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Abstract. Let (F1, . . . , Fn) : Cn→ Cn be a locally invertible polynomial map. We
consider the canonical pull-back vector fields under this map, denoted by ∂/∂F1, . . . , ∂/∂Fn.
Our main result is the following: if n − 1 of the vector fields ∂/∂Fj have complete holo-
morphic flows along the typical fibers of the submersion (F1, . . . , Fj−1, Fj+1, . . . , Fn), then
the inverse map exists. Several equivalent versions of this main hypothesis are given.

1. Introduction and statement of results. We consider n-webs of
polynomial vector fields in Cn which can be obtained from the euclidean
n-web W in Cn by pull-back under a polynomial map

(1.1) F = (F1, . . . , Fn) : Cn → Cn with det(DF ) = 1.

Recall that the Jacobian Conjecture in Cn asserts the existence of the inverse
map F−1. Each of the polynomial vector fields

(1.2)
∂

∂Fi
= (F1, . . . , Fn)

∗ ∂

∂wi
, i = 1, . . . , n,

has a restriction to the fibers Ai,c = (F1, . . . , F̂i, . . . , Fn)
−1(c) of the submer-

sion; as usual, ̂ over the ith coordinate indicates that it is omitted.
It is a classical result that the following assertions are equivalent

(see [MO87], [Me92], [Cam97] and [Bus03]):

• The inverse map exists.
• ∂/∂F1, . . . , ∂/∂Fn are complete, i.e. their flows are defined for all com-

plex times t ∈ C at every initial condition p ∈ Cn.
• The web of affine curves {A1,c, . . . ,An,c} is topologically trivial, i.e.

every Ai,c is biholomorphic to C.
The map F produces a collection of pairs

(1.3) {(Ai,c, ∂/∂Fi) | i = 1, . . . , n, c ∈ Cn−1}.
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Looking at the foliations Fi = {Ai,c}, the last point has many facets, very
roughly speaking: every Fi has trivial monodromy, its global Ehresmann
connections are well-defined, no atypical fibers appear in all the submersions
(F1, . . . , F̂i, . . . , Fn). By studying this, we can deduce:

Main Theorem. Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial
map as in (1.1). If ∂/∂F2, . . . , ∂/∂Fn are complete on the typical fibers
A2,c, . . . ,An,c of (F1, . . . , F̂j , . . . , Fn), j = 2, . . . , n, then F−1 exists.

The proof of the main theorem is in two stages. In Lemma 4, we show
that the completeness on typical fibers implies the same property on all the
fibersA2,c, . . . ,An,c. Secondly in Theorem 1, we consider a global Ehresmann
conection in the directions of ∂/∂F2, . . . , ∂/∂Fn to get the result. Further-
more, in Theorem 1, several equivalences of the completeness hypothesis are
described.

The invertibility of F has been considered from many points of view (see
[Ess00]). We start mainly from the algebraic point of view of [A77], [NS83].
For n = 2, invertibility from completeness in just one pair (A2,c, ∂/∂F2)
follows from the Abhyankar–Moh–Suzuki Theorem (see [Dru91], [Cam97]
and the references therein, as well as [Dun08]). Actually, our study uses
Riemann surfaces ideas and several complex variables.

The content of the work is as follows. In Section 2 we study the pull-
back vector fields on Riemann surfaces from meromorphic maps. Section 3
contains the study of the pairs (1.3). The proof of the main result is in
Section 4.

2. Meromorphic maps and vector fields on compact Riemann
surfaces. Let CP1 = Cw ∪ {∞} be the projective line, with affine coordi-
nate w. The vector field ∂/∂w induces a holomorphic vector field in CP1

having a double zero at ∞ ∈ CP1. Let L be a compact Riemann surface.

Lemma 1. Let f : L → CP1 be a non-constant meromorphic function.
The non-identically zero meromorphic vector field

∂

∂f
:= f∗

(
∂

∂w

)
is well-defined on L. Moreover, f has a canonically associated meromorphic
one-form ω such that the diagram

ω -� f(p) =
	p
ω

@
@I

@R

∂
∂f

�
��

�	

commutes. ∂/∂f and ω are non-identically zero.
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The Riemann surface-vector field pairs are denoted by (L, ∂/∂f).
The diagram in the lemma comes from the theory of quadratic differen-

tials (see [Str84], [Muc02]).

Proof of Lemma 1. Given f , we define ω = df and ω(X) ≡ 1. In addition,
ω is called the one-form of time for X, since for p0, p ∈ L we have

(2.1) f(p)− f(p0) =
p�

p0

ω =

{
complex time to travel from
p0 to p under the local flow of ∂/∂f

}
.

The map from f to ω is elementary. A non-identically zero meromorphic
one-form ω determines a univalued meromorphic function f(p) =

	p
ω if and

only if the periods and residues of ω vanish, i.e.�

γ

ω = 0 for each [γ] ∈ H1(L − {poles of ω},Z).

This is the case of the horizontal arrow in the diagram, all the correspon-
dences are bijections.

For everything that follows, the hypotheses of Lemma 1 are fulfilled.
We relate the poles and singular points of f to the zeros and poles of

∂/∂f , respectively. Recall that the order of a zero p ∈ L of a meromorphic
vector field X on a compact Riemann surface L is s ≥ 2 if and only if its
associated real vector field <e(X) has 2s−2 elliptic sectors at p. Additionally,
X has a pole of order −k ≤ −1 at some p if and only if <e(X) has k + 2
hyperbolic sectors (see [Muc02, p. 232]). We have the following result.

Remark 1. Let (L, ∂/∂f) be a pair as in Lemma 1.

(1) ∂/∂f has a pole of order −κ+ 1 ≤ −1 at p ∈ L if and only if p is a
ramification point of f of order κ ≥ 2, and f(p) = q ∈ CP1 − {∞}.

(2) ∂/∂f has a zero of order σ + 1 ≥ 2 at p ∈ L if and only if p is a
ramification point of f of order σ ≥ 1, and f(p) =∞ ∈ CP1.

(3) ∂/∂f has zeros.
(4) ∂/∂f does not have simple zeros.

Lemma 2. Let (L, ∂/∂f) be a pair as in Lemma 1. Assume that ∂/∂f
has zeros of orders {s1, . . . , sr}. Then

deg(f) = (s1 − 1) + · · ·+ (sr − 1) ≥ 1.

Proof. Several proofs are available, depending on the reader’s background.

Case 1. Assume that∞ ∈ CP1 is a regular value for f . The cardinality r
of the fiber f−1(∞) = {p1, . . . , pr} ⊂ L is the degree of f . Near each pν the
function f is a local biholomorphism. Hence at each point pν , ∂/∂f has a
double zero, and the assertion follows.
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Case 2. Assume that ∞ ∈ CP1 is a critical value (ramification value)
for f . Let pν be a ramification point over ∞ having jν ≥ 2 as its ra-
mification index. Locally at pν , the function f is jν-to-one, and we get
jν = (order of the zero of ∂/∂f)− 1.

The analogous formula using the poles of ∂/∂f requires more information.
Corollary 1. Let (L, ∂/∂f) be a pair as in Lemma 1.

(1) The genus of L is g, and ∂/∂f has zeros of order {s1, . . . , sr} and
poles of (negative) order {−k1, . . . ,−kτ}. Then

deg(f) = 2− 2g − r + k,

where k = k1 + · · ·+ kτ .
(2) In addition, deg(f) ≥ 2 if and only if ∂/∂f has at least one pole (of

any order).

Proof. We have:
s1 + · · ·+ sr − k1 − · · · − kτ = 2− 2g.

Hence,
(s1 − 1) + · · ·+ (sr − 1) = 2− 2g − r + k1 + · · ·+ kτ .

We say that ∂/∂f is complete if its flow is well-defined for all complex
times t ∈ C and every initial condition.

Corollary 2. Let (L, ∂/∂f) be a pair as in Lemma 1. The following
assertions are equivalent:

(1) ∂/∂f is complete.
(2) The pair is (CP1, ∂/∂z) up to biholomorphism.
(3) deg(f) = 1.

Proof. The non-identically zero complete vector fields X on compact
Riemann surfaces are classified as follows (see [LM00, p. 179]): L is a torus
and X has no poles or zeros, or L is CP1 and X is holomorphic. Using
Remark 1, only the second case is possible with a double zero.

3. Tomography

3.1. Foliations by curves and pull-back vector fields. Following
equation (1.1), let

F = (F1, . . . , Fn) : Cnz → Cnw
be a polynomial map having det(DF ) = 1. Note that to avoid confusion,
we use Cnz and Cnw to denote the domain and the target, together with the
variables that we use in each of them.

Let us consider the affine coordinate lines
Ci,c := {(c1, . . . , ci−1, wi, ci+1, . . . , cn)} ⊂ Cnw,
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where wi ∈ C and c := (c1, . . . , ĉi, . . . , cn) ∈ Cn−1w . We have the canonical
web in Cnw,

W = {Ci,c | i = 1, . . . , n, c ∈ Cn−1w }

that they define. Under pull-back, we get a new web F ∗W of affine curves
in Cnz . A first description of it using algebraic geometry is as follows.

Given one direction i ∈ {1, . . . , n}, and fixing c = (c1, . . . , ĉi, . . . , cn)
∈ Cn−1w , we define

Ai,c = (F1, . . . , F̂i, . . . , Fn)
−1(c).

Remark 2. (1) Each Ai,c is an affine smooth algebraic curve (a complete
intersection) in Cnz , possibly with several connected components.

(2) For fixed i ∈ {1, . . . , n}, the curves {Ai,c | c ∈ Cn−1w } define a non-
singular polynomial foliation having n− 1 first integrals on Cnz .

For the rest of this subsection, we consider the ith direction in the webW,
and the ideas that we develop are valid for any other choice of i ∈ {1, . . . , n}.

Given the curve Ai,c, we will consider the associated projective curve
Pi,c ⊂ CPnz and its desingularization (normalization)

(3.1) π : Li,µ,c → Pi,c.

To simplify the notation, we omit the reference to the number of connected
components of the desingularization given by µ. Therefore, we consider Li,c
(the disjoint union of the connected components Li,µ,c, for all µ, where c
is fixed) as a compact Riemann surface, a priori with several connected
components.

We compactify the affine space Cnw in the ith direction, so that we get
CP1 ×Cn−1w (to be precise, the CP1-factor should be in the ith place). Note
that by the definition of Ai,c, the function F induces non-constant holomor-
phic maps

(3.2) Fi,c : Ai,c → Ci,c.

We can summarize all this as follows:

(3.3)
Li,c

π→ Pi,c
ν→ Ai,c

Fi,c→ Ci,c → CP1

∩ ∩ ∩ ∩
CPnz ⊃ Cnz

F→ Cnw ⊂ CP1 × Cn−1w

Here π is the normalization map, from the compact Riemann surface
Li,c to the projective curve Pi,c. By abuse of notation, the map ν is the
immersion of the projective curve Pi,c minus its points at infinity into the
affine curve Ai,c. The “∩” are obvious vertical inclusions. In particular, the
rightmost one is given by (wi) 7→ (c1, . . . , wi, . . . , cn).
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Thus, when c varies, (3.3) gives the following objects:
(i) The extensions of the functions in (3.3) to their normalizations

(3.4) {Fi,c : Li,c → CP1 | i = 1, . . . , n, c ∈ Cn−1w }
induced by F are a well-defined family of non-constant meromorphic func-
tions.

(ii) The associated n-tuples

(3.5) {∂/∂Fi = F ∗(∂/∂wi) | i = 1, . . . , n}
of commuting polynomial vector fields on Cnz . We learned this interesting
idea from [NS83].

(iii) The vector field ∂/∂Fi is well-defined, non-identically zero and mero-
morphic on the Riemann surface Li,c; we get a family of pairs

(3.6) {(Li,c, ∂/∂Fi) | i = 1, . . . , n, c ∈ Cn−1w }.
Summing up, each function Fi,c and its corresponding vector field ∂/∂Fi,c
on Li,c satisfy Lemma 1.

Remark 3. For n = 2, given a map (F1, F2) satisfying (1.1), the associ-
ated vector field

∂

∂F1
=
∂F2

∂z2

∂

∂z1
− ∂F2

∂z1

∂

∂z2

coincides with the usual Hamiltonian vector field of F2. In addition, ∂/∂F1

is tangent to the corresponding affine curves A1,c = {F2(z1, z2) = c}.
We examine one fiber again and consider its decomposition

Li,c = {e1, . . . , ev} ∪ (Ai,c),
where {e1, . . . , ev} is the finite non-empty collection of points that emerge
from the normalization of points at infinity of Pi,c, following (3.3), so that
π(eβ) ∈ CPn−1∞ ⊂ CPnz for β ∈ {1, . . . , v}. For simplicity we omit the depen-
dence on i and c in the notation for the points “e”.

A priori, the behavior of each Fi,c in (3.4) is reflected in cases (i)–(v) in
the table below.

Table 1

Finite value in Value at infinity in
Ci,c ⊂ Cn

w {∞} × Cn−1
w

finite point (i) local biholomorphism
p ∈ Ai,c

point at infinity (ii) local biholomorphism (iv) local biholomorphism
e ∈ {e1, . . . , ev} (iii) ramification index ≥ 2 (v) ramification index ≥ 2

We recall that under the assumption (1.1), F is a local biholomorphism,
so the empty places in the table are impossible for each function Fi,c.
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To analyze (ii)–(v), we use the vector fields in (3.3), since they describe
F ∗W (recall the definitions and notation introduced at the beginning of this
section) accurately. We get the following.

Corollary 3.

(1) (Regular point of ∂/∂Fi) At an affine point p ∈ Ai,c ⊂ Cnz ,
Fi,c is a local biholomorphism and ∂/∂Fi has a regular point at p
(i.e. ∂/∂Fi(p) 6= 0). See case (i) in Table 1.

(2) (Removable point of ∂/∂Fi) A non-affine point e ∈ {e1, . . . , ev} is
such that Fi,c is a local biholomorphism and its value Fi,c(e) is finite
if and only if ∂/∂Fi extends at e as a non-zero regular point. See
case (ii), ibid.

(3) (Pole of ∂/∂Fi) A non-affine point e ∈ {e1, . . . , ev} is such that Fi,c
has a finite value Fi,c(e) and ramification index κ ≥ 2 if and only if
∂/∂Fi has a pole of order −κ+ 1 ≤ −1 at e. See case (iii), ibid.

(4) (Zero of ∂/∂Fi) A non-affine point e ∈ {e1, . . . , ev} is such that Fi,c
has infinite value Fi,c(e) with ramification index σ ≥ 1 if and only if
∂/∂Fi has a zero of order (σ + 1) ≥ 2 at e. The point e is a zero of
order 2 for case (iv) or of order at least 3 for case (v), ibid.

The classification in the corollary is very close to the ideas of Druż-
kowski [Dru91], but our description with vector fields is more explicit.

Note that if eα, eβ are two points in {e1, . . . , ev} such that π(eα) =
π(eβ) = % ∈ Pi,c is a singular point of Pi,c, the behavior of Fi,c and ∂/∂Fi
at % depends on the choice of the branch of Pi,c, i.e. on the choice of eα, eβ
and not only on the singular point % itself.

Corollary 4. If for the value c ∈ Cn−1w we have Ai,c 6= ∅, then the
zeros of (Li,c, ∂/∂Fi) form non-empty sets and have orders greater than or
equal to 2, simple zeros are impossible.

3.2. Asymptotic values of F and the flows of ∂/∂Fi. Now we will
describe the interplay between pathological behavior of F , satisfying (1.1),
and the local or global flows of {∂/∂Fi}.

The set of asymptotic values of F , AV(F ) ⊂ Cnw, is the locus where F
fails to be proper; this means that there is no compact neighborhood U of
q ∈ AV(F ) ⊂ Cnw such that F−1(U) is compact in Cnz .

For dominant polynomial maps in Cn, the structure of the set of asymp-
totic values is studied in many papers (see for example [Jel93], [Jel99], [Per98]
and references therein).

Fixing a direction i, we look at the complete collection

{Fi,c : Li,c → CP1 | c ∈ Cn−1w },
and construct the images of the points (ii)–(v) as subsets of CP1 × Cn−1w ,
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considering the CP1 factor as the compactification in the ith direction. Let
us define the images as follows:

Ri := {Fi,c({removable points of ∂/∂Fi}) | c ∈ Cn−1w },
Pi := {Fi,c({poles of ∂/∂Fi}) | c ∈ Cn−1w },
Zi := {Fi,c({zeros of ∂/∂Fi}) | c ∈ Cn−1w }.

Therefore we have

Ri, Pi ⊂ Cnw ⊂ CP1 × Cn−1w ,

Zi = {∞} × Cn−1w ⊂ CP1 × Cn−1w .

A priori, Ri and/or Pi could be empty, but Zi is never empty. Let us define

R =

n⋃
i=1

Ri and P =

n⋃
i=1

P i

with the closure taken in Cnw (with the usual topology). Note that a priori
R ∩ P ⊂ Cnw can be non-empty.

Remark 4. AV(F ) = R ∪ P and by Z. Jelonek’s result [Jel93], AV(F )
is an algebraic hypersurface or the empty set.

We want to give an interpretation of R ∪ P using local flows. Given
{∂/∂Fi} we can denote by

Ψi(t, p) : Ωi → Cnz , i ∈ {1, . . . , n},

their local flows where t is the complex time. They are holomorphic maps
on suitable open (n + 1)-dimensional complex manifolds Ωi, their maximal
domain of definition. We have a dichotomy:

If Ωi = Ct × Cnz then ∂/∂Fi is a complete vector field, and Ψi(t, p) is a
flow or a (C,+)-action using algebraic language.

If Ωi 6= Ct × Cnz then ∂/∂Fi is an incomplete vector field.
Let ∆n(p, ε) be the n-dimensional open polydisk with center p and radius

ε > 0.

Remark 5. For an initial condition p0 ∈ Ai,c the local flow Ψi can be
written using a suitable branch of F−1 : ∆n(F (p0), ε) ⊂ Cnw → Cnz of the
local inverse as follows:

(3.7) Ψi(t, p0) = F−1(F (p0) + (0, . . . , t, . . . , 0)).

This follows from equation (2.1).

Lemma 3. Let F be a polynomial map with det(DF ) = 1, and let Ψi be
its ith pull-back local flow as above.
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(1) Let ∆n(q, ε) be a polydisk inside Cnw − (R ∪ P ). Then the local holo-
morphic flows

Ψi(t, p0) : ∆(0, ε)→ Cnz , i ∈ {1, . . . , n},
that start at any p0 ∈ F−1(q) are well-defined for t ∈ ∆(0, ε).

(2) Assume that Ψi(t, p0) exists for t ∈ ∆(0, ε) at initial conditions p0 in
an open connected set B ⊂ Cnz . Then the diagram

(3.8)

B ⊂ Cnz
Ψi(t, ) //

F
��

Cnz
F
��

Cnw Ti(t, )
// Cnw

commutes for Ti(t, w1, . . . , wn) = (w1, . . . , wi + t, . . . , wn).
(3) ∂/∂F1, . . . , ∂/∂Fn are complete if and only if AV(F ) = ∅.
An advantage of our construction is the splitting of the asymptotic values

AV(F ) into two sets: the image of removable points R and poles P . We will
apply this distinction in Theorem 1.

Proof. The assertions derive from the fact that F sends ∂/∂Fi to ∂/∂wi.
Hence, by (2.1) and (3.7) the t in each local flow Ψi(t, p) is in local correspon-
dence with the variable {wi}. Part (3), as far as we know, was first proved
in [MO87]. The reader can also find proofs in [Cam97] and [Bus03].

Recall that ∆n(q, ε) ∩ AV(F ) = ∅ in Lemma 3(1) is a sufficient but
not necessary condition in order that Ψi(t, p) starting at p ∈ {F−1(q)} are
defined for every time t ∈ ∆(0, ε). A priori, {F−1(q)} can have two or more
points.

Now we will examine the polynomial submersion defined by (F2, . . . , Fn)
coming from (1.1). The second and third assertions in Lemma 3 are of par-
ticular interest when we search for a map between open plaques in the fibers
of the submersions (F1, . . . , F̂i, . . . , Fn), as follows.

Corollary 5 (Local Ehresmann connections). For t ∈ ∆(0, ε) as in
Lemma 3(2)–(3), there exist biholomorphic maps

Ψj(t, ) : U ⊂ A1,c → V ⊂ A1,c(t), j ∈ {2, . . . , n},
such that U , an open plaque, goes to V and c(t) = (c2, . . . , cj + t, . . . , cn).

Proof. Note that the length of the time and the size of U are bounded
as in Lemma 3(1).

A priori the study ot the local bifurcations (Ai,c, ∂/∂Fi) with respect
to {c} is a hard problem. The local behavior of non-bifurcation pairs can be
seen in the next result and the main theorem will give global non-bifurcation
conditions.
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Corollary 6. Let p0 ∈ Li,c be such that F (p0) ∈ AV(F ).
(1) If p0 is a removable point of ∂/∂Fi, then Ψi(t, p0) can be extended

to an open neighborhood V (p0) ⊂ Li,c as a holomorphic flow.
(2) If p0 is a pole of order −k, then the local flow does not exist (even

as a C0 map). F−1 : Cnw → Cnz does not exist.

Proof. For the first assertion, note that the flow is along the complex
trajectory. The second assertion follows from Corollary 1.

4. Invertible polynomial maps. A curve

Ai,c = (F1, . . . , F̂i, . . . , Fn)
−1(c),

coming from a map satisfying (1.1), is a typical fiber if there is an open
neighborhood U of c ∈ Cn−1w such that the restriction (F1, . . . , F̂i, . . . , Fn) :

(F1, . . . , F̂i, . . . , Fn)
−1(U) → U is a topologically trivial fiber bundle; other-

wise Ai,c′ is an atypical fiber.
For n = 2 the set of atypical fibers is always empty or finite (see [Bro83]).

For n ≥ 3, the set of atypical fibers of (F1, . . . , F̂i, . . . , Fn) can be a hyper-
surface, probably reducible.

Lemma 4. Let F = (F1, . . . , Fn) : Cnz → Cnw be a polynomial map with
det(DF ) = 1. If ∂/∂F2, . . . , ∂/∂Fn are complete on typical A2,c, . . . ,An,c
of (F1, . . . , F̂j , . . . , Fn), j = 2, . . . , n, then they are also complete on their
atypical fibers.

Note that in the hypothesis, a priori a typical Aj,c can be reducible and
also support a complete ∂/∂Fj . In this case Aj,c is a union of copies of C.

Proof of Lemma 4. We will study the flow Ψ2, and the same considera-
tions will be true for Ψ3, . . . , Ψn.

The atypical fibers of Fi determine a hypersurface Ai ⊂ Cnz , probably
reducible. There is a finite set Γi of values such that Fi is a locally trivial
fiber bundle over (Cwj − Γj) (see [Bro83]).

The atypical fibers of (F1, F3, . . . , Fn) satisfy

(4.1) {A2,c′} ⊂
n⋃

j 6=2, j=1

Aj

since clearly the intersection of typical hypersurfaces

A2,c =

n⋂
j 6=2, j=1

{Fj = cj}

produces a typical fiber of (F1, F3, . . . , Fn). Here, we are using the fact that
each polynomial F1, F3, . . . , Fn determines a locally trivial fiber bundle at
every p0 ∈ A2,c, and the transversality condition between F1, F3, . . . , Fn from
equation (1.1).
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Let p0 be a point in an atypical A2,c′ . The vector field (∂/∂F2)(p0) is non-
zero, and hence at p0 the vector field admits a local flow box. The atypical
fibers {A2,c′} are contained in the union of hypersurfaces, probably singular,
at p0 given by (4.1). Moreover if p0 is a singular point of the union in (4.1),
by the transversality condition from equation (1.1), locally at p0, the hy-
persurface

⋃n
j 6=2, j=1Aj admits a local model of the shape {z̃1z̃3 · · · z̃n = 0},

where at most n− 1 local coordinates z̃ι appear, but not necessarily all the
n− 1 coordinates.

As a result, there exists a holomorphic embedding, of a one-dimensional
disk, E : ∆s(0, ε)→ Cnz such that

(i) E(0) = p0 and the image E((∆s(0, ε)) intersects the atypical fibers
of (F1, F3, . . . , Fn) only in p0,

(ii) at each point, ∂/∂F2 and the tangent vectors to the embedded disk
are linearly independent.

Consider the flow Ψ2(t, ) := (Ψ2,1, . . . , Ψ2,i, . . . , Ψ2,n)(t, ) of ∂/∂F2 start-
ing at the initial conditions in the image E(∆s(0, ε)).

Towards a contradiction, assume that Ψ2 is not holomorphic on an atyp-
ical fiber; we then look at their components. Thus for at least one index i,
Ψ2,i(t, e(0)) exists, and it is holomorphic for some disk ∆(0, r) ⊂ Ct, but not
for a complex t0 with r := |t0|.

Without loss of generality we reparametrize E, and assume that the new
domain is ∆s(0, 2r), but preserving the same image and (i) and (ii).

On the other hand, by the completeness hypothesis for s∈∆s(0, 2r)−{0},
Ψ2,i(t, E(s)) exists and it is holomorphic on ∆s(0, 2r), since this is fulfilled
for any radius.

With this in mind we construct the following Hartogs figure:

H = {(t, s) ∈ ∆2(0, 2r) | |t| < r or |s| > r} ⊂ C2.

By the Hartogs Theorem (see [FG02, pp. 25–26]), Ψ2,i has a unique holo-
morphic extension to the whole ∆2(0, 2r). That is a contradiction to the
existence of a pole of Ψ2,i(t, E(s)) at (t0, 0) ∈ ∆2(0, 2r). The flow of ∂/∂F2

exists for all complex t at every initial condition p0 ∈ Cnz .

The above result seems to be proved by the ideas of other authors; com-
pare [For95] and [Reb04, Proposition 2.8] for the case n = 2.

Some results on the invertibility of polynomial maps of Cn can be proved
using {∂/∂Fi}. The second stage for our main theorem is as follows.

Theorem 1. Let F = (F1, . . . , Fn) : Cnz → Cnw be a polynomial map
with det(DF ) = 1. The following assertions are equivalent:

(a) The inverse map F−1 : Cnw → Cnz exists.
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(b) (Global Ehresmann connections) {∂/∂F2, . . . , ∂/∂Fn} are complete
on Cnz .

(c) The pairs {(Lj,c, ∂/∂Fj)} for j = 2, . . . , n and all c ∈ (F1, . . . , F̂j ,
. . . , Fn)(Cnz ), are biholomorphic to (CP1, ∂/∂zj); the vector fields
have only a double zero and no poles on Lj,c.

(d) The projective curves {Pj,c} ⊂ CPnz for j = 2, . . . , n and all c ∈
(F1, . . . , F̂j , . . . , Fn)(Cnz ) have only one (irreducible) branch at the
hyperplane at infinity of CPnz .

(e) The polynomial submersion (F2, . . . , Fn) : Cnz → Cn−1w is a globally
trivial topological fiber bundle (no atypical fibers A1,c′ appear).

(f) The degree of F is one, and F is injective.

Example 1. For the dominant map (F1, F2)(z1, z2) = (zd1 , z2), d ≥ 2,
the critical set {det(D(F1, F2)) = 0} is a curve. However, the pull-back
∂/∂F2 = ∂/∂z1 is complete and the typicalA2,c has d connected components.
Therefore, we cannot avoid det(DF ) = 1 in Theorem 1.

We point out below the new contributions in this paper:

(i) We work in any dimension n ≥ 2 and use only j = 2, . . . , n as
directions in (b)–(e).

(ii) The equivalence between (a) and the completeness of all {∂/∂F1,
. . . , ∂/∂Fn} was shown by G. H. Meisters and C. Olech [MO87].
A simple proof is also given by A. Bustinduy [Bus03]. Our present
assertion is only for j = 2, . . . , n.

(iii) The equivalence between (a) and (d), in case n = 2, is a classical
result of S. S. Abhyankar (see [A77] or [Ess00, Thm. 10.2.23(1),
p. 253)].

(iv) (b)⇒(a) is a kind of cancellation theorem for Cnz in the presence of
det(DF ) = 1. For cancellation problems see [Kr89].

(v) Recall that (f)⇒(a) is the celebrated theorem by Newman, Biały-
nicki-Birula and Rosenlicht [BB-R62].

Proof of Theorem 1. (a)⇒(b). By using [MO87] or [Bus03], the vector
fields {∂/∂F1, . . . , ∂/∂Fn} are holomorphic and complete on Cnz .

(b)⇒(a). If we assume that the set of asymptotic values AV(F ) is empty,
then F is invertible. Therefore, we must assume AV(F ) 6= ∅.

The completeness of {∂/∂F2, . . . , ∂/∂Fn} imposes that AV(F ) is invari-
ant under the flows of {Ψ2, . . . , Ψn} on Cnw. Thus, AV(F ) =

⋃
α{w1 = c1α}

is a union of parallel hyperplanes.
Consider an affine typicalA1,c, so that F (A1,c) = {(z1, c2, . . . , cn)}. Every

point p ∈ Cnz has a unique canonically associated Π(p) ∈ A1,c using the
Ehresmann connection from Corollary 5 and the completeness of the vector
fields as follows. Given the image F (p) = (w1, . . . , wn) ∈ Cnw:
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• move p following the flow of ∂/∂F2 for t2 = w2 − c2, and get p2;
• move p2 following the flow of ∂/∂F3 for t3 = w3 − c3, and get p3; . . . ;
• move pn−1 following the flow of ∂/∂Fn for tn = wn − cn, and get pn.

As a result, then Π(p) ∈ A1,c = pn is well-defined and unique since the
complete vector fields ∂/∂F2, . . . , ∂/∂Fn commute. We have constructed a
holomorphic fiber bundle

(4.2) Π : Cnz → A1,c.

Each fiber Π−1(p0) ⊂ Cnz , p0 ∈ A1,c, is biholomorphic to Cn−1.
To prove this last assertion, we use the fact that the fiber Π−1(p0) sup-

ports n − 1 complete commuting {∂/∂F2, . . . , ∂/∂Fn}. Hence, the fiber is
biholomorphic to C`×(C∗)n−`−1 using the ideas in [Bus03, Section 3]. More-
over, the vector fields have double zeros at infinity, since by Remark 1(iv)
zeros of order one are forbidden. The C∗ factors are impossible, and so the
fiber looks like Cn−1.

Concerning the number of components of A1,c, if we assume for a mo-
ment that A1,c has several connected components, recalling that the fiber
is Cn−1 which is connected, then the total space of the fiber bundle will
be disconnected. This contradicts the fact that the total space of the fiber
bundle (4.2) is the original Cnz . Therefore, the typical A1,c is irreducible.

We remark that the fiber bundle (4.2) has a section: namely the original
A1,c as a submanifold of the total space Cnz .

IfA1,c ⊂ L1,c has at least two punctures (some puncture(s) come from the
zero(s) of the ∂/∂F1 and at least a second puncture from F (A1,c)∩AV(F )),
then the fundamental group of this fiber is non-trivial.

On the other hand, the homotopy sequence for differentiable fiber bundles
with a section (see [Eb07, Prop. 4.20, p. 221]) asserts that the fundamental
group of the total space is isomorphic to the product of the fundamental
groups of the base and the fiber. In our case π1(A1,c) 6= e; however, π1(Cnz )
= e, which is a contradiction. Thus, AV(F) must be empty and {∂/∂Fi |
i = 1, . . . , n} are complete. Hence F−1 exists.

(b)⇔(c). “⇐” follows from Corollary 2. For the converse, the vector fields
are complete and each Lj,c is at most a finite union of projective lines CP1.
Moreover, using (a)⇔(b) when F−1 exists, the Lj,c have only one connected
component, as is asserted in (c).

(c)⇔(d). If we assume (c), then assertion (d) follows from Corollary 2 and
Table 1. Conversely, there is a one-to-one correspondence between branches
of the projective fibers Pj,c at the hyperplane at infinity of CPnz and zeros,
removable points and poles of ∂/∂Fj on Lj,c. Recalling Corollary 2 and
Table 1, we note that complete vector fields of the kind F ∗(∂/∂wj) have
only one double zero on each Pj,c. The equivalence follows.
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(b)⇔(e). We assume (b), thus we use the geometry of the set of asymp-
totic values as in the proof of (a)⇔(b): each A1,c can be pushed by the Ehres-
mann connection of {∂/∂F2, . . . , ∂/∂Fn} for every time. Thus, (F2, . . . , Fn) :
Cnz → Cn−1w determines a holomorphically trivial fiber bundle. For the con-
verse assertion, if the fiber bundle determined by (F2, . . . , Fn) as in the line
above is topologically trivial, then the fundamental group of the fiber A1,c

is trivial and ∂/∂F1 is complete. Therefore (b) is true.
(b)⇔(f). Using (b) as hypothesis, (F2, . . . , Fn) determines a holomor-

phically trivial fiber bundle with fiber Cn−1, base A1,c and total space bi-
holomorphic to Cnz , as in (4.2). For topological reasons, A1,c is a complex
line. The degree of F equals the degree of F1,c : A1,c → C1,c (because A1,c

is a typical fiber), and F1,c is a biholomorphism. Hence, the degree of F is
one.

Assume (f); the asymptotic values are AV(F ) = R ∪ P as in Remark 4.
We note that P is empty: otherwise one pair (Li,c, ∂/∂Fi), i ∈ {1, . . . , n},

has a pole; then by Remark 1(1), F would be of degree greater than or equal
to 2, contrary to hypothesis (f).

As a result, AV(F ) = R, and it is empty or a hypersurface (see Remark 4
and [Jel93]).

If R= ∅ then F is bijective and we can conclude that {∂/∂F1, . . . , ∂/∂Fn}
are complete.

If R 6= ∅ then let us use a slight modification of the original idea in
the Newman–Białynicki-Birula–Rosenlicht Theorem (see [BB-R62] or more
recently [Gr99, Section 3.B]).

We note that F : Cnz → Cnw − R is a local biholomorphism of degree 1
(since P = ∅). Therefore,

H1(Cnw −R,Z) = Z⊕ν ,
where ν is the number of irreducible components of R; for the computation
of this homology (see [Dim92, p. 103]). That contradicts H1(Cnz ,Z) = 0.
Thus R is empty, and assertion (b) holds.

Corollary 7. If one (Li,c, ∂/∂Fi) has a pole, then F−1 does not exist.

Acknowledgments. The first and second authors are partially sup-
ported by the Spanish MICINN projects MTM2010-15481, MTM2011-26674-
C02-02. The third author is partially supported by Conacyt, México.

REFERENCES

[A77] S. S. Abhyankar, Lectures on Expansion Techniques in Algebraic Geometry,
Lectures on Math. Phys. 57, Tata Institute of Fundamental Research, Bombay,
1977.



VECTOR FIELDS 219

[BB-R62] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic
varieties, Proc. Amer. Math. Soc. 13 (1962), 200–203.

[Bro83] S. A. Broughton, On the topology of polynomial hypersurfaces, in: Proc. Sym-
pos. Pure Math. 40, Amer. Math. Soc., 1983, 167–178.

[Bus03] A. Bustinduy, Zeroes of complete polynomial vector fields, Proc. Amer. Math.
Soc. 131 (2003), 3767–3775.

[Cam97] L. A. Campbell, Jacobian pairs and Hamiltonian flows, J. Pure Appl. Alge-
bra 115 (1997), 15–26.

[Dim92] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer,
New York, 1992.

[Dru91] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in C2,
Ann. Polon. Math. 55 (1991), 95–101.
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