OPERATOR MATRIX OF MOORE-PENROSE INVERSE opERATORS ON HILBERT $C^{*}-M O D U L E S$

By
MEHDI MOHAMMADZADEH KARIZAKI (Mashhad), MAHMOUD HASSANI (Mashhad), MARYAM AMYARI (Mashhad) and MARYAM KHOSRAVI (Kerman and Mashhad)

Abstract

We show that the Moore-Penrose inverse of an operator T is idempotent if and only if it is a product of two projections. Furthermore, if P and Q are two projections, we find a relation between the entries of the associated operator matrix of $P Q$ and the entries of associated operator matrix of the Moore-Penrose inverse of $P Q$ in a certain orthogonal decomposition of Hilbert C^{*}-modules.

1. Introduction and preliminaries. Hilbert C^{*}-modules are objects like Hilbert spaces, except that the inner product takes its values in a C^{*}-algebra, instead of being complex-valued. Throughout the paper \mathcal{A} is a C^{*}-algebra (not necessarily unital). A (right) pre-Hilbert module over \mathcal{A} is a complex linear space \mathcal{X} which is an algebraic right \mathcal{A}-module such that $\lambda(x a)=(\lambda x) a=x(\lambda a)$ for all $x \in \mathcal{X}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, equipped with an \mathcal{A}-valued inner product $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{A}$ satisfying
(i) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ iff $x=0$,
(ii) $\langle x, y+\lambda z\rangle=\langle x, y\rangle+\lambda\langle x, z\rangle$,
(iii) $\langle x, y a\rangle=\langle x, y\rangle a$,
(iv) $\langle y, x\rangle=\langle x, y\rangle^{*}$,
for all $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}$ and $a \in \mathcal{A}$. A pre-Hilbert \mathcal{A}-module \mathcal{X} is called a Hilbert \mathcal{A}-module if it is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$. Left Hilbert \mathcal{A}-modules are defined in a similar way. For example, every C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module with respect to the inner product $\langle x, y\rangle=x^{*} y$, and every inner product space is a left Hilbert \mathbb{C}-module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules. Then $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the set of all maps $T: \mathcal{X} \rightarrow \mathcal{Y}$ for which there is a map $T^{*}: \mathcal{Y} \rightarrow \mathcal{X}$, called the adjoint of T, such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is a bounded linear operator, which

[^0]is also \mathcal{A}-linear in the sense that $T(x a)=(T x) a$ for $x \in \mathcal{X}$ and $a \in \mathcal{A}$ LA, p. 8]. We write $\mathcal{L}(\mathcal{X})$ in place of $\mathcal{L}(\mathcal{X}, \mathcal{X})$, and $\operatorname{ker}(\cdot)$ and $\operatorname{ran}(\cdot)$ for the kernel and range of operators, respectively. The identity operator on \mathcal{X} is denoted by $1 \mathcal{X}$ or 1 if there is no ambiguity.

Suppose that \mathcal{X} is a Hilbert \mathcal{A}-module and \mathcal{Y} is a closed submodule of \mathcal{X}. We say that \mathcal{Y} is orthogonally complemented if $\mathcal{X}=\mathcal{Y} \oplus \mathcal{Y}^{\perp}$, where $\mathcal{Y}^{\perp}:=\{y \in \mathcal{X}:\langle x, y\rangle=0$ for all $x \in \mathcal{Y}\}$ denotes the orthogonal complement of \mathcal{Y} in \mathcal{X}. The reader is referred to [F2, F1, LA, MT] and the references cited therein for more details.

Throughout this paper, \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules. Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented; however, Lance proved the following:

Theorem A (【LA, Theorem 3.2]). Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- $\operatorname{ker}(T)$ is orthogonally complemented in \mathcal{X}, with complement $\operatorname{ran}\left(T^{*}\right)$.
- $\operatorname{ran}(T)$ is orthogonally complemented in \mathcal{Y}, with complement $\operatorname{ker}\left(T^{*}\right)$.
- $T^{*} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Definition 1.1. Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. The Moore-Penrose inverse T^{\dagger} of T (if it exists) is an element in $L(\mathcal{Y}, \mathcal{X})$ which satisfies:
(a) $T T^{\dagger} T=T$,
(b) $T^{\dagger} T T^{\dagger}=T^{\dagger}$,
(c) $\left(T T^{\dagger}\right)^{*}=T T^{\dagger}$,
(d) $\left(T^{\dagger} T\right)^{*}=T^{\dagger} T$.

The operator T^{\dagger} (if it exists) is unique and $T^{\dagger} T$ and $T T^{\dagger}$ are orthogonal projections, that is, selfadjoint idempotent operators. Clearly, T is MoorePenrose invertible if and only if T^{*} is Moore-Penrose invertible, and in this case $\left(T^{*}\right)^{\dagger}=\left(T^{\dagger}\right)^{*}$. The following theorem is known.

Theorem B ([XS, Theorem 2.2]). Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then the Moore-Penrose inverse T^{\dagger} of T exists if and only if T has closed range.

By Definition 1.1, we have

$$
\begin{array}{rlr}
\operatorname{ran}(T) & =\operatorname{ran}\left(T T^{\dagger}\right), & \operatorname{ran}\left(T^{\dagger}\right)=\operatorname{ran}\left(T^{\dagger} T\right)=\operatorname{ran}\left(T^{*}\right), \\
\operatorname{ker}(T)=\operatorname{ker}\left(T^{\dagger} T\right), & \operatorname{ker}\left(T^{\dagger}\right)=\operatorname{ker}\left(T T^{\dagger}\right)=\operatorname{ker}\left(T^{*}\right),
\end{array}
$$

and by Theorem A,

$$
\begin{aligned}
& \mathcal{X}=\operatorname{ker}(T) \oplus \operatorname{ran}\left(T^{\dagger}\right)=\operatorname{ker}\left(T^{\dagger} T\right) \oplus \operatorname{ran}\left(T^{\dagger} T\right), \\
& \mathcal{Y}=\operatorname{ker}\left(T^{\dagger}\right) \oplus \operatorname{ran}(T)=\operatorname{ker}\left(T T^{\dagger}\right) \oplus \operatorname{ran}\left(T T^{\dagger}\right) .
\end{aligned}
$$

A matrix form of an adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert C^{*}-modules. Indeed, if \mathcal{M} and \mathcal{N}
are closed orthogonally complemented submodules of \mathcal{X} and \mathcal{Y}, respectively, and $\mathcal{X}=\mathcal{M} \oplus \mathcal{M}^{\perp}, \mathcal{Y}=\mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as a 2×2 matrix

$$
T=\left[\begin{array}{ll}
T_{1} & T_{2} \tag{1.1}\\
T_{3} & T_{4}
\end{array}\right]
$$

where $T_{1} \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_{2} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}\right), T_{3} \in \mathcal{L}\left(\mathcal{M}, \mathcal{N}^{\perp}\right)$ and $T_{4} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M}.

In fact $T_{1}=P_{\mathcal{N}} T P_{\mathcal{M}}, T_{2}=P_{\mathcal{N}} T\left(1-P_{\mathcal{M}}\right), T_{3}=\left(1-P_{\mathcal{N}}\right) T P_{\mathcal{M}}$ and $T_{4}=\left(1-P_{\mathcal{N}}\right) T\left(1-P_{\mathcal{M}}\right)$.

Recall that if $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed renge, then $T T^{\dagger}=P_{\operatorname{ran}(T)}$ and $T^{\dagger} T=P_{\mathrm{ran}\left(T^{*}\right)}$.

Corollary 1.2. Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions $\mathcal{X}=\operatorname{ran}\left(T^{*}\right) \oplus \operatorname{ker}(T)$ and $\mathcal{Y}=\operatorname{ran}(T) \oplus \operatorname{ker}\left(T^{*}\right)$:

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \mapsto\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

where T_{1} is invertible. Moreover

$$
T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \mapsto\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] .
$$

Proof. According to the above discussion, it is enough to set $\mathcal{M}=$ $\operatorname{ran}\left(T^{*}\right)$ and $\mathcal{N}=\operatorname{ran}(T)$. Then

$$
\begin{aligned}
T_{2} & =P_{\operatorname{ran}(T)} T\left(1-P_{\operatorname{ran}\left(T^{*}\right)}\right)=P_{\operatorname{ran}(T)} T\left(P_{\operatorname{ker} T}\right)=0, \\
T_{3} & =\left(1-P_{\operatorname{ran}(T)}\right) T P_{\operatorname{ran}\left(T^{*}\right)}=T P_{\operatorname{ran}\left(T^{*}\right)}-P_{\mathrm{ran}(T)} T P_{\operatorname{ran}\left(T^{*}\right)}=0, \\
T_{4} & =\left(1-P_{\mathrm{ran}(T)}\right) T\left(1-P_{\mathrm{ran}\left(T^{*}\right)}\right) \\
& =T\left(1-P_{\mathrm{ran}\left(T^{*}\right)}\right)-P_{\mathrm{ran}(T)} T\left(1-P_{\mathrm{ran}\left(T^{*}\right)}\right)=0 .
\end{aligned}
$$

Now we show that T_{1} is invertible. Let $x \in \operatorname{ker}\left(T_{1}\right)$, so $0=T_{1} x=$ $P_{\operatorname{ran}(T)} T P_{\operatorname{ran}\left(T^{*}\right)} x=T x$, which means that $x \in \operatorname{ker}(T)$. On the other hand $T_{1} \in \mathcal{L}\left(\operatorname{ran}\left(\mathcal{T}^{*}\right), \operatorname{ran}(\mathcal{T})\right)$, so $x \in \operatorname{ker}\left(T_{1}\right) \subseteq \operatorname{ran}\left(T^{*}\right)$. Hence $x \in$ $\operatorname{ker}(T) \cap \operatorname{ran}\left(T^{*}\right)=\{0\}$. Therefore $x=0$. By Definition 1.1, we conclude that $T^{\dagger}=\left[\begin{array}{cc}T_{1}^{-1} & 0 \\ 0 & 0\end{array}\right]$.

Let \mathcal{X} be a Hilbert \mathcal{A}-module and $P \in L(\mathcal{X})$ be an orthogonal projection with $\operatorname{ran}(P)=\mathcal{K}$. Since $\mathcal{X}=\operatorname{ran}(P) \oplus \operatorname{ran}(P)^{\perp}=\mathcal{K} \oplus \mathcal{K}^{\perp}$, we have the following representations of the projections $P, 1-P \in \mathcal{L}(\mathcal{X})$ with respect to
the decomposition $\mathcal{X}=\mathcal{K} \oplus \mathcal{K}^{\perp}$:

$$
\begin{align*}
P & =\left[\begin{array}{cc}
1_{\mathcal{K}} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right] \mapsto\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right] \tag{1.2}\\
1-P & =\left[\begin{array}{cc}
0 & 0 \\
0 & 1_{\mathcal{K}^{\perp}}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right] \mapsto\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right] .
\end{align*}
$$

If $Q \in L(\mathcal{X})$ is an orthogonal projection and

$$
Q=\left[\begin{array}{cc}
A & B \tag{1.4}\\
B^{*} & D
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right] \mapsto\left[\begin{array}{c}
\mathcal{K} \\
\mathcal{K}^{\perp}
\end{array}\right]
$$

then $A \in \mathcal{L}(\mathcal{K})$ and $D \in \mathcal{L}\left(\mathcal{K}^{\perp}\right)$ are selfadjoint, and since $Q=Q^{2}$, we have

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]=\left[\begin{array}{cc}
A^{2}+B B^{*} & A B+B D \\
B^{*} A+D B^{*} & B^{*} B+D^{2}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]
$$

which implies that

$$
\begin{align*}
& A=A^{2}+B B^{*} \\
& B=A B+B D \tag{1.5}\\
& D=D^{2}+B^{*} B
\end{align*}
$$

In the next section we shall use the following result.
Theorem C ([MS, Corollary 2.4]). Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then $\left(T T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} T^{\dagger}$.

Closedness of the range of operators and the structure of Moore-Penrose inverses are important topics in operator theory. Xu and Sheng [XS] showed that a bounded adjointable operator between two Hilbert \mathcal{A}-modules admits a bounded Moore-Penrose inverse if and only if the operator has closed range. In this paper we state conditions equivalent to the Moore-Penrose inverse being idempotent, and we find a relation between the entries of the operator matrix associated to $P Q$ and the entries of the operator matrix associated to $(P Q)^{\dagger}$ for a certain orthogonal decomposition of Hilbert C^{*} modules, where P and Q are two projections in Hilbert C^{*}-modules.
2. Operator matrix of the Moore-Penrose inverse of an operator. We begin this section with the following useful facts about products of module maps with closed range.

Theorem 2.1. Suppose that $Q \in \mathcal{L}(\mathcal{X})$ and $P \in \mathcal{L}(\mathcal{Y})$ are orthogonal projections and $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. If $P T Q$ has closed range, then $T(P T Q)^{\dagger}$ and $(P T Q)^{\dagger} T$ are idempotent closed range operators.

Proof. Since $\operatorname{ran}(P T Q)$ is closed, the operator $U=(P T Q)^{\dagger}$ exists and $\operatorname{ran}(U)=\operatorname{ran}\left((P T Q)^{\dagger}\right)=\left(\operatorname{ran}(P T Q)^{*}\right)=\operatorname{ran}\left(Q T^{*} P\right)$, so $\operatorname{ran}(U) \subseteq \operatorname{ran}(Q)$. Also

$$
\begin{aligned}
\operatorname{ran}\left(U^{*}\right) & =\operatorname{ran}\left((P T Q)^{\dagger}\right)^{*}=\operatorname{ran}\left(\left((P T Q)^{*}\right)^{\dagger}\right)=\operatorname{ran}\left((P T Q)^{*}\right)^{*}=\operatorname{ran}(P T Q) \\
& \subseteq \operatorname{ran}(P) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
Q U=U, \quad P U^{*}=U^{*}, \quad U P=U . \tag{2.1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
U T U=U P T Q U=U(P T Q) U=U U^{\dagger} U=U . \tag{2.2}
\end{equation*}
$$

By multiplying (2.2) on the left by T, we get $T U=T U T U=(T U)(T U)$ $=(T U)^{2}$. Again by multiplying (2.2) on the right by T, we obtain $U T=U T U T=(U T)(U T)=(U T)^{2}$. Hence $T(P T Q)^{\dagger}$ and $(P T Q)^{\dagger} T$ are idempotent. Then [LA, Corollary 3.3] implies that $T(P T Q)^{\dagger}$ and $(P T Q)^{\dagger} T$ have closed range.

Corollary 2.2. Suppose that $P, Q \in \mathcal{L}(\mathcal{X})$ are orthogonal projections. If $P Q$ has closed range, then $U=(P Q)^{\dagger}$ is idempotent and $U=Q U P$.

Proof. Set $T=1_{\mathcal{X}}$ in Theorem 2.1. Then $U=(P Q)^{\dagger}$ is idempotent. By using (2.1), we obtain $Q U^{2} P=U^{2}$. Since U is idempotent, the desired result follows.

The following theorem states some equivalent conditions under which the Moore-Penrose inverse of an operator is idempotent.

Theorem 2.3. Suppose that $T \in L(\mathcal{X})$ has closed range. Then the following assertions are equivalent:
(i) $T=P Q$ for some projections P and Q,
(ii) $T^{2}=T T^{*} T$,
(iii) $T^{*}=T^{\dagger} T^{2} T^{\dagger}$,
(iv) $T=T\left(T^{\dagger}\right)^{2} T$,
(v) $\left(T^{\dagger}\right)^{2}=T^{\dagger}$,
(vi) $|T x|^{2}=\langle T x, x\rangle$ for all $x \in(\operatorname{ker}(T))^{\perp}$,
(vii) $T^{\dagger} T^{*}=T^{*}$.

Proof. (i) \Rightarrow (ii): Obvious.
(ii) \Rightarrow (iii): Multiplying $T^{2}=T T^{*} T$ on the left by T^{\dagger} yields $T^{\dagger} T T=$ $T^{\dagger} T T^{*} T=\left(T\left(T^{\dagger} T\right)\right)^{*} T=T^{*} T$. Now, multiplying by T^{\dagger} on the right, we get the desired result.
(iii) \Rightarrow (iv): If $T^{*}=T^{\dagger} T^{2} T^{\dagger}$, then $\left(T^{*}\right)^{*}=\left(\left(T^{\dagger} T\right)\left(T T^{\dagger}\right)\right)^{*}=\left(T T^{\dagger}\right)\left(T^{\dagger} T\right)$. Hence $T=T\left(T^{\dagger}\right)^{2} T$.
(iv) $\Rightarrow(\mathrm{v})$: If $T=T\left(T^{\dagger}\right)^{2} T$, then multiplying by T^{\dagger} both on the left and on the right, we get $T^{\dagger} T T^{\dagger}=T^{\dagger} T T^{\dagger} T^{\dagger} T T^{\dagger}$, which implies that $\left(T^{\dagger}\right)^{2}=T^{\dagger}$.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$: By multiplying $\left(T^{\dagger}\right)^{2}=T^{\dagger}$ on both sides by T, we get $T T^{\dagger} T^{\dagger} T$ $=T T^{\dagger} T$, so $P_{\operatorname{ran}(T)} P_{\mathrm{ran}\left(T^{*}\right)}=T$.
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$: We have shown that if T^{\dagger} is idempotent, then T can be written as

$$
T=P_{\left(\operatorname{ker}\left(T^{*}\right)\right)^{\perp}} P_{(\operatorname{ker}(T))^{\perp}}=P_{\operatorname{ran}(T)} P_{(\operatorname{ker}(T))^{\perp}} .
$$

For all $x \in(\operatorname{ker}(T))^{\perp}$, we know that $P_{(\operatorname{ker}(T))^{\perp}} x=x$, so

$$
\begin{aligned}
|T x|^{2}=\left\langle T^{*} T x, x\right\rangle & =\left\langle P_{(\operatorname{ker}(T))^{\perp}} P_{\mathrm{ran}(T)} P_{(\operatorname{ker}(T))^{\perp}} x, x\right\rangle \\
& =\left\langle P_{\mathrm{ran}(T)} P_{(\operatorname{ker}(T))^{\perp}} x, P_{(\operatorname{ker}(T))^{\perp}} x\right\rangle=\langle T x, x\rangle .
\end{aligned}
$$

(vi) $\Rightarrow($ ii $)$: Since $|T x|^{2}=\langle T x, x\rangle$ for all $x \in(\operatorname{ker}(T))^{\perp}$, and $P_{(\operatorname{ker}(T))^{\perp}} y \in$ $(\operatorname{ker}(T))^{\perp}$, we have $T y=T P_{(\operatorname{ker}(T))^{\perp}} y$ and

$$
\left\langle T^{*} T y, y\right\rangle=\langle T y, T y\rangle=\left\langle T y, P_{(\operatorname{ker}(T))^{\perp}} y\right\rangle=\left\langle P_{(\operatorname{ker}(T))^{\perp}} T y, y\right\rangle
$$

for all $y \in \mathcal{X}$. Hence, $T^{*} T=P_{(\operatorname{ker}(T))^{\perp} T}$. So $T^{*} T=T^{\dagger} T T=T^{\dagger} T^{2}$. Multiplying by T on the left, we get $T T^{*} T=T T^{\dagger} T^{2}$ or $T T^{*} T=T^{2}$.
(iii) \Rightarrow (vii): We have shown above that if (iii) holds then T^{\dagger} is idempotent. This yields the desired implication.
(vii) $\Rightarrow(\mathrm{iv})$: Multiplying $T^{\dagger} T^{*}=T^{*}$ by $\left(T^{*}\right)^{\dagger}$ on the right and by T on the left, we obtain

$$
\begin{aligned}
T T^{\dagger} T^{*}\left(T^{*}\right)^{\dagger} & =T T^{*}\left(T^{*}\right)^{\dagger} \\
T T^{\dagger} T^{*}\left(T^{\dagger}\right)^{*} & =T T^{*}\left(T^{\dagger}\right)^{*}, \\
T T^{\dagger}\left(T^{\dagger} T\right)^{*} & =T\left(T^{\dagger} T\right)^{*} \quad \text { (by Theorem C). }
\end{aligned}
$$

Hence $T\left(T^{\dagger}\right)^{2} T=T T^{\dagger} T=T$.
Corollary 2.4. Suppose that $T \in L(\mathcal{X})$ has closed range and T^{\dagger} is idempotent. Then

$$
T^{\dagger}=T^{*}-P_{\mathrm{ran}\left(T^{*}\right)}\left[\left(1-P_{\mathrm{ran}\left(T^{*}\right)}\right)\left(1-P_{\mathrm{ran}(T)}\right)\right]^{\dagger} P_{\mathrm{ran}(T)}
$$

Proof. The proof of Theorem 2.3 implies that $T=P_{\operatorname{ran}(T)} P_{\mathrm{ran}\left(T^{*}\right)}$. Now [LI, Theorem 10] yields the desired formula.

Remark 2.5. A valuable consequence of this theorem is that a closed range operator T is a product of two projections if and only if its MoorePenrose inverse is idempotent, and we also see that the Moore-Penrose inverse of an idempotent operator is a product of two projections.

Recall that an operator $U \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is said to be unitary if $U^{*} U=1_{\mathcal{X}}$ and $U U^{*}=1_{\mathcal{Y}}$. If there exists a unitary element in $\mathcal{L}(\mathcal{X}, \mathcal{Y})$, then we say that \mathcal{X} and \mathcal{Y} are unitarily equivalent Hilbert \mathcal{A}-modules, and we write $\mathcal{X} \approx \mathcal{Y}$. Moreover, obviously if U is unitary, then $U^{*}=U^{\dagger}$.

Theorem 2.6. Suppose that $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ and \mathcal{W} are Hilbert \mathcal{A}-modules, and $V \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $U \in \mathcal{L}(\mathcal{Z}, \mathcal{W})$ are unitary operators. Then for any $T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ with closed range, $(U T V)^{\dagger}=V^{*} T^{\dagger} U^{*}$.

Proof. Since $U^{*} U=1_{\mathcal{Z}}, U U^{*}=1_{\mathcal{W}}$ and $V^{*} V=1_{\mathcal{X}}, V V^{*}=1_{\mathcal{Y}}$, by Definition 1.1 we have
(a) $(U T V) V^{*} T^{\dagger} U^{*}(U T V)=\left(U T\left(V V^{*}\right) T^{\dagger}\left(U^{*} U\right) T V=U T V\right.$,
(b) $V^{*} T^{\dagger} U^{*}(U T V) V^{*} T^{\dagger} U^{*}=V^{*} T^{\dagger}\left(U^{*} U\right) T\left(V V^{*}\right) T^{\dagger} U^{*}=V^{*} T^{\dagger} U^{*}$,
(c)

$$
\begin{aligned}
\left((U T V) V^{*} T^{\dagger} U^{*}\right)^{*} & =\left(\left(U T 1_{\mathcal{Y}} T^{\dagger} U^{*}\right)^{*}=\left(\left(U T T^{\dagger} U^{*}\right)^{*}=U T T^{\dagger} U^{*}\right.\right. \\
& =(U T V) V^{*} T^{\dagger} U^{*},
\end{aligned}
$$

(d)

$$
\left.\left.\left(V^{*} T^{\dagger} U^{*}(U T V)\right)^{*}=\left(V^{*} T^{\dagger} \mathcal{Z}_{\mathcal{Z}} T V\right)\right)^{*}=\left(V^{*} T^{\dagger} T V\right)\right)^{*}
$$

$$
=V^{*} T^{\dagger} U^{*}(U T V)
$$

Hence $(U T V)^{\dagger}=V^{*} T^{\dagger} U^{*}$.
In the next theorem we find a relation between the entries of the associated operator matrix of operators.

Theorem 2.7. Suppose that orthogonal projections $P, Q \in \mathcal{L}(\mathcal{X})$ are represented as in (1.2) and (1.4), and $P Q$ has closed range. Then
(i) $(P Q)^{\dagger}=\left[\begin{array}{cc}A A^{\dagger} & 0 \\ B^{*} A^{\dagger} & 0\end{array}\right]:\left[\begin{array}{c}\mathcal{K} \\ \mathcal{K}^{\perp}\end{array}\right] \mapsto\left[\begin{array}{c}\mathcal{K} \\ \mathcal{K}^{\perp}\end{array}\right]$ and $\operatorname{ran}(P Q)=\operatorname{ran}(A)$.
(ii) $B^{*} A^{\dagger} A=B^{*}$, equivalently $A A^{\dagger} B=B$.
(iii) $A^{2}+A B B^{*} A^{\dagger}=A$ and $B^{*} A^{2}+B^{*} B B^{*} A^{\dagger}=B^{*}$.
(iv) $B B^{*}$ commutes with A, and $B B^{*}$ commutes with A^{\dagger}.
(v) $A+B B^{*} A=A A^{\dagger}$ and $B^{*} A A^{\dagger}+D B^{*} A^{\dagger}=B^{*} A^{\dagger}$.

Proof. (i) Since $P Q$ has closed range, [MS, Corollary 2.4] implies that $(P Q)^{\dagger}=(P Q)^{*}\left(P Q(P Q)^{*}\right)^{\dagger}$. By using this fact and 1.5), we obtain

$$
\begin{aligned}
(P Q)^{\dagger} & =\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
A^{2}+B B^{*} & 0 \\
0 & 0
\end{array}\right]^{\dagger}=\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]^{\dagger} \\
& =\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
A^{\dagger} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right] .
\end{aligned}
$$

From $(P Q)(P Q)^{\dagger}=P_{\operatorname{ran}(P Q)}$, we deduce

$$
(P Q)(P Q)^{\dagger}=\left[\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]=\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
0 & 0
\end{array}\right]
$$

This immediately implies that $\operatorname{ran}(P Q)=\operatorname{ran}\left(A A^{\dagger}\right)=\operatorname{ran}(A)$.
(ii) By (i), $(P Q)^{\dagger}=\left[\begin{array}{c}A A^{\dagger} \\ 0 \\ B^{*} A^{\dagger} 0\end{array}\right]$ and $\operatorname{ran}(P Q)$ is closed. Corollary 2.2 implies that $(P Q)^{\dagger}$ is idempotent. Applying Theorem 2.3 (vii), we get $(P Q)^{\dagger}(P Q)^{*}=(P Q)^{*}$. Hence

$$
\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]
$$

Therefore, $B^{*} A^{\dagger} A=B^{*}$. As A is selfadjoint, by Theorem C we have $A A^{\dagger}=$ $\left(A A^{\dagger}\right)^{*}=A^{\dagger} A$ and $A A^{\dagger} B=B$.
(iii) Applying Theorem 2.3 (iii) for $P Q$, we get

$$
\left[\begin{array}{cc}
A & 0 \\
B^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]\left[\begin{array}{cc}
A^{2} & A B \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]
$$

A straightforward computation shows that $A A^{\dagger} A^{2} A A^{\dagger}+A A^{\dagger} A B B^{*} A^{\dagger}=A \quad$ and $\quad B^{*} A^{\dagger} A^{2} A A^{\dagger}+B^{*} A^{\dagger} A B B^{*} A^{\dagger}=B^{*}$. By (ii), we observe that

$$
A^{2}+A B B^{*} A^{\dagger}=A \quad \text { and } \quad B^{*} A^{2}+B^{*} B B^{*} A^{\dagger}=B^{*} .
$$

(iv) Part (iii) and 1.5 show that $A B B^{*} A^{\dagger}=B B^{*}$. Multiplying by A on the right, we get $A B B^{*} A^{\dagger} A=B B^{*} A$. It follows from (ii) that $A B B^{*}=$ $B B^{*} A$, i.e. $B B^{*}$ commutes with A. For the second part,

$$
\begin{aligned}
A B B^{*} & =B B^{*} A, & & \\
A B B^{*} A^{\dagger} & =B B^{*} A A^{\dagger} & & \left(\text { multiplication by } A^{\dagger} \text { on the right }\right), \\
A B B^{*} A^{\dagger} & =B B^{*} & & \left(\text { by }\left(\text { ii) }, B^{*} A A^{\dagger}=B^{*}\right),\right. \\
A^{\dagger} A B B^{*} A^{\dagger} & =A^{\dagger} B B^{*} \quad & & \left(\text { multiplication by } A^{\dagger} \text { on the left }\right), \\
B B^{*} A^{\dagger} & =A^{\dagger} B B^{*} \quad & & \left(\text { by (ii) }, A A^{\dagger} B=B\right),
\end{aligned}
$$

which means that $B B^{*}$ commutes with A^{\dagger}.
(v) By (i), we have $(P Q)^{\dagger}=\left[\begin{array}{cc}A A^{\dagger} & 0 \\ B^{*} A^{\dagger} & 0\end{array}\right]$. Applying Corollary 2.2 we get $(P Q)^{\dagger}=Q(P Q)^{\dagger} P$, which implies that

$$
\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]\left[\begin{array}{cc}
A A^{\dagger} & 0 \\
B^{*} A^{\dagger} & 0
\end{array}\right]\left[\begin{array}{cc}
1_{\mathcal{K}} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A A A^{\dagger}+B B^{*} A & 0 \\
B^{*} A A^{\dagger}+D B^{*} A^{\dagger} & 0
\end{array}\right]
$$

Therefore, $A+B B^{*} A=A A^{\dagger}$ and $B^{*} A A^{\dagger}+D B^{*} A^{\dagger}=B^{*} A^{\dagger}$.
By the previous theorem we state the reverse-order law in the special case of product operators.

TheOrem 2.8. Let orthogonal projections $P, Q \in \mathcal{L}(\mathcal{X})$ be represented as in 1.2 and $\sqrt[1.4]{ }$, and assume $P Q, B$ and $A B$ have closed ranges. Then
(i) $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
(ii) $A B B^{*}$ has closed range and $\left(A B B^{*}\right)^{\dagger}=\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}$.

Proof. To prove (i), note that

$$
\begin{aligned}
\left(B^{*}-B^{*} B B^{*} A^{\dagger}\right)\left(1-B B^{\dagger}\right) & =B^{*}\left(1-B B^{\dagger}\right)-B^{*} B B^{*} A^{\dagger}\left(1-B B^{\dagger}\right) \\
& =B^{*}-B^{*} B B^{\dagger}-B^{*} B B^{*} A^{\dagger}+B^{*} B B^{*} A^{\dagger} B B^{\dagger} \\
(\text { by Theorem 2.7(iv) }) & =B^{*}-B^{*} B B^{\dagger}-B^{*} A^{\dagger} B B^{*}+B^{*} A^{\dagger} B B^{*} B B^{\dagger} \\
& =B^{*}-B^{*}-B^{*} A^{\dagger} B B^{*}+B^{*} A^{\dagger} B B^{*}=0
\end{aligned}
$$

By Theorem 2.7 (iii), we have $B^{*} A^{2}\left(1-B B^{\dagger}\right)=0$, so $B^{*} A^{2}=B^{*} A^{2} B B^{\dagger}$. Taking adjoints we get $A^{2} B=B B^{\dagger} A^{2} B$. So, condition (ii) of [KA, Theorem 2.1] holds. By (ii) \Rightarrow (iii) of that theorem, $B^{\dagger} A^{\dagger}$ satisfies conditions (a)-(c) of Definition 1.1 .

On the other hand, by Theorem 2.7(ii), we have

$$
\left(B^{\dagger} A^{\dagger}(A B)\right)^{*}=\left(B^{\dagger}\left(A^{\dagger} A B\right)\right)^{*}=\left(B^{\dagger} B\right)^{*}=B^{\dagger} B=B^{\dagger} A^{\dagger}(A B)
$$

Hence $B^{\dagger} A^{\dagger}$ satisfies condition (d) of Definition 1.1. Therefore, $B^{\dagger} A^{\dagger}$ is the Moore-Penrose inverse of $A B$.

To prove (ii), by Definition 1.1 we have
(a)

$$
\begin{aligned}
\left(A B B^{*}\right)\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}\left(A B B^{*}\right) & =A B\left(B^{*}\left(B^{*}\right)^{\dagger} B^{\dagger}\right) A^{\dagger}\left(A B B^{*}\right) \\
& =A B B^{\dagger}\left(A^{\dagger} A B\right) B^{*}
\end{aligned}
$$

(by Theorem 2.7(ii)) $=A B B^{\dagger} B B^{*}=A B\left(B B^{\dagger} B\right)^{*}=A B B^{*}$;
(b) $\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}\left(A B B^{*}\right)\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}=\left(B^{*}\right)^{\dagger} B^{\dagger}\left(A^{\dagger} A B\right) B^{*}\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}$ (by Theorem 2.7(ii)) $=\left(\left(B^{*}\right)^{\dagger} B^{\dagger} B\right)\left(B^{*}\left(B^{*}\right)^{\dagger} B^{\dagger}\right) A^{\dagger}$
$=\left(B^{\dagger} B B^{\dagger}\right)^{*}\left(B^{\dagger} B B^{\dagger}\right)^{*} A^{\dagger}=\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger} ;$
(c)
$\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}\left(A B B^{*}\right)=\left(B^{*}\right)^{\dagger} B^{\dagger}\left(A^{\dagger} A B\right) B^{*}$
(by Theorem 2.7(ii) $)=\left(\left(B^{*}\right)^{\dagger} B^{\dagger} B B^{*}\right.$
$=\left(B^{\dagger} B B^{\dagger}\right)^{*} B^{*}=\left(B^{*}\right)^{\dagger} B^{*}=B B^{\dagger} ;$
(d)
$\left(A B B^{*}\right)\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}=A\left(B\left(B^{\dagger} B\right)^{*} B^{\dagger}\right) A^{\dagger}=A B B^{\dagger} A^{\dagger}$.
By (i), we have $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, hence $A B(A B)^{\dagger}=A B B^{\dagger} A^{\dagger}$ is an orthogonal projection. Therefore, $\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}$ is the Moore-Penrose inverse of $A B B^{*}$. Hence $A B B^{*}$ has closed range and $\left(A B B^{*}\right)^{\dagger}=\left(B^{*}\right)^{\dagger} B^{\dagger} A^{\dagger}$.

If $B \in \mathcal{L}(\mathcal{X})$ has closed range, then $\operatorname{ran}(B)=\operatorname{ran}\left(B B^{*}\right)$. In the following theorem we show that sometimes $\operatorname{ran}(B)=\operatorname{ran}\left(B B^{*}\right)$, even if the range of B is not necessarily closed.

THEOREM 2.9. Let orthogonal projections $P, Q \in \mathcal{L}(\mathcal{X})$ be represented as in (1.2) and (1.4), and suppose $P Q$ has closed range. If $\|A\|<1$, then $\operatorname{ran}(B)=\operatorname{ran}\left(B B^{*}\right)$.

Proof. It is trivial that $\operatorname{ran}\left(B B^{*}\right) \subseteq \operatorname{ran}(B)$. To show the opposite inclusion, let $y \in \operatorname{ran}(B)$, so there is $x \in \mathcal{X}$ such that $y=B x$. Theorem 2.7(iii) shows that $B=A^{2} B+A^{\dagger} B B^{*} B$. By 1.5, we have

$$
B=\left(A-B B^{*}\right) B+A^{\dagger} B B^{*} B=A B-B B^{*} B+A^{\dagger} B B^{*} B
$$

Now Theorem 2.7 (iv) yields $B=A B+B B^{*}\left(-B+A^{\dagger} B\right)$. Therefore

$$
\begin{equation*}
(1-A) B x=B B^{*}\left(-B x+A^{\dagger} B x\right) \tag{2.3}
\end{equation*}
$$

From $\|A\|<1$ we know that $1-A$ is invertible and $(1-A)^{-1}=\sum_{n=0}^{\infty} A^{n}$. It follows from this relation, (2.3) and Theorem 2.7(iv) that $B B^{*}$ commutes with A^{n} for all $n \geq 1$. Continuity of $B B^{*}$ implies that

$$
\begin{aligned}
(1-A)^{-1}(1-A) B x & =\sum_{n=0}^{\infty} A^{n} B B^{*}\left(-B x+A^{\dagger} B x\right) \\
& =B B^{*}\left(\sum_{n=0}^{\infty} A^{n}\left(-B x+A^{\dagger} B x\right)\right)
\end{aligned}
$$

Hence $y=B x \in \operatorname{ran}\left(B B^{*}\right)$ and $\operatorname{ran}(B)=\operatorname{ran}\left(B B^{*}\right)$.
Now, we show that there is a relation between the entries of the associated operator matrix for the composition of three special operators.

Theorem 2.10. Suppose that Q is an orthogonal projection in $\mathcal{L}(\mathcal{X})$, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and P is an orthogonal projection in $\mathcal{L}(\mathcal{Y})$. If T and $P T Q$ have closed ranges, and $\left(Q T^{*} P T Q\right)^{\dagger}$ commutes with $T^{\dagger} T$ and $T=\left[\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right]$, where T_{1} is unitary, and

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
A_{1} & B_{1} \\
B_{1}^{*} & D_{1}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \mapsto\left[\begin{array}{c}
\operatorname{ran}(T) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right], \\
& Q=\left[\begin{array}{ll}
A_{2} & B_{2} \\
B_{2}^{*} & D_{2}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \mapsto\left[\begin{array}{c}
\operatorname{ran}\left(T^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right],
\end{aligned}
$$

then:
(i) $A_{1} T_{1} A_{2}^{2} T_{1}^{-1} A_{1} T_{1} A_{2}=A_{1} T_{1} A_{2} T_{1}^{-1} A_{1} T_{1} A_{2}$,
(ii) $B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1} A_{1} T_{1} A_{2}=B_{1}^{*} T_{1} A_{2} T_{1}^{-1} A_{1} T_{1} A_{2}$,
(iii) $A_{1} T_{1} B_{2} B_{2}^{*} T_{1}^{-1} A_{1} T_{1} A_{2}=0$,
(iv) $B_{1}^{*} T_{1} B_{2} B_{2}^{*} T_{1}^{-1} A_{1} T_{1} A_{2}=0$.

Proof. A straightforward computation shows that

$$
P T Q=\left[\begin{array}{ll}
A_{1} & B_{1} \\
B_{1}^{*} & D_{1}
\end{array}\right]\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
B_{2}^{*} & D_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} T_{1} A_{2} & A_{1} T_{1} B_{2} \\
B_{1}^{*} T_{1} A_{2} & B_{1}^{*} T_{1} B_{2}
\end{array}\right]
$$

By assumption $T_{1} \in \mathcal{L}\left(\operatorname{ran}\left(T^{*}\right), \operatorname{ran}(T)\right)$ is unitary, and from [LA, p. 25] T_{1} is invertible and $T_{1}^{-1}=T_{1}^{*}$. Set

$$
S=\left[\begin{array}{ll}
A_{1} T_{1} A_{2} & A_{1} T_{1} B_{2} \\
B_{1}^{*} T_{1} A_{2} & B_{1}^{*} T_{1} B_{2}
\end{array}\right] .
$$

Then

$$
T^{*} T=\left[\begin{array}{cc}
1_{\mathrm{ran}}\left(T^{*}\right) & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad \operatorname{ran}\left(T^{*} T S^{\dagger}\right) \subseteq \operatorname{ran}\left(S^{\dagger}\right)=\operatorname{ran}\left(S^{*}\right) .
$$

We know that $S^{\dagger} S$ is a projection on $\operatorname{ran}\left(S^{*}\right)$. Therefore $S^{\dagger} S T^{*} T S^{\dagger}=$ $T^{*} T S^{\dagger}$. Hence, condition (ii) of [KA, Theorem 2.1] holds, and by (ii) \Rightarrow (iii) of that theorem, $S T^{\dagger}$ satisfies conditions (a)-(c) of Definition 1.1

On the other hand, $T S^{\dagger}\left(S^{\dagger}\right)^{*}=T S^{\dagger}\left(S^{\dagger}\right)^{*} T^{\dagger} T$, or equivalently $T\left(S^{*} S\right)^{\dagger}=$ $T\left(S^{*} S\right)^{\dagger} T^{\dagger} T$. We observe that $S=P T Q$, and $\left(Q T^{*} P T Q\right)^{\dagger}$ commutes with $T^{\dagger} T$. Hence condition (ii) of [KA, Theorem 2.2] holds. By (ii) \Rightarrow (iii) of that theorem, $S T^{\dagger}$ satisfies conditions (a), (b), (d) of Definition 1.1. Therefore, $S T^{\dagger}$ is the Moore-Penrose inverse of $T S^{\dagger}$ and $T S^{\dagger}=\left(S T^{\dagger}\right)^{\dagger}$. In addition

$$
\begin{aligned}
{\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{1} T_{1} A_{2} & A_{1} T_{1} B_{2} \\
B_{1}^{*} T_{1} A_{2} & B_{1}^{*} T_{1} B_{2}
\end{array}\right]^{\dagger} } & =\left(\left[\begin{array}{ll}
A_{1} T_{1} A_{2} & A_{1} T_{1} B_{2} \\
B_{1}^{*} T_{1} A_{2} & B_{1}^{*} T_{1} B_{2}
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\right)^{\dagger} \\
& =\left[\begin{array}{ll}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right]^{\dagger}
\end{aligned}
$$

Now, Theorem 2.1 implies that

$$
T S^{\dagger}=\left[\begin{array}{ll}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right]^{\dagger}
$$

is an idempotent operator, so by Theorem 2.3 (ii), we can write

$$
\left(T S^{\dagger}\right)\left(T S^{\dagger}\right)^{*}\left(T S^{\dagger}\right)=\left(T S^{\dagger}\right)^{2}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1} A_{2} T_{1}^{-1} A_{1} & T_{1} A_{2} T_{1}^{-1} B_{1} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right]} \\
& =\left[\begin{array}{ll}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right]\left[\begin{array}{ll}
A_{1} T_{1} A_{2} T_{1}^{-1} & 0 \\
B_{1}^{*} T_{1} A_{2} T_{1}^{-1} & 0
\end{array}\right] .
\end{aligned}
$$

In fact

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
A_{1} T_{1} A_{2}^{2} T_{1}^{-1} A_{1}^{2} T_{1} A_{2} T_{1}^{-1}+A_{1} T_{1} A_{2}^{2} T_{1}^{-1} B_{1} B_{1}^{*} T_{1} A_{2} T_{1}^{-1} \\
B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1} A_{1}^{2} T_{1} A_{2} T_{1}^{-1}+B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1} B_{1} B_{1}^{*} T_{1} A_{2} T_{1}^{-1}
\end{array}\right]} \tag{2.4}
\end{array}\right] .
$$

Therefore, by 1.5), we have

$$
\begin{aligned}
& A_{1} T_{1} A_{2}^{2} T_{1}^{-1}\left(A_{1}^{2}+B_{1} B_{1}^{*}\right) T_{1} A_{2} T_{1}^{-1}=A_{1} T_{1} A_{2}^{2} T_{1}^{-1}\left(A_{1}\right) T_{1} A_{2} T_{1}^{-1} \\
& B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1}\left(A_{1}^{2}+B_{1} B_{1}^{*}\right) T_{1} A_{2} T_{1}^{-1}=B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1}\left(A_{1}\right) T_{1} A_{2} T_{1}^{-1}
\end{aligned}
$$

By (2.4), we have

$$
\begin{aligned}
& A_{1} T_{1} A_{2}^{2} T_{1}^{-1} A_{1} T_{1} A_{2}=A_{1} T_{1} A_{2} T_{1}^{-1} A_{1} T_{1} A_{2} \\
& B_{1}^{*} T_{1} A_{2}^{2} T_{1}^{-1} A_{1} T_{1} A_{2}=B_{1}^{*} T_{1} A_{2} T_{1}^{-1} A_{1} T_{1} A_{2}
\end{aligned}
$$

Hence, (i) and (ii) are obtained. By (i) and (ii) and (1.5),

$$
\begin{aligned}
& A_{1} T_{1}\left(A_{2}^{2}-A_{2}\right) T_{1}^{-1} A_{1} T_{1} A_{2}=A_{1} T_{1} B_{2} B_{2}^{*} T_{1}^{-1} A_{1} T_{1} A_{2}=0 \\
& B_{1}^{*} T_{1}\left(A_{2}^{2}-A_{2}\right) T_{1}^{-1} A_{1} T_{1} A_{2}=B_{1}^{*} T_{1} B_{2} B_{2}^{*} T_{1}^{-1} A_{1} T_{1} A_{2}=0
\end{aligned}
$$

Hence, (iii) and (iv) hold.

REFERENCES

[F1] M. Frank, Geometrical aspects of Hilbert C^{*}-modules, Positivity 3 (1999), 215-243.
[F2] M. Frank, Self-duality and C^{*}-reflexivity of Hilbert C^{*}-modules, Z. Anal. Anwend. 9 (1990), 165-176.
[LA] E. C. Lance, Hilbert C^{*}-Modules, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, 1995.
[LI] Y. Li, The Moore-Penrose inverses of products and differences of projections in a C^{*}-algebra, Linear Algebra Appl. 428 (2008), 1169-1177.
[MT] V. M. Manuilov and E. V. Troitsky, Hilbert C^{*}-Modules, Amer. Math. Soc., Providence, RI, 2005.
[MS] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, Moore-Penrose inverses of Gram operators on Hilbert C ${ }^{*}$-modules, Studia Math. 210 (2012), 189-196.
[KA] K. Sharifi and B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C^{*}-modules, Bull. Iran. Math. Soc., to appear.
[XS] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^{*}-modules, Linear Algebra Appl. 428 (2008), 992-1000.

Mehdi Mohammadzadeh Karizaki,
Mahmoud Hassani, Maryam Amyari
Department of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad 91735, Iran
E-mail: mohammadzadehkarizaki@gmail.com hassani@mshdiau.ac.ir hassani53@yahoo.com amyari@mshdiau.ac.ir maryam_amyari@yahoo.com

Maryam Khosravi Faculty of Mathematics and Computer Science Shahid Bahonar University of Kerman Kerman, Iran and
Tusi Mathematical Research Group
(TMRG)
P.O. Box 1113

Mashhad 91775, Iran
E-mail: khosravi_m@uk.ac.ir

[^0]: 2010 Mathematics Subject Classification: Primary 46L08; Secondary 15A09, 47A05.
 Key words and phrases: Hilbert C^{*}-module, Moore-Penrose inverse, closed range, idempotent operator.

