we write

αr−1 = 2r−1 + δ and fk(α) = fk(2) + η, where 1 ≤ r < 2k/2,

then |δ| < 2r/2k/2, |η| < 2k/2k and

|fk(α)αr−1 − 2r−2| < 2r−1

2k/2
+

2rk

2k
+

2r+1k

23k/2
.

Furthermore, if k ≥ 10, then 2k/2k + 4k/23k/2 < 1/2k/2, thus

(1.8) |fk(α)αr−1 − 2r−2| < 2r

2k/2
.

To conclude this section, we briefly present the concept of Sidon sets
which will be used later. The history of Sidon sets began in 1932, when
Sidon [10], motivated by considerations of Fourier analysis, asked how large
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a set A of integers from {1, . . . , N} can be if it has the property that all sums
a+b with a, b ∈ A, a ≤ b, are distinct. Sets of integers with this property are
now called Sidon sets, B2 sets, or B2[1] sets. Since an equivalent condition
is that the differences are all distinct, we see that A is a Sidon set if all the
nonzero differences a− a′ (a, a′ ∈ A) are distinct.

Similarly, a sequence of positive integers is called a Sidon sequence if the
pairwise sums of its members are all different. We also say that the elements
form a difference-set. As an example, it is a straightforward exercise to check
that all powers of two form an infinite Sidon sequence.

2. Linear forms in logarithms. In order to prove our main results, we
need to use a Baker type lower bound for a nonzero linear form in logarithms
of algebraic numbers. Such a bound was given by Matveev [9]. We begin by
recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive poly-
nomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates
of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}
)

is called the logarithmic height of η. In particular, if η = p/q is a rational
number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}.

We let K = Q(α). Knowing that Q(α) = Q(fk(α)) and |fk(α(i))| ≤ 1
for all i = 1, . . . , k and k ≥ 2, we obtain h(α) = (logα)/k and h(fk(α)) =
(log a0)/k, where a0 is the leading coefficient of the minimal primitive poly-
nomial of fk(α) over the integers. Define

gk(x) =

k∏
i=1

(x−fk(α(i))) ∈ Q[x] and N = NK/Q
(
2+(k+1)(α−2)

)
∈ Z.

We conclude that N gk(x) ∈ Z[x] vanishes at fk(α). Thus, a0 divides |N |.
But, for k ≥ 2,

|N | =
∣∣∣ k∏
i=1

(
2 + (k + 1)(α(i) − 2)

)∣∣∣ = (k + 1)k
∣∣∣∣ k∏
i=1

(
2− 2

k + 1
− α(i)

)∣∣∣∣
= (k + 1)k

∣∣∣∣Ψk(2− 2

k + 1

)∣∣∣∣ =
2k+1kk − (k + 1)k+1

k − 1
< 2kkk.
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Hence, we will use the inequalities

(2.1) h(α) < 0.7/k and h(fk(α)) < 2 log k for all k ≥ 2.

Matveev [9] proved the following deep theorem.

Theorem 2.1 (Matveev’s theorem). Let K be a number field of degree D
over Q, γ1, . . . , γt be positive real numbers of K, and b1, . . . , bt be rational
integers. Set

Λ := γb11 · · · γ
bt
t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), |log γi|, 0.16} be real numbers for i = 1, . . . , t. Then,
assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
.

3. Main results. First of all, we point out that the case c = 0 was
studied by Bravo–Luca in [3] and independently by Marques [7]. From now
on, we assume that (n,m, `, k) is a solution of (1.4) with ` ≥ k ≥ 2, n,m,≥ 2
and c 6= 0. We begin by considering the case when n ≤ k+ 1 and m ≤ `+ 1,

where by (1.2), F
(k)
n and F

(`)
m are powers of two. Then it follows from (1.4)

that

1/2 ≤ |1− 2−|n−m|| = 4|c|/2max{n,m}.

Hence, max{n,m} < 3 + 2 log |c|. Even more, for fixed ` and k, the equation
2n−2 − 2m−2 = c has a unique solution since the powers of two form an
infinite Sidon sequence, as mentioned in Section 1.

3.1. The case n ≥ k + 2 and m ≥ ` + 2. Here, we set β = α(`) and
use equation (1.4) and the results of Dresden–Du (1.6), to get

(3.1) |fk(α)αn−1 − f`(β)βm−1| ≤ |c|+ 1.

The left-hand side above is nonzero (see [3, p. 2125]). Dividing the above
expression by the term involving δ := max{n,m}, we get∣∣∣∣(fk(α)

f`(β)

)ε
αε(n−1)β−ε(m−1) − 1

∣∣∣∣ ≤ 2(|c|+ 1)

φδ−1
,(3.2)

with some ε ∈ {±1} and φ := α(2) = (
√

5 + 1)/2. In fact, ε = 1 if δ = n and
ε = −1 if δ = m. In the right-hand side of (3.2) we shall use a linear form
in t := 3 logarithms:

γ1 := fk(α)/f`(β), γ2 := α, γ3 := β.

We take b1 := ε, b2 := ε(n − 1) and b3 := −ε(m − 1). The field Q(α, β)
containing all these numbers has degree D ≤ k`. Further, in the notation of
Theorem 2.1, we can take the following parameters: A1 := 4`2 log `, A2 =

A3 := 0.7` and B = δ−1. Applying Theorem 2.1, we find that |γb11 γ
b2
2 γ

b3
3 −1|
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exceeds

exp
(
−1.4× 306 × 34.5 × `4(1 + 2 log `)(1 + log(δ − 1))× (4`2 log `)(0.7`)2

)
.

The absolute value of the number under the exponential is

< 2.25× 1012`8(log `)2 log(δ − 1),

where we have used the fact that 1 + 2 log ` ≤ 4 log ` and 1 + log(δ − 1)
< 2 log(δ − 1) for ` ≥ 2 and δ − 1 ≥ 3. Comparing this with (3.2), we get

δ − 1

log(δ − 1)
<

2.25

log φ
× 1012`8(log `)2 +

log(2(|c|+ 1))

log(δ − 1) log φ
.(3.3)

However, if δ > `0 := (|c|+ 5)3 > 1 + (2(|c|+ 1))1/log φ, then

log(2(|c|+ 1))

log(δ − 1) log φ
< 1.

Thus,
δ − 1

log(δ − 1)
< 4.7× 1012`8(log `)2.

From this, and using the fact that the inequality x/log x < A implies
x < 2A logA whenever A ≥ 3 (see [1, p. 74]), we have

δ < 4.8× 1014`8(log `)3.(3.4)

We now need to upper bound ` polynomially in terms of k.

Case 1: ` < max{240, `0}. Then

δ ≤M := max{m,n, `, k} < max{8.7× 1035, 4.8× 1014`80(log `0)
3} := H0.

From now on, we work under the assumption δ ≥ H0, and so we must
be in the following case:

Case 2: ` ≥ max{240, `0}. Then m ≤ δ < 4.8 × 1014`8(log `)3 < 2`/2.
Using Bravo–Luca’s argument (1.8) and (3.1), we conclude that

|fk(α)αn−12−(m−2) − 1| <
|c|+ 5

2`/2
.(3.5)

Since fk(α) is not an algebraic integer, Λ := fk(α)αn−12−(m−2) − 1 is
nonzero. We apply again Matveev’s Theorem 2.1 to bound the left-hand
side of (3.5) from below. Here, we take t := 3, γ1 := fk(α), γ2 := α, γ3 := 2;
hence K := Q(α) and so D := k. Also, we take b1 := 1, b2 := n − 1 and
b3 := −(m− 2).

Here one can take A1 := 2k log k, A2 = A3 := 0.7 and B = δ. Applying
Theorem 2.1, we deduce from (3.5) that

exp(−8.5× 1011k3(log k)2 log δ) < |Λ| < |c|+ 5

2`/2
.
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By inequality (3.4), we conclude that log δ < 56 log `. Thus,

`

log `
<

2

log 2

(
4.77× 1013k3(log k)2

)
+

2 log(|c|+ 5)

log 2 log `
.

Keeping in mind ` ≥ `0 > (|c|+ 5)2/log 2, we deduce that

2 log(|c|+ 5)/(log 2 log `) < 1.

So, from the above we find that

` < 1.4× 1016k3(log k)3.(3.6)

In addition, combining inequalities (3.4) and (3.6), we finally arrive at

δ < 1.3× 10149k24(log k)27.(3.7)

Case 3: k < max{1670, k0} with k0 := 3 log(2|c|+ 18). Then

δ ≤M < max{9.2× 10249, 1.3× 10149k240 (log k0)
27} := H1.

We now assume that δ > H1, and therefore we are in the following case:

Case 4: k ≥ max{1670, k0}. Here,

δ < 1.3× 10149k24(log k)27 < 20.499k < 2k/2 ≤ 2`/2.

Using the Bravo–Luca argument (1.8) once more, we infer that

|2n−2 − 2m−2| ≤
2n

2k/2
+

2m

2`/2
+ |c|+ 1.

Dividing both sides of the above inequality by 2δ, we obtain

|1− 2−|n−m|| ≤
|c|+ 9

2k/2
.

Case 5: n 6= m. In this case, the absolute value of the left-hand side of
the above expression is ≥ 1/2, so

k < 2 log(2|c|+ 18)/log 2 < k0,

which is impossible.
We record what we have just proved.

Theorem 3.1. Let c 6= 0 be an integer. If (m,n, `, k) is a solution of

the Diophantine equation F
(k)
n − F (`)

m = c with n ≥ k + 2, m ≥ `+ 2, ` ≥ k
and n 6= m, then

M := max{m,n, `, k} < H1 := max{9.2× 10249, 1.3× 10149k240 (log k0)
27}.

To deal with the case n = m, we will use the following results:

Lemma 3.2. If r < 2k, then

F (k)
r = 2r−2

(
1 +

k − r
2k+1

+ ζ(k, r)

)
,

where ζ = ζ(k, r) is a real number such that |ζ| < 4r2/22k+2.
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Proof. From Cooper and Howard’s formula of Lemma 1.1, we get

|ζ| ≤
b(r+k)/(k+1)c−1∑

j=2

|Cr,j |
2(k+1)j

<
∑
j≥2

2rj

2(k+1)j(j − 2)!

<
2r2

22k+2

∑
j≥2

(r/2k+1)j−2

(j − 2)!
<

2r2

22k+2
er/2

k+1
.

Further, since r < 2k we have er/2
k+1

< e1/2 < 2. Thus, |ζ| < 4r2/22k+2.

Lemma 3.3. The sequence T = (t2t)t≥1 is an infinite Sidon sequence.

Proof. We can assume that

(3.8) x2x − y2y = a2a − b2b

for some positive integers x, y, a, b with x > y, a > b and x > a. Then
b < a < x. Note that, if y < a, then it is easy to see that x − y ≥ 2
and x − a ≥ 1. We now observe that expression (3.8) can be written as
x2x − a2a = y2y − b2b. Dividing the above equality by x2x and taking
absolute value, we obtain∣∣∣∣1− a/x

2x−a

∣∣∣∣ < y/x

2x−y
+

b/x

2x−b
<

2

2x−y
.(3.9)

But this is a contradiction because the left-hand side is> 1/2 while the right-
hand side is ≤ 1/2. If, on the contrary, a < y, then x− y ≥ 1 and x− a ≥ 2.
Here, a similar argument applied to the expression x2x − y2y = a2a − b2b
also gives an absurdity. Thus, it remains to deal with the case when y = a.
Here the equality

x2x + b2b = a2a + y2y = a2a+1

obtained from (3.8) is impossible for x ≥ a+ 1.

Case 6: n = m. Since ` > k, we have c < 0. Here, we distinguish the
cases k + 2 ≤ n ≤ 2k + 2 and n > 2k + 2.

Turning back to our problem, we recall that Marques proved (Theo-
rem 1.3) that if (1.4) has a solution with k + 2 ≤ m = n ≤ 2k + 2, then
c = r2r−3 − s2s−3 for some positive integers r < s. Even more, m ≤ 2`+ 2
because k ≤ `. So, from Lemma 1.1 (see also (1.3)), we get

F (k)
n = 2n−2 − (n− k)2n−k−3 and F (`)

m = 2n−2 − (n− `)2n−`−3.
Hence, the Diophantine equation (1.4) becomes

(n− `)2n−`−3 − (n− k)2n−k−3 = r2r−3 − s2s−3,
and, in view of Lemma 3.3, we obtain n − ` = r and n − k = s. Thus,
in this case (k + 2 ≤ n ≤ 2k + 2), equation (1.4) has no solutions when
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c 6= r2r−3 − s2s−3, while all the solutions are given by

(n,m, `, k) = (k + s, k + s, k + s− r, k) for k ≥ s− 2,

when c = r2r−3 − s2s−3.
Suppose now that n > 2k + 2. We first consider ` = k + 1 without any

restriction on c < 0. By Lemma 3.3, we can write

F (k)
n = 2n−2

(
1 +

k − n
2k+1

+ ζ1

)
, F (k+1)

n = 2n−2
(

1 +
k + 1− n

2k+2
+ ζ2

)
,

with ζ1 6= 0, |ζ1| < 4n2/22k+2 and |ζ2| < n2/22k+2. Substituting these values
in (1.4) and rearranging some terms, we get

2n−k−4(n− k + 1)− |c| = 2n−2(ζ2 − ζ1).

Dividing by 2n−k−4(n − k + 1) > 0 (because n > 2k + 2), and taking into
account n < 2k/2 and n − k + 1 ≥ k + 4, we obtain, after some elementary
algebra, ∣∣∣∣1− |c|

2n−k−4(n− k + 1)

∣∣∣∣ < 8

k + 4
.(3.10)

On the other hand, by using the facts that n−k+1 ≥ k+4 > 3 log(2|c|+18)
and 2n−k > (2|c|+ 18)3 log 2, which hold because

n− k > k + 2 > 3 log(2|c|+ 18),

we get

|c|
2n−k−4(n− k + 1)

<

(
|c|

2|c|+ 18

)(
16

3(2|c|+ 18)3 log 2−1 log(2|c|+ 18)

)
<

16

3 · 203 log 2−1 log 20
< 0.0701633.

With this data and (3.10), we arrive at 0.929837 < 8/(k + 4), which is
impossible because k > 1670.

We now deal with the case when n > 2k + 2 and ` ≥ k + 2. By using
Lemma 3.3 once again, we write

F (k)
n = 2n−2

(
1 +

k − n
2k+1

+ ζ1

)
and F (`)

m = 2n−2
(

1 +
`− n
2`+1

+ ζ2

)
,

with ζ1 6= 0 and |ζi| < 4n2/22k+2 for i = 1, 2. So, (1.4) can be rewritten as(
(n− k)2n−k−3 − (n− `)2n−`−3

)
− |c| = 2n−2(ζ1 − ζ2).

Dividing through by (n − k)2n−k−3 − (n − `)2n−`−3 > 0 (because ` > k),
and taking absolute values, we get∣∣∣∣1− |c|

(n− k)2n−k−3 − (n− `)2n−`−3

∣∣∣∣ < 4

3× 20.002k
,(3.11)
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where we have used

(n− k)2n−k−3 − (n− `)2n−`−3 = (n− k)2n−k−3
(

1−
n− `
n− k

2k−`
)

(3.12)

> (3/4)(n− k)2n−k−3,

as well as the facts that n2 < 20.998k and n− k ≥ 4. On the other hand, the
absolute value of the left-hand side of (3.11) is nonzero. In addition, we saw
that 2n−k > (2|c|+ 18)3 log 2 since n− k > k+ 2 > 3 log(2|c|+ 18). From the
above, we can lower bound the absolute value in (3.11). Indeed,

|c|
(n− k)2n−k−3 − (n− `)2n−`−3

<
25|c|

3(n− k)2n−k

<
25

18 log(2|c|+ 18)(2|c|+ 18)3 log 2−1
≤

25

18 log(20)203 log 2−1
.

Thus, ∣∣∣∣1− |c|
(n− k)2n−k−3 − (n− `)2n−`−3

∣∣∣∣ > 0.97,

which, combined with (3.11), gives 20.002k < 4/(3×0.97). So, k < 500, which
is a contradiction.

We record what we have just proved.

Theorem 3.4. Let c < 0 be an integer and consider the Diophantine

equation F
(k)
n − F

(`)
m = c with n ≥ k + 2, m ≥ ` + 2, ` ≥ k + 1 >

max{1670, 3 log(2|c| + 18)} and n = m. If k + 2 ≤ n ≤ 2k + 2, then there
are infinitely many solutions of the above equation given by

(m,n, `, k) = (k + s, k + s, k + s− r, k) for k ≥ s− 2.

If, on the contrary, n > 2k + 2, then the equation has no solutions.

3.2. The cases when either n ≤ k + 1 and m ≥ `+ 2, or n ≥ k + 2
and m ≤ ` + 1. We note that if n ≤ k + 1 and m ≥ ` + 2, then n < m.
Here, by using similar arguments to those in Subsection 3.1, we obtain an
upper bound for m = max{m,n, `, k}, namely

m ≤ max{8.8× 1024, 5.4× 1015 log4(2|c|+ 4)(log log(2|c|+ 4) + 2)3}.
On the other hand, for n ≥ k + 2 and m ≤ ` + 1, we distinguish the cases
n 6= m and n = m with c = s2s−3 and c 6= s2s−3, respectively, where s ≥ 2 is
an integer. Indeed, after using linear forms in logarithms, we conclude that

δ ≤ 7.7× 1013k4(log k)3.

If k < max{170, k1} with k1 := 3 log(2|c|+ 10), then

δ < max{8.8× 1024, 7.7× 1013k41(log k1)
3} := H3.
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We next deal with δ ≥ H3 and obtain k ≥ max{170, k1}. So, n ≤ δ < 2k/2.
Considering n 6= m and taking into account (1.8), we get

1

2
≤ |1− 2−|n−m|| <

|c|+ 5

2k/2
,

which leads to the contradiction k < k1. Now, when n = m, we use (1.3)
and argue as before to deduce that, if k + 2 ≤ n ≤ 2k + 2, then c = −s2s−3
for a positive integer s. In addition, the solutions of (1.4) are given by

(n,m, k) = (k + s, k + s, k) for k ≥ s− 2 and ` ≥ k + s− 1.

For n > 2k + 2 and c = −s2s−3, (1.4) has no solutions. Indeed, in view of
Lemma 3.2 and some calculations, we get

1

2
<

∣∣∣∣1− ( s

n− k

)ε
2−|n−k−s|

∣∣∣∣ < 4n22n−2

max{n− k, s}2max{n−k,s}+2k−1

≤
4n22n−2

(n− k)2n+k−1
<

2

n− k
.

In the above, we have used max{n − k, s} ≥ n − k and n < 2k/2. Thus,
n− k < 4, which is not the case.

Finally, for n > k + 2 and c 6= −s2s−3, we use a similar argument to
that used in (3.11) to get an upper bound on k which contradicts k >
max{170, k1}.

4. On differences between k-Fibonacci numbers: Final remark.

Consider the equation F
(k)
n − F (k)

m = c and suppose that it has two integer
solutions. That is, suppose that n > m and u > v are positive integers such
that

(4.1) F (k)
n − F (k)

m = c = F (k)
u − F (k)

v .

Assume that c > 0, since the case c < 0 can be handled in the same way.
Note that there is no loss of generality in assuming that n > u. Hence,
n ≥ max{u,m}+ 1.

If u 6= m, then min{u,m} ≤ max{u,m} − 1, so that

F (k)
n +F (k)

v = F (k)
u +F (k)

m ≤ F (k)
max{u,m}−1 +F

(k)
max{u,m} < F

(k)
max{u,m}+1 ≤ F

(k)
n ,

which is a contradiction. Hence, u = m and so (4.1) becomes F
(k)
n + F

(k)
v

= 2F
(k)
u . We now use inequalities (1.7) to deduce that n = u + 1 or u + 2.

But n 6= u + 2 because F
(k)
u+2 > 2F

(k)
u . Now, if n = u + 1, then we recall

the identity F
(k)
u+1 = 2F

(k)
u − F (k)

u−k, which holds for all u ≥ 2, to conclude

that F
(k)
v = F

(k)
u−k and that (n,m) = (u + 1, u) are the only other solutions

to (4.1) if and only if u− v = k.
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