ON THE DISTANCE BETWEEN GENERALIZED FIBONACCI NUMBERS

BY
JHON J. BRAVO (Popayán), CARLOS A. GÓMEZ (Cali) and FLORIAN LUCA (Johannesburg)

Abstract

For an integer $k \geq 2$, let $\left(F_{n}^{(k)}\right)_{n}$ be the k-Fibonacci sequence which starts with $0, \ldots, 0,1$ (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

1. Introduction and preliminary results. For $k \geq 2$, we consider the k-generalized Fibonacci sequence or, for simplicity, the k-Fibonacci sequence $F^{(k)}:=\left(F_{n}^{(k)}\right)_{n \geq 2-k}$ given by the recurrence

$$
\begin{equation*}
F_{n}^{(k)}=F_{n-1}^{(k)}+\cdots+F_{n-k}^{(k)} \quad \text { for all } n \geq 2 \tag{1.1}
\end{equation*}
$$

with the initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_{1}^{(k)}=1$. We shall refer to $F_{n}^{(k)}$ as the nth k-Fibonacci number. We note that in fact each choice of k produces a distinct sequence which is a generalization of the usual Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$, obtained for $k=2$.

The first direct observation is that the first $k+1$ nonzero terms in $F^{(k)}$ are powers of two, namely

$$
\begin{equation*}
F_{1}^{(k)}=1 \quad \text { and } \quad F_{n}^{(k)}=2^{n-2} \quad \text { for all } 2 \leq n \leq k+1 \tag{1.2}
\end{equation*}
$$

while the next term is $F_{k+2}^{(k)}=2^{k}-1$. In fact, $F_{n}^{(k)}<2^{n-2}$ for all $n \geq k+2$ (see [1]). In general, Cooper and Howard [4] proved the following nice formula:

Lemma 1.1. For $k \geq 2$ and $n \geq k+2$,

$$
F_{n}^{(k)}=2^{n-2}+\sum_{j=1}^{\lfloor(n+k) /(k+1)\rfloor-1} C_{n, j} 2^{n-(k+1) j-2}
$$

[^0]where
$$
C_{n, j}=(-1)^{j}\left[\binom{n-j k}{j}-\binom{n-j k-2}{j-2}\right]
$$

In the above, we used the convention that $\binom{a}{b}=0$ if either $a<b$ or one of a or b is negative, and denote by $\lfloor x\rfloor$ the greatest integer less than or equal to x. For example, if $k+2 \leq n \leq 2 k+2$, then Cooper and Howard's formula becomes the identity

$$
\begin{equation*}
F_{n}^{(k)}=2^{n-2}-(n-k) \cdot 2^{n-k-3} \quad \text { for all } k+2 \leq n \leq 2 k+2 \tag{1.3}
\end{equation*}
$$

In the present paper, we investigate the differences between generalized Fibonacci numbers, extending and completing the work of D. Marques 8]. Our goal here is to remove some restrictions considered by Marques in his work. To be more precise, we study the Diophantine equation

$$
\begin{equation*}
F_{n}^{(k)}-F_{m}^{(\ell)}=c \tag{1.4}
\end{equation*}
$$

in integers m, n, ℓ, k and c with $\ell \geq k \geq 2$ and $n, m \geq 2$.
Marques [8] obtained the following partial result concerning the solutions of (1.4).

Theorem 1.2. If (m, n, ℓ, k) is a solution of (1.4) with $\ell \geq k \geq 2$, $n>k+2, m>\ell+2$ and $m \neq n$, then $\max \{m, n, \ell, k\}<M$ for some effectively computable constant M which can be taken as

$$
M=\max \left\{c_{1}, 1.9 \times 10^{146} c_{2}^{24} \log ^{27} c_{2}, 8 \times 10^{246}\right\}
$$

where $c_{1}:=5 \log (|c|+1)+2$ and $c_{2}:=4 \log (|c|+5) / \log 2$.
For $m=n$, Marques showed the following result.
THEOREM 1.3. If $c=r 2^{r-3}-s 2^{s-3}$ where r and s are integers such that $0 \leq r<s$, then for all $k \geq 2$,

$$
(n, m, \ell)=(k+s, k+s, k+s-r)
$$

is a solution of (1.4) with $k \geq s-1$. Conversely, if (1.4 has a solution with $m=n \leq 2 k+1$, then $c=r 2^{r-3}-s 2^{s-3}$ for some integers $r<s$.

We note that the case $n=k+2$ and $m=\ell+2$ can be included in Theorem 1.2 , whereas Theorem 1.3 only considers the case when $\max \{m, n, \ell\} \leq$ $2 k+1$. Our main aim here is to complete the analysis of the case $n=m$ in Theorem 1.2. Furthermore, we treat the other cases involving n, k and m, ℓ. Our principal results are given in Section 3, in particular in Theorems 3.1 and 3.4 .

To prove our main results we use lower bounds for linear forms in logarithms (Baker's theory) and a method developed by Bravo and Luca in [1, 2], based on the fact that when k is large then the dominant root of the characteristic polynomial of $F^{(k)}$ is exponentially close to 2 . In addition, the
formula of Cooper and Howard 4 is needed for some important estimates. We follow the approach and the presentation in [8].

Before proceeding further it may be mentioned that the characteristic polynomial of $F^{(k)}$, namely

$$
\Psi_{k}(x)=x^{k}-x^{k-1}-\cdots-x-1,
$$

is irreducible in $\mathbb{Q}[x]$ and has just one zero real outside the unit circle. Throughout this paper, $\alpha:=\alpha(k)$ denotes that single zero. The other roots are strictly inside the unit circle, so $\alpha(k)$ is a Pisot number of degree k. Moreover, it is also known that $\alpha(k)$ is between $2\left(1-2^{-k}\right)$ and 2 (see [6, Lemma 2.3] or [11, Lemma 3.6]). To simplify notation, we shall omit the dependence of α on k.

We now consider the function $f_{k}(x)=(x-1) /(2+(k+1)(x-2))$ for an integer $k \geq 2$ and $x>2\left(1-2^{-k}\right)$. It is easy to see that the inequalities

$$
\begin{equation*}
1 / 2<f_{k}(\alpha)<3 / 4 \quad \text { and } \quad\left|f_{k}\left(\alpha^{(i)}\right)\right|<1, \quad 2 \leq i \leq k, \tag{1.5}
\end{equation*}
$$

hold, where $\alpha:=\alpha^{(1)}, \ldots, \alpha^{(k)}$ are all the zeros of $\Psi_{k}(x)$. So, by computing norms from $\mathbb{Q}(\alpha)$ to \mathbb{Q}, for example, we see that the number $f_{k}(\alpha)$ is not an algebraic integer.

With the above notation, Dresden and Du [5] showed that

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} f_{k}\left(\alpha^{(i)}\right) \alpha^{(i)^{n-1}} \quad \text { and } \quad\left|F_{n}^{(k)}-f_{k}(\alpha) \alpha^{n-1}\right|<1 / 2 \tag{1.6}
\end{equation*}
$$

for all $n \geq 1$ and $k \geq 2$.
In addition, Bravo and Luca [2] proved that

$$
\begin{equation*}
\alpha^{n-2} \leq F_{n}^{(k)} \leq \alpha^{n-1} \quad \text { for all } n \geq 1 \text { and } k \geq 2 . \tag{1.7}
\end{equation*}
$$

The observations in (1.6) and (1.7) lead us to call α the dominant zero of $F^{(k)}$.

It was also proved in [2] that if we write

$$
\alpha^{r-1}=2^{r-1}+\delta \quad \text { and } \quad f_{k}(\alpha)=f_{k}(2)+\eta, \quad \text { where } 1 \leq r<2^{k / 2}
$$

then $|\delta|<2^{r} / 2^{k / 2},|\eta|<2 k / 2^{k}$ and

$$
\left|f_{k}(\alpha) \alpha^{r-1}-2^{r-2}\right|<\frac{2^{r-1}}{2^{k / 2}}+\frac{2^{r} k}{2^{k}}+\frac{2^{r+1} k}{2^{3 k / 2}} .
$$

Furthermore, if $k \geq 10$, then $2 k / 2^{k}+4 k / 2^{3 k / 2}<1 / 2^{k / 2}$, thus

$$
\begin{equation*}
\left|f_{k}(\alpha) \alpha^{r-1}-2^{r-2}\right|<\frac{2^{r}}{2^{k / 2}} \tag{1.8}
\end{equation*}
$$

To conclude this section, we briefly present the concept of Sidon sets which will be used later. The history of Sidon sets began in 1932, when Sidon [10, motivated by considerations of Fourier analysis, asked how large
a set \mathcal{A} of integers from $\{1, \ldots, N\}$ can be if it has the property that all sums $a+b$ with $a, b \in \mathcal{A}, a \leq b$, are distinct. Sets of integers with this property are now called Sidon sets, B_{2} sets, or $B_{2}[1]$ sets. Since an equivalent condition is that the differences are all distinct, we see that \mathcal{A} is a Sidon set if all the nonzero differences $a-a^{\prime}\left(a, a^{\prime} \in \mathcal{A}\right)$ are distinct.

Similarly, a sequence of positive integers is called a Sidon sequence if the pairwise sums of its members are all different. We also say that the elements form a difference-set. As an example, it is a straightforward exercise to check that all powers of two form an infinite Sidon sequence.
2. Linear forms in logarithms. In order to prove our main results, we need to use a Baker type lower bound for a nonzero linear form in logarithms of algebraic numbers. Such a bound was given by Matveev [9]. We begin by recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

$$
a_{0} x^{d}+a_{1} x^{d-1}+\cdots+a_{d}=a_{0} \prod_{i=1}^{d}\left(x-\eta^{(i)}\right)
$$

where the leading coefficient a_{0} is positive and the $\eta^{(i)}$'s are the conjugates of η. Then

$$
h(\eta)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left\{\left|\eta^{(i)}\right|, 1\right\}\right)
$$

is called the logarithmic height of η. In particular, if $\eta=p / q$ is a rational number with $\operatorname{gcd}(p, q)=1$ and $q>0$, then $h(\eta)=\log \max \{|p|, q\}$.

We let $\mathbb{K}=\mathbb{Q}(\alpha)$. Knowing that $\mathbb{Q}(\alpha)=\mathbb{Q}\left(f_{k}(\alpha)\right)$ and $\left|f_{k}\left(\alpha^{(i)}\right)\right| \leq 1$ for all $i=1, \ldots, k$ and $k \geq 2$, we obtain $h(\alpha)=(\log \alpha) / k$ and $h\left(f_{k}(\alpha)\right)=$ $\left(\log a_{0}\right) / k$, where a_{0} is the leading coefficient of the minimal primitive polynomial of $f_{k}(\alpha)$ over the integers. Define
$g_{k}(x)=\prod_{i=1}^{k}\left(x-f_{k}\left(\alpha^{(i)}\right)\right) \in \mathbb{Q}[x] \quad$ and $\quad \mathcal{N}=\mathrm{N}_{\mathbb{K} / \mathbb{Q}}(2+(k+1)(\alpha-2)) \in \mathbb{Z}$.
We conclude that $\mathcal{N} g_{k}(x) \in \mathbb{Z}[x]$ vanishes at $f_{k}(\alpha)$. Thus, a_{0} divides $|\mathcal{N}|$. But, for $k \geq 2$,

$$
\begin{aligned}
|\mathcal{N}| & =\left|\prod_{i=1}^{k}\left(2+(k+1)\left(\alpha^{(i)}-2\right)\right)\right|=(k+1)^{k}\left|\prod_{i=1}^{k}\left(2-\frac{2}{k+1}-\alpha^{(i)}\right)\right| \\
& =(k+1)^{k}\left|\Psi_{k}\left(2-\frac{2}{k+1}\right)\right|=\frac{2^{k+1} k^{k}-(k+1)^{k+1}}{k-1}<2^{k} k^{k} .
\end{aligned}
$$

Hence, we will use the inequalities

$$
\begin{equation*}
h(\alpha)<0.7 / k \quad \text { and } \quad h\left(f_{k}(\alpha)\right)<2 \log k \quad \text { for all } k \geq 2 . \tag{2.1}
\end{equation*}
$$

Matveev [9] proved the following deep theorem.
Theorem 2.1 (Matveev's theorem). Let \mathbb{K} be a number field of degree D over $\mathbb{Q}, \gamma_{1}, \ldots, \gamma_{t}$ be positive real numbers of \mathbb{K}, and b_{1}, \ldots, b_{t} be rational integers. Set

$$
\Lambda:=\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}}-1 \quad \text { and } \quad B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\} .
$$

Let $A_{i} \geq \max \left\{D h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}$ be real numbers for $i=1, \ldots, t$. Then, assuming that $\Lambda \neq 0$, we have

$$
|\Lambda|>\exp \left(-1.4 \times 30^{t+3} \times t^{4.5} \times D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t}\right) .
$$

3. Main results. First of all, we point out that the case $c=0$ was studied by Bravo-Luca in [3] and independently by Marques [7]. From now on, we assume that (n, m, ℓ, k) is a solution of (1.4) with $\ell \geq k \geq 2, n, m, \geq 2$ and $c \neq 0$. We begin by considering the case when $n \leq k+1$ and $m \leq \ell+1$, where by 1.2), $F_{n}^{(k)}$ and $F_{m}^{(\ell)}$ are powers of two. Then it follows from 1.4) that

$$
1 / 2 \leq\left|1-2^{-|n-m|}\right|=4|c| / 2^{\max \{n, m\}} .
$$

Hence, $\max \{n, m\}<3+2 \log |c|$. Even more, for fixed ℓ and k, the equation $2^{n-2}-2^{m-2}=c$ has a unique solution since the powers of two form an infinite Sidon sequence, as mentioned in Section 1 .
3.1. The case $n \geq k+2$ and $m \geq \ell+2$. Here, we set $\beta=\alpha(\ell)$ and use equation (1.4) and the results of Dresden-Du (1.6), to get

$$
\begin{equation*}
\left|f_{k}(\alpha) \alpha^{n-1}-f_{\ell}(\beta) \beta^{m-1}\right| \leq|c|+1 . \tag{3.1}
\end{equation*}
$$

The left-hand side above is nonzero (see [3, p. 2125]). Dividing the above expression by the term involving $\delta:=\max \{n, m\}$, we get

$$
\begin{equation*}
\left|\left(\frac{f_{k}(\alpha)}{f_{\ell}(\beta)}\right)^{\varepsilon} \alpha^{\varepsilon(n-1)} \beta^{-\varepsilon(m-1)}-1\right| \leq \frac{2(|c|+1)}{\phi^{\delta-1}}, \tag{3.2}
\end{equation*}
$$

with some $\varepsilon \in\{ \pm 1\}$ and $\phi:=\alpha(2)=(\sqrt{5}+1) / 2$. In fact, $\varepsilon=1$ if $\delta=n$ and $\varepsilon=-1$ if $\delta=m$. In the right-hand side of (3.2) we shall use a linear form in $t:=3$ logarithms:

$$
\gamma_{1}:=f_{k}(\alpha) / f_{\ell}(\beta), \quad \gamma_{2}:=\alpha, \quad \gamma_{3}:=\beta
$$

We take $b_{1}:=\varepsilon, b_{2}:=\varepsilon(n-1)$ and $b_{3}:=-\varepsilon(m-1)$. The field $\mathbb{Q}(\alpha, \beta)$ containing all these numbers has degree $D \leq k \ell$. Further, in the notation of Theorem 2.1, we can take the following parameters: $A_{1}:=4 \ell^{2} \log \ell, A_{2}=$ $A_{3}:=0.7 \ell$ and $B=\delta-1$. Applying Theorem 2.1. we find that $\left|\gamma_{1}^{b_{1}} \gamma_{2}^{b_{2}} \gamma_{3}^{b_{3}}-1\right|$
exceeds
$\exp \left(-1.4 \times 30^{6} \times 3^{4.5} \times \ell^{4}(1+2 \log \ell)(1+\log (\delta-1)) \times\left(4 \ell^{2} \log \ell\right)(0.7 \ell)^{2}\right)$.
The absolute value of the number under the exponential is

$$
<2.25 \times 10^{12} \ell^{8}(\log \ell)^{2} \log (\delta-1)
$$

where we have used the fact that $1+2 \log \ell \leq 4 \log \ell$ and $1+\log (\delta-1)$ $<2 \log (\delta-1)$ for $\ell \geq 2$ and $\delta-1 \geq 3$. Comparing this with (3.2), we get

$$
\begin{equation*}
\frac{\delta-1}{\log (\delta-1)}<\frac{2.25}{\log \phi} \times 10^{12} \ell^{8}(\log \ell)^{2}+\frac{\log (2(|c|+1))}{\log (\delta-1) \log \phi} \tag{3.3}
\end{equation*}
$$

However, if $\delta>\ell_{0}:=(|c|+5)^{3}>1+(2(|c|+1))^{1 / \log \phi}$, then

$$
\frac{\log (2(|c|+1))}{\log (\delta-1) \log \phi}<1
$$

Thus,

$$
\frac{\delta-1}{\log (\delta-1)}<4.7 \times 10^{12} \ell^{8}(\log \ell)^{2}
$$

From this, and using the fact that the inequality $x / \log x<A$ implies $x<2 A \log A$ whenever $A \geq 3$ (see [1, p. 74]), we have

$$
\begin{equation*}
\delta<4.8 \times 10^{14} \ell^{8}(\log \ell)^{3} \tag{3.4}
\end{equation*}
$$

We now need to upper bound ℓ polynomially in terms of k.
Case 1: $\ell<\max \left\{240, \ell_{0}\right\}$. Then

$$
\delta \leq M:=\max \{m, n, \ell, k\}<\max \left\{8.7 \times 10^{35}, 4.8 \times 10^{14} \ell_{0}^{8}\left(\log \ell_{0}\right)^{3}\right\}:=H_{0}
$$

From now on, we work under the assumption $\delta \geq H_{0}$, and so we must be in the following case:

CASE $2: ~ \ell \geq \max \left\{240, \ell_{0}\right\}$. Then $m \leq \delta<4.8 \times 10^{14} \ell^{8}(\log \ell)^{3}<2^{\ell / 2}$. Using Bravo-Luca's argument (1.8) and (3.1), we conclude that

$$
\begin{equation*}
\left|f_{k}(\alpha) \alpha^{n-1} 2^{-(m-2)}-1\right|<\frac{|c|+5}{2^{\ell / 2}} \tag{3.5}
\end{equation*}
$$

Since $f_{k}(\alpha)$ is not an algebraic integer, $\Lambda:=f_{k}(\alpha) \alpha^{n-1} 2^{-(m-2)}-1$ is nonzero. We apply again Matveev's Theorem 2.1 to bound the left-hand side of (3.5) from below. Here, we take $t:=3, \gamma_{1}:=f_{k}(\alpha), \gamma_{2}:=\alpha, \gamma_{3}:=2$; hence $\mathbb{K}:=\mathbb{Q}(\alpha)$ and so $D:=k$. Also, we take $b_{1}:=1, b_{2}:=n-1$ and $b_{3}:=-(m-2)$.

Here one can take $A_{1}:=2 k \log k, A_{2}=A_{3}:=0.7$ and $B=\delta$. Applying Theorem 2.1, we deduce from (3.5 that

$$
\exp \left(-8.5 \times 10^{11} k^{3}(\log k)^{2} \log \delta\right)<|\Lambda|<\frac{|c|+5}{2^{\ell / 2}}
$$

By inequality (3.4), we conclude that $\log \delta<56 \log \ell$. Thus,

$$
\frac{\ell}{\log \ell}<\frac{2}{\log 2}\left(4.77 \times 10^{13} k^{3}(\log k)^{2}\right)+\frac{2 \log (|c|+5)}{\log 2 \log \ell}
$$

Keeping in mind $\ell \geq \ell_{0}>(|c|+5)^{2 / \log 2}$, we deduce that

$$
2 \log (|c|+5) /(\log 2 \log \ell)<1
$$

So, from the above we find that

$$
\begin{equation*}
\ell<1.4 \times 10^{16} k^{3}(\log k)^{3} \tag{3.6}
\end{equation*}
$$

In addition, combining inequalities (3.4) and (3.6), we finally arrive at

$$
\begin{equation*}
\delta<1.3 \times 10^{149} k^{24}(\log k)^{27} \tag{3.7}
\end{equation*}
$$

CASE 3: $k<\max \left\{1670, k_{0}\right\}$ with $k_{0}:=3 \log (2|c|+18)$. Then

$$
\delta \leq M<\max \left\{9.2 \times 10^{249}, 1.3 \times 10^{149} k_{0}^{24}\left(\log k_{0}\right)^{27}\right\}:=H_{1}
$$

We now assume that $\delta>H_{1}$, and therefore we are in the following case:
CASE 4: $k \geq \max \left\{1670, k_{0}\right\}$. Here,

$$
\delta<1.3 \times 10^{149} k^{24}(\log k)^{27}<2^{0.499 k}<2^{k / 2} \leq 2^{\ell / 2}
$$

Using the Bravo-Luca argument (1.8) once more, we infer that

$$
\left|2^{n-2}-2^{m-2}\right| \leq \frac{2^{n}}{2^{k / 2}}+\frac{2^{m}}{2^{\ell / 2}}+|c|+1
$$

Dividing both sides of the above inequality by 2^{δ}, we obtain

$$
\left|1-2^{-|n-m|}\right| \leq \frac{|c|+9}{2^{k / 2}}
$$

CASE 5: $n \neq m$. In this case, the absolute value of the left-hand side of the above expression is $\geq 1 / 2$, so

$$
k<2 \log (2|c|+18) / \log 2<k_{0}
$$

which is impossible.
We record what we have just proved.
Theorem 3.1. Let $c \neq 0$ be an integer. If (m, n, ℓ, k) is a solution of the Diophantine equation $F_{n}^{(k)}-F_{m}^{(\ell)}=c$ with $n \geq k+2, m \geq \ell+2, \ell \geq k$ and $n \neq m$, then

$$
M:=\max \{m, n, \ell, k\}<H_{1}:=\max \left\{9.2 \times 10^{249}, 1.3 \times 10^{149} k_{0}^{24}\left(\log k_{0}\right)^{27}\right\}
$$

To deal with the case $n=m$, we will use the following results:
Lemma 3.2. If $r<2^{k}$, then

$$
F_{r}^{(k)}=2^{r-2}\left(1+\frac{k-r}{2^{k+1}}+\zeta(k, r)\right)
$$

where $\zeta=\zeta(k, r)$ is a real number such that $|\zeta|<4 r^{2} / 2^{2 k+2}$.

Proof. From Cooper and Howard's formula of Lemma 1.1, we get

$$
\begin{aligned}
|\zeta| & \leq \sum_{j=2}^{\lfloor(r+k) /(k+1)\rfloor-1} \frac{\left|C_{r, j}\right|}{2^{(k+1) j}}<\sum_{j \geq 2} \frac{2 r^{j}}{2^{(k+1) j}(j-2)!} \\
& <\frac{2 r^{2}}{2^{2 k+2}} \sum_{j \geq 2} \frac{\left(r / 2^{k+1}\right)^{j-2}}{(j-2)!}<\frac{2 r^{2}}{2^{2 k+2}} e^{r / 2^{k+1}} .
\end{aligned}
$$

Further, since $r<2^{k}$ we have $e^{r / 2^{k+1}}<e^{1 / 2}<2$. Thus, $|\zeta|<4 r^{2} / 2^{2 k+2}$.
Lemma 3.3. The sequence $T=\left(t 2^{t}\right)_{t \geq 1}$ is an infinite Sidon sequence.
Proof. We can assume that

$$
\begin{equation*}
x 2^{x}-y 2^{y}=a 2^{a}-b 2^{b} \tag{3.8}
\end{equation*}
$$

for some positive integers x, y, a, b with $x>y, a>b$ and $x>a$. Then $b<a<x$. Note that, if $y<a$, then it is easy to see that $x-y \geq 2$ and $x-a \geq 1$. We now observe that expression (3.8) can be written as $x 2^{x}-a 2^{a}=y 2^{y}-b 2^{b}$. Dividing the above equality by $x 2^{x}$ and taking absolute value, we obtain

$$
\begin{equation*}
\left|1-\frac{a / x}{2^{x-a}}\right|<\frac{y / x}{2^{x-y}}+\frac{b / x}{2^{x-b}}<\frac{2}{2^{x-y}} . \tag{3.9}
\end{equation*}
$$

But this is a contradiction because the left-hand side is $>1 / 2$ while the righthand side is $\leq 1 / 2$. If, on the contrary, $a<y$, then $x-y \geq 1$ and $x-a \geq 2$. Here, a similar argument applied to the expression $x 2^{x}-y 2^{y}=a 2^{a}-b 2^{b}$ also gives an absurdity. Thus, it remains to deal with the case when $y=a$. Here the equality

$$
x 2^{x}+b 2^{b}=a 2^{a}+y 2^{y}=a 2^{a+1}
$$

obtained from (3.8) is impossible for $x \geq a+1$.
Case 6: $n=m$. Since $\ell>k$, we have $c<0$. Here, we distinguish the cases $k+2 \leq n \leq 2 k+2$ and $n>2 k+2$.

Turning back to our problem, we recall that Marques proved (Theorem (1.3) that if (1.4) has a solution with $k+2 \leq m=n \leq 2 k+2$, then $c=r 2^{r-3}-s 2^{s-3}$ for some positive integers $r<s$. Even more, $m \leq 2 \ell+2$ because $k \leq \ell$. So, from Lemma 1.1 (see also (1.3)), we get

$$
F_{n}^{(k)}=2^{n-2}-(n-k) 2^{n-k-3} \quad \text { and } \quad F_{m}^{(\ell)}=2^{n-2}-(n-\ell) 2^{n-\ell-3} .
$$

Hence, the Diophantine equation (1.4) becomes

$$
(n-\ell) 2^{n-\ell-3}-(n-k) 2^{n-k-3}=r 2^{r-3}-s 2^{s-3},
$$

and, in view of Lemma 3.3, we obtain $n-\ell=r$ and $n-k=s$. Thus, in this case ($k+2 \leq n \leq 2 k+2$), equation (1.4) has no solutions when
$c \neq r 2^{r-3}-s 2^{s-3}$, while all the solutions are given by

$$
(n, m, \ell, k)=(k+s, k+s, k+s-r, k) \quad \text { for } k \geq s-2
$$

when $c=r 2^{r-3}-s 2^{s-3}$.
Suppose now that $n>2 k+2$. We first consider $\ell=k+1$ without any restriction on $c<0$. By Lemma 3.3, we can write

$$
F_{n}^{(k)}=2^{n-2}\left(1+\frac{k-n}{2^{k+1}}+\zeta_{1}\right), \quad F_{n}^{(k+1)}=2^{n-2}\left(1+\frac{k+1-n}{2^{k+2}}+\zeta_{2}\right)
$$

with $\zeta_{1} \neq 0,\left|\zeta_{1}\right|<4 n^{2} / 2^{2 k+2}$ and $\left|\zeta_{2}\right|<n^{2} / 2^{2 k+2}$. Substituting these values in (1.4) and rearranging some terms, we get

$$
2^{n-k-4}(n-k+1)-|c|=2^{n-2}\left(\zeta_{2}-\zeta_{1}\right)
$$

Dividing by $2^{n-k-4}(n-k+1)>0$ (because $n>2 k+2$), and taking into account $n<2^{k / 2}$ and $n-k+1 \geq k+4$, we obtain, after some elementary algebra,

$$
\begin{equation*}
\left|1-\frac{|c|}{2^{n-k-4}(n-k+1)}\right|<\frac{8}{k+4} \tag{3.10}
\end{equation*}
$$

On the other hand, by using the facts that $n-k+1 \geq k+4>3 \log (2|c|+18)$ and $2^{n-k}>(2|c|+18)^{3 \log 2}$, which hold because

$$
n-k>k+2>3 \log (2|c|+18)
$$

we get

$$
\begin{aligned}
\frac{|c|}{2^{n-k-4}(n-k+1)} & <\left(\frac{|c|}{2|c|+18}\right)\left(\frac{16}{3(2|c|+18)^{3 \log 2-1} \log (2|c|+18)}\right) \\
& <\frac{16}{3 \cdot 20^{3 \log 2-1} \log 20}<0.0701633
\end{aligned}
$$

With this data and 3.10 , we arrive at $0.929837<8 /(k+4)$, which is impossible because $k>1670$.

We now deal with the case when $n>2 k+2$ and $\ell \geq k+2$. By using Lemma 3.3 once again, we write

$$
F_{n}^{(k)}=2^{n-2}\left(1+\frac{k-n}{2^{k+1}}+\zeta_{1}\right) \quad \text { and } \quad F_{m}^{(\ell)}=2^{n-2}\left(1+\frac{\ell-n}{2^{\ell+1}}+\zeta_{2}\right)
$$

with $\zeta_{1} \neq 0$ and $\left|\zeta_{i}\right|<4 n^{2} / 2^{2 k+2}$ for $i=1,2$. So, 1.4 can be rewritten as

$$
\left((n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3}\right)-|c|=2^{n-2}\left(\zeta_{1}-\zeta_{2}\right)
$$

Dividing through by $(n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3}>0$ (because $\ell>k$), and taking absolute values, we get

$$
\begin{equation*}
\left|1-\frac{|c|}{(n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3}}\right|<\frac{4}{3 \times 2^{0.002 k}}, \tag{3.11}
\end{equation*}
$$

where we have used

$$
\begin{align*}
(n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3} & =(n-k) 2^{n-k-3}\left(1-\frac{n-\ell}{n-k} 2^{k-\ell}\right) \tag{3.12}\\
& >(3 / 4)(n-k) 2^{n-k-3}
\end{align*}
$$

as well as the facts that $n^{2}<2^{0.998 k}$ and $n-k \geq 4$. On the other hand, the absolute value of the left-hand side of (3.11) is nonzero. In addition, we saw that $2^{n-k}>(2|c|+18)^{3 \log 2}$ since $n-k>k+2>3 \log (2|c|+18)$. From the above, we can lower bound the absolute value in (3.11). Indeed,

$$
\begin{aligned}
& \frac{|c|}{(n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3}}<\frac{2^{5}|c|}{3(n-k) 2^{n-k}} \\
& <\frac{2^{5}}{18 \log (2|c|+18)(2|c|+18)^{3 \log 2-1}} \leq \frac{2^{5}}{18 \log (20) 20^{3 \log 2-1}}
\end{aligned}
$$

Thus,

$$
\left|1-\frac{|c|}{(n-k) 2^{n-k-3}-(n-\ell) 2^{n-\ell-3}}\right|>0.97
$$

which, combined with (3.11), gives $2^{0.002 k}<4 /(3 \times 0.97)$. So, $k<500$, which is a contradiction.

We record what we have just proved.
THEOREM 3.4. Let $c<0$ be an integer and consider the Diophantine equation $F_{n}^{(k)}-F_{m}^{(\ell)}=c$ with $n \geq k+2, m \geq \ell+2, \quad \ell \geq k+1>$ $\max \{1670,3 \log (2|c|+18)\}$ and $n=m$. If $k+2 \leq n \leq 2 k+2$, then there are infinitely many solutions of the above equation given by

$$
(m, n, \ell, k)=(k+s, k+s, k+s-r, k) \quad \text { for } k \geq s-2
$$

If, on the contrary, $n>2 k+2$, then the equation has no solutions.
3.2. The cases when either $n \leq k+1$ and $m \geq \ell+2$, or $n \geq k+2$ and $m \leq \ell+1$. We note that if $n \leq k+1$ and $m \geq \ell+2$, then $n<m$. Here, by using similar arguments to those in Subsection 3.1, we obtain an upper bound for $m=\max \{m, n, \ell, k\}$, namely

$$
m \leq \max \left\{8.8 \times 10^{24}, 5.4 \times 10^{15} \log ^{4}(2|c|+4)(\log \log (2|c|+4)+2)^{3}\right\}
$$

On the other hand, for $n \geq k+2$ and $m \leq \ell+1$, we distinguish the cases $n \neq m$ and $n=m$ with $c=s 2^{s-3}$ and $c \neq s 2^{s-3}$, respectively, where $s \geq 2$ is an integer. Indeed, after using linear forms in logarithms, we conclude that

$$
\delta \leq 7.7 \times 10^{13} k^{4}(\log k)^{3}
$$

If $k<\max \left\{170, k_{1}\right\}$ with $k_{1}:=3 \log (2|c|+10)$, then

$$
\delta<\max \left\{8.8 \times 10^{24}, 7.7 \times 10^{13} k_{1}^{4}\left(\log k_{1}\right)^{3}\right\}:=H_{3}
$$

We next deal with $\delta \geq H_{3}$ and obtain $k \geq \max \left\{170, k_{1}\right\}$. So, $n \leq \delta<2^{k / 2}$. Considering $n \neq m$ and taking into account 1.8 , we get

$$
\frac{1}{2} \leq\left|1-2^{-|n-m|}\right|<\frac{|c|+5}{2^{k / 2}}
$$

which leads to the contradiction $k<k_{1}$. Now, when $n=m$, we use (1.3) and argue as before to deduce that, if $k+2 \leq n \leq 2 k+2$, then $c=-s 2^{s-3}$ for a positive integer s. In addition, the solutions of (1.4) are given by

$$
(n, m, k)=(k+s, k+s, k) \quad \text { for } k \geq s-2 \text { and } \ell \geq k+s-1
$$

For $n>2 k+2$ and $c=-s 2^{s-3}$, (1.4) has no solutions. Indeed, in view of Lemma 3.2 and some calculations, we get

$$
\begin{aligned}
\frac{1}{2} & <\left|1-\left(\frac{s}{n-k}\right)^{\epsilon} 2^{-|n-k-s|}\right|<\frac{4 n^{2} 2^{n-2}}{\max \{n-k, s\} 2^{\max \{n-k, s\}+2 k-1}} \\
& \leq \frac{4 n^{2} 2^{n-2}}{(n-k) 2^{n+k-1}}<\frac{2}{n-k}
\end{aligned}
$$

In the above, we have used $\max \{n-k, s\} \geq n-k$ and $n<2^{k / 2}$. Thus, $n-k<4$, which is not the case.

Finally, for $n>k+2$ and $c \neq-s 2^{s-3}$, we use a similar argument to that used in (3.11) to get an upper bound on k which contradicts $k>$ $\max \left\{170, k_{1}\right\}$ 。
4. On differences between k-Fibonacci numbers: Final remark. Consider the equation $F_{n}^{(k)}-F_{m}^{(k)}=c$ and suppose that it has two integer solutions. That is, suppose that $n>m$ and $u>v$ are positive integers such that

$$
\begin{equation*}
F_{n}^{(k)}-F_{m}^{(k)}=c=F_{u}^{(k)}-F_{v}^{(k)} \tag{4.1}
\end{equation*}
$$

Assume that $c>0$, since the case $c<0$ can be handled in the same way. Note that there is no loss of generality in assuming that $n>u$. Hence, $n \geq \max \{u, m\}+1$.

If $u \neq m$, then $\min \{u, m\} \leq \max \{u, m\}-1$, so that
$F_{n}^{(k)}+F_{v}^{(k)}=F_{u}^{(k)}+F_{m}^{(k)} \leq F_{\max \{u, m\}-1}^{(k)}+F_{\max \{u, m\}}^{(k)}<F_{\max \{u, m\}+1}^{(k)} \leq F_{n}^{(k)}$, which is a contradiction. Hence, $u=m$ and so (4.1) becomes $F_{n}^{(k)}+F_{v}^{(k)}$ $=2 F_{u}^{(k)}$. We now use inequalities (1.7) to deduce that $n=u+1$ or $u+2$. But $n \neq u+2$ because $F_{u+2}^{(k)}>2 F_{u}^{(k)}$. Now, if $n=u+1$, then we recall the identity $F_{u+1}^{(k)}=2 F_{u}^{(k)}-F_{u-k}^{(k)}$, which holds for all $u \geq 2$, to conclude that $F_{v}^{(k)}=F_{u-k}^{(k)}$ and that $(n, m)=(u+1, u)$ are the only other solutions to (4.1) if and only if $u-v=k$.

Acknowledgments. J.J.B. was supported in part by Projects VRI ID 3744 (Universidad del Cauca) and Colciencias (Colombia) 110356935047. C.A.G. was also supported in part by Project Colciencias 110356935047; he thanks the Universidad del Valle for support during his Ph.D. studies.

REFERENCES

[1] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), 67-79.
[2] J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623-639.
[3] J. J. Bravo and F. Luca, Coincidences in generalized Fibonacci sequences, J. Number Theory 133 (2013), 2121-2137.
[4] F. T. Howard and C. Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), 231-243.
[5] G. P. B. Dresden and Z. H. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Sequences 17 (2014), Article 14.4.7.
[6] L. K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer, Berlin, and Kexue Chubanshe (Science Press), Beijing, 1981.
[7] D. Marques, The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences, Bull. Braz. Math. Soc. (N.S.) 44 (2013), 455-468.
[8] D. Marques, On the spacing between terms of generalized Fibonacci sequences, Colloq. Math. 134 (2014), 267-280.
[9] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180 (in Russian); English transl.: Izv. Math. 64 (2000), 1217-1269.
[10] S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen, Math. Ann. 106 (1932), 536-539.
[11] D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), 129-145.

Jhon J. Bravo
Departamento de Matemáticas
Universidad del Cauca
Calle 5 No. 4-70
Popayán, Colombia
E-mail: jbravo@unicauca.edu.co
Carlos A. Gómez
Departamento de Matemáticas
Universidad del Valle
Calle 13 No. 100-00
Cali, Colombia
E-mail: carlos.a.gomez@correounivalle.edu.co

[^0]: 2010 Mathematics Subject Classification: Primary 11B39; Secondary 11J86.
 Key words and phrases: generalized Fibonacci numbers, linear forms in logarithms, Sidon sets.

