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Abstract. We investigate properties of coset topologies on commutative domains
with an identity, in particular, the S-coprime topologies defined by Marko and Poru-
bský (2012) and akin to the topology defined by Furstenberg (1955) in his proof of the
infinitude of rational primes. We extend results about the infinitude of prime or maximal
ideals related to the Dirichlet theorem on the infinitude of primes from Knopfmacher and
Porubský (1997), and correct some results from that paper. Then we determine cluster
points for the set of primes and sets of primes appearing in arithmetic progressions in
S-coprime topologies on Z. Finally, we give a new proof for the infinitude of prime ideals
in number fields.

1. Introduction. Our primary motivation comes from Furstenberg [Fu]
who in 1955 used an elegant topological idea to prove the infinitude of
primes. He used a topology on the set Z of all integers induced by the sys-
tem of all two-sided infinite arithmetic progressions {an + b}∞n=−∞. Subse-
quently, Golomb [Go1], [Go2] used one-sided infinite arithmetic progressions
with (a, b) = 1 to introduce a topology on the set N of positive integers with
the aim of applying a similar topological approach to the Dirichlet theo-
rem on the infinitude of primes in arithmetic progressions. Furstenberg’s
and Golomb’s ideas were then analyzed in [KP] in a more general setting
of commutative rings with identity and without zero divisors. In [Po], the
Furstenberg proof was extended to generalized ideal systems, the so-called
x-ideals (cf. [Au]). Actually, it seems that it was Golomb [Go2] who fore-
shadowed the possibility of extending the technique of Furstenberg’s proof
to more abstract algebraic structures. However, his ideas were not always
transparent or precise. In 2003 Broughan [Br] came with another general-
ization of the original Furstenberg idea.

Our direct motivation comes mainly from papers [Br], [KP] and [MP].
Our investigation is also based on the interplay of the concepts of (topolog-

2010 Mathematics Subject Classification: Primary 11B05; Secondary 11N80, 11N25,
11A25, 22A99, 22A15.
Key words and phrases: coset topology, topological semigroup, topological density, Dirich-
let theorem on primes, arithmetic progression, maximal ideal, ring of finite character,
residually finite ring, infinitude of primes, pseudoprime.

DOI: 10.4064/cm140-2-5 [221] c© Instytut Matematyczny PAN, 2015



222 F. MARKO AND Š. PORUBSKÝ

ical) density and strong density (cf. Section 4.1 for more details) which was
developed in [KP] as a result of an analysis of some previous proofs given in
the domain of integers. A deeper analysis of these ideas shows that they are
applicable not only to primes in arithmetic progressions but also to a wider
class of sequences; for instance, various types of pseudoprimes, coprime ele-
ments, etc. in arithmetic sequences (we direct the interested reader to [KP]
for further details).

In Section 2 we recall the definition of coset topologies and properties
of induced topologies. In Section 3 we study S-coprime topologies and their
properties in the context of topological semigroups. In Section 4 we discuss
the infinitude of primes in arithmetic progressions, and clarify and correct
some results of [KP]. In Section 5 we generalize results of [Br], and com-
pute the cluster points of arithmetic progressions with respect to various
S-coprime topologies on Z. In Section 6 we use S-coprime topologies to find
a certain topological condition that guarantees the infinitude of prime ideals
in rings and leads to a new short proof of the infinitude of prime ideals in
number fields.

2. Coset topologies

2.1. Definition. For the convenience of the reader we recall the defi-
nition of coset topology from [KP]. All rings R under consideration will be
commutative with an identity 1 = 1R 6= 0, and with no proper zero divisors.

Given two subsets A,B of R, let A + B = {a + b : a ∈ A, b ∈ B} and
AB = {ab : a ∈ A, b ∈ B}. Two ideals A,B of R are called coprime if
A + B = R.

We call A a proper ideal if it is a proper subset of R, that is, A 6= R.
The ideal R is called the unit ideal and (0) is the zero ideal. Let I = IR be
the set of all proper nonzero ideals of R. The set I ∪ {R} is closed under
the operation of addition of ideals, and the set I itself is closed under the
operation of intersection and multiplication defined above.

The set of proper maximal ideals will be denoted by M, and the set of
proper nonzero prime ideals by P.

Suppose that we have assigned to each element a ∈ R a nonempty sub-
set Sa of I with the following property:

(2.1) If A,B ∈ Sa, then there is C ∈ Sa such that C ⊂ A ∩B.

For each a ∈ R, the collection Ca = {a+ A : a ∈ R, A ∈ Sa} is then a filter
base at a because for A,B ∈ Sa there is C ∈ Sa such that C ⊂ A ∩B and
hence a+ C ⊂ (a+ A) ∩ (a+ B). The set of cosets

(2.2) CS = {a+ A : a ∈ R, A ∈ Sa}
forms a subbase of a topology τS on R, called a coset topology.
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The role of cosets in defining a topology is based on the following simple
result:

Lemma 2.1 ([KP, Lemma 1]). Let a+A, b+B be two cosets of ideals A,B
of a ring R. Then their intersection (a+ A) ∩ (b+ B) is either empty or a
single coset z + A ∩B, where z ∈ (a+ A) ∩ (b+ B).

Coset topologies were used and studied in several papers. For instance,
Knopfmacher and Porubský [KP] investigated the following three coset topo-
logies on R:

• the linear topology τ1 generated by all cosets, where Sa = I for every
a ∈ R,
• the nontrivial cosets topology τ2 with A ∈ Sa if and only if a /∈ A,
• the invertible cosets topology τ3, where A ∈ Sa if and only if (a) and
A are coprime ideals, that is, (a) + A = R.

2.2. Induced topologies. Let R0 = R \ {0}. Two elements a, b of R0

are called associated , written a ∼ b, if the principal ideals (a) and (b) coin-
cide. Of course, this means that a = ub for a unit u ∈ R.

The aim of [KP] was to clarify and formalize some ideas indicated by
Golomb and other authors in order to transfer the Furstenberg topology
from Z to the set of positive (or nonnegative) integers which does not form
a ring. A closer analysis of these ideas leads to the necessity of taking into
account an induced topology on the factor set

GR = R0/∼.

If a denotes the ∼-equivalence class of a, then GR with the multiplication
a.b = ab forms a commutative semigroup with zero. Given X ⊂ R0, let
X =

⋃
{x : x ∈ X}.

Following [KP], let

θ : R0 → GR, θ(a) = a,

be the canonical semigroup epimorphism relative to the ring multiplication.

For the remainder of this section we shall suppose that the multiplicative
semigroup (R, ·) of the ring R is a topological semigroup relative to the
topology τS . Consequently, R0 = (R \ {0}, ·) is a topological semigroup

relative to the topology τ∗S induced on R0 by τS .

Remark 2.2. If the underlying ring R is infinite, then all elements of
the subbase CS are also infinite, and consequently no nonempty finite subset
of R or R0 is open in the topology τS or τ∗S , respectively.

On the other hand, as was shown in [KP], the set GR can be endowed
with the quotient topology ∆∗S with respect to the canonical epimorphism θ
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and the induced topology τ∗S on R0. This quotient topology

(2.3) ∆∗S =
{
X ⊂ GR : θ−1(X) =

⋃
{x : x ∈ X} belongs to τ∗S

}
is the greatest topology with respect to which the canonical epimorphism θ
is continuous.

The proofs of the following two statements are analogous to those in [KP].

Lemma 2.3. The canonical epimorphism θ : R0 → GR is continuous and
open with respect to the topologies τ∗S , ∆

∗
S .

Proposition 2.4. GR forms a topological semigroup relative to the quo-
tient topology ∆∗S .

3. S-coprime topologies

3.1. Definition. The notion of S-coprime topology was introduced
in [MP]. We recall its definition below.

Fix a subset S of P. For each a ∈ R define the set Sa as follows:

F: An ideal A ∈ I belongs to Sa if and only if (a) + A 6⊂ P for every
P ∈ S, or equivalently, for every P ∈ S there exist tP ∈ R and
xP ∈ A such that tPa+ xP 6∈ P.

In particular, Sa contains all ideals coprime to the principal ideal (a).
We can give another description of elements from Sa as follows. Let Ha be
the set of those ideals from S that contain a. Then

Sa = {Q ∈ I : Q 6⊂ B for every B ∈ Ha}.
If R is a Dedekind domain, then A ∈ Sa if and only if the greatest common
divisor (a,A) is a product of prime ideals that do not belong to S.

A coset a+ A such that A ∈ Sa is called S-coprime.

The Krull theorem says that every commutative ring with a multiplica-
tive identity has a maximal ideal. On the other hand, in a commutative ring
with identity, every maximal ideal is a prime ideal. In the special case when
S consists of maximal ideals, the above condition F can be reformulated as

F′: An ideal A ∈ I belongs to Sa if and only if for every M ∈ S we have
(a) + A + M = R.

Here the condition holds for every ideal M, not necessarily maximal, for if
ta + x + m = 1 for some t ∈ R, x ∈ A, m ∈ M, then ta + x = 1 − m,
while clearly 1−m /∈M. The condition is sufficient because ta+x = y with
y /∈M and M maximal implies (a) + A + M = R.

3.2. Properties. In the following lemmas extending [KP, Lemmas 4–6]
we list some useful properties of S-coprime cosets.
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Lemma 3.1. Let M be a maximal ideal of a ring R and let m /∈ M.
Then the coset m+ M is S-coprime for every S.

The proof is immediate. In the next lemmas we suppose that S is given.

Lemma 3.2. If a + A and b + A are two S-coprime cosets, then so is
ab+ A.

Proof. Let P ∈ S. Then there exist tP, t
′
P ∈ R and xP, x

′
P ∈ A such

that tpa + xP /∈ P and t′Pb + x′P /∈ P. Since P is a prime ideal, we have

(tpa + xP)(t′Pb + x′P) /∈ A. Here (tpa + xP)(t′Pb + x′P) = tpt
′
Pab + t′PbxP +

tpax
′
P + xPx

′
P. The facts that tpt

′
P ∈ R and t′PbxP + tpax

′
P + xPx

′
P ∈ A

finish the proof.

Lemma 3.3. Let a + A be S-coprime. Then so is a + An for all n =
1, 2, . . . .

Proof. Given P∈S, there exist tp ∈R and xp ∈A such that tpa+xP /∈ P.
Since P is a prime ideal, by induction on n we see that (tpa + xP)n /∈ P.

On the other hand (tpa + xP)n = a
∑n

k=1

(
n
k

)
ak−1tkpx

n−k
p + xnp , where∑n

k=1

(
n
k

)
ak−1tkpx

n−k
p ∈ R and xnp ∈ An.

Denote the collection of S-coprime cosets by

CS = {a+ A : a ∈ R, A ∈ Sa}.
By [MP, Lemma 2.8], the system CS forms a base of a topology τS on R,
called the S-coprime topology.

Proposition 3.4. The topology τS converts the multiplicative semigroup
of the ring R into a topological semigroup. Also, R0 is a topological semi-
group relative to the topology τ∗S induced on R0 by the topology τS .

Proof. It remains to prove that the ring multiplication is continuous.
Choose an S-coprime coset ab + C. For every P ∈ S there are t ∈ R and
x ∈ C such that tab + x 6∈ P. Since tab + x = (tb)a + x = (ta)b + x, the
cosets a+ C and b+ C are also S-coprime. Clearly (a+ C)(b+ C) ⊂ ab+ C,
proving the claim.

Our topology τS yields a new class of generalized topologies based on an
idea introduced by Broughan [Br] in the case of the ring of integers. Note
that the extreme cases S = ∅ and S = P produce the previously defined
linear topology τ1 and invertible cosets topology τ3, respectively.

If M ⊂ S, then τS is the invertible cosets topology, and by [KP, The-
orem 12] the topological spaces (R, τS), (R0, τ∗S) and (GR, ∆

∗
S) are all con-

nected. This is not the case when M 6⊂ S.

Proposition 3.5. If M 6⊂S, then the topological spaces (R, τS), (R0, τ∗S)
and (GR, ∆

∗
S) are disconnected.
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Proof. Let P ∈ M \ S. Then P ∈ Sa for each a ∈ R, and consequently
all cosets a + P are open in the topology τS . Since R is a disjoint union
of these cosets, we conclude that (R, τS) is disconnected. This immediately
implies that (R0, τ∗S) is disconnected too.

To handle the case of (GR, ∆
∗
S), assign to each a ∈ R0 the set Ua of

nonzero elements of all cosets modulo P that contain an element associated
to a. Observe that Ua and Ub are either disjoint or identical. Indeed, assume
c ∈ Ua ∩Ub, and write c = au1 + p1 and c = bu2 + p2, where u1, u2 are units
and p1, p2 ∈ P. Then any element x of Ua can be written as x = au + p,
where u is a unit and p ∈ P. Then

xu−1u1 = au1 + pu−1u1 = c+ (pu−1u1 − p1) = bu2 + (pu−1u1 − p1 + p2),

showing that x ∈ Ub. Thus we get Ua ⊂ Ub, and analogously Ub ⊂ Ua. Each
Ua is an open subset of (R0, τ∗S), and R0 is a disjoint union of these sets.
Moreover, since U1 does not contain P\{0}, we have U1 6= R0 and the above
union must contain at least two members. Finally, the sets Va = θ(Ua) are
open, because θ−1(Va) = Ua are open, and the space GR is a disjoint union
of at least two open sets Va, showing that GR is disconnected.

4. Strong density and the Dirichlet condition

4.1. Definition. The following interesting observation was made by
Sierpiński (1):

Proposition 4.1 ([Si2, p. 124]). The following two statements are equiv-
alent:

T: If a and b are positive integers such that (a, b) = 1, then there exist
infinitely many primes of the form ak + b, where k is a positive
integer.

T1: If a and b are positive integers such that (a, b) = 1, then there exists
at least one prime number p of the form ak+b, where k is a positive
integer.

As we have already mentioned, some earlier ideas involving arithmetic
progressions are not always transparent. For instance, Golomb [Go2, p. 181]
writes:

In particular, if the proof that works for the rational integers should also
be valid in other rings of algebraic integers (where the corresponding
topology, based on residue classes of ideals, is introduced), the enrich-
ment of number theory would be enormous. Thus, the corresponding
theorem for the Gaussian integers would imply infinitely many Gaus-
sian primes in the progression {n+i}, and hence infinitely many rational
primes of the form n2 + 1 is a classical unsolved problem.

(1) See also [Si1, Si3, Sp, Sc, Wo].
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Unfortunately, the arithmetic progression {n + i} does not form a residue
class of an ideal in the ring of Gaussian integers.

For us, a more important point worth noting are ambiguities of using
arithmetic progressions {ak+b}, where k runs over nonnegative (or positive)
integers, as a topological basis of the set of nonnegative integers (which is a
semigroup but not a ring); in particular, when it is not clear whether b ≤ a.

Sierpiński’s original proof in [Si1, p. 526] works with arithmetic progres-
sions {ak+b} with k running over nonnegative integers, and with b arbitrar-
ily large. His proof by contradiction starts with the assumption that there
is an arithmetic progression with (a, b) = 1 containing only finitely many
primes. The contradiction is reached using an arithmetic subprogression of
{ak+ b} which has the initial term larger than the greatest prime contained
in the original progression {ak + b}. (In later editions [Si2, p. 124] and
[Si3, p. 129], he uses arithmetic progressions with k running over positive
integers but with sufficiently large multiples of the original common differ-
ence.) Six years later, the equivalence of Proposition 4.1 was formulated by
Spira [Sp] as an elementary problem in the American Mathematical Monthly.
The first solution to this problem given in [Ha] was incorrect. This is be-
cause the assumption of the existence of a prime in the progression {ak+b},
where k runs over nonnegative integers, cannot guarantee that ak + b is a
prime for some k > 0 if b itself is a prime. The correct proof given in [Ze]
uses a subprogression with a common difference that is a higher power of
the original common difference (in the spirit of Lemma 3.3). This subpro-
gression contains an additional prime (note that Sierpiński uses a similar
idea in his proof in [Si2, p. 124] and [Si3, p. 129]). Golomb [Go2, Theorem 6]
reformulated the equivalence of Proposition 4.1 but for its proof he refers
simply to [Sp].

These comments show an interesting facet of the above mentioned proofs
of the equivalence between statements T and T1, namely, k must run over
positive integers, and not over nonnegative integers only. The reason is that
if b itself is a prime, then the arguments used may reproduce b and need not
generate a new prime. That means that the simple density does not ensure
that the next prime constructed is greater than b. This was the reason for
introducing the concept of strong density in [KP]. Subject to certain fur-
ther hypotheses on R, the P-Dirichlet condition for a subset P of R defined
below, called simply Dirichlet condition in [KP], is equivalent to the strong
density of the set P in GR.

Given a subset W of a topological space (Y, τ), call W strongly dense in
Y if every nonempty open set in τ contains at least two elements of W . In
case of ambiguity we shall use the term τ -strongly dense.

The following statement, which is Lemma 16 of [KP], shows that under
certain assumptions, density and strong density are equivalent. This state-
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ment was given in [KP] without proof. Since it will be needed below, for the
sake of completeness we provide its proof here.

Lemma 4.2. Assume that Y is a T1-space. Assume W is dense in Y and
no singleton {w} for w ∈W is open in Y . Then W is strongly dense in Y .

Proof. Take an arbitrary nonempty open subset X of Y . Since W is
dense, there is w ∈ X ∩W . As Y is a T1-space, the set {w} is closed. Hence
X \{w} = X∩(Y \{w}) is an open set that cannot be empty because {w} is
not open. Since W is dense in Y , we conclude that there is another element
w′ ∈W ∩ (X \ {w}), showing that W is strongly dense in Y .

As was shown in [KP], Golomb’s proof of [Go2, Theorem 6] can be
retrieved using the fact that the subspace topology D, defined on p. 135
of [KP], is Hausdorff. Thus as expected, there are situations when both
types of densities are equivalent. We have the following analogue of [KP,
Proposition 15].

Proposition 4.3. Assume that a ring R is such that A2 6= A for every
ideal A of R different from R and the zero ideal. Then a set is strongly
dense in the topology τS , respectively τ∗S , if and only if it is dense in τS , res-
pectively τ∗S .

Proof. We only need to prove sufficiency; necessity is obvious. Assume
that A is dense in the topology τS or τ∗S , and consider an S-coprime coset
a + A. Since A is a nonzero proper ideal of R, there is y ∈ A \ A2. Then
a+y+A is also S-coprime. This is clear because for A ∈ S and tAa+xA /∈ A
we have tA(a+ y) + (−tAy+ xA) = tAa+ xA /∈ A. By Lemma 3.3, the cosets
a+ A2 and a+ y + A2 are S-coprime. They are disjoint by the choice of y,
and both are included in a + A. Therefore the density of A implies that A
is strongly dense in the topology τS or τ∗S , respectively.

The above condition A2 6= A for proper nonzero ideals A of R is satis-
fied if R is a Noetherian domain. A more general condition ensuring that
A2 6= A for proper nonzero ideals A of R is

⋂∞
n=1 I

n = (0) for every proper
ideal I of R. The latter condition is satisfied for Noetherian domains. An-
other class of rings R for which the last condition is satisfied are the so-
called almost Dedekind domains. In fact, almost Dedekind domains are
characterized within the class of Prüfer domains by the fulfilment of the
condition

⋂∞
n=1 I

n = (0) for all proper ideals I (cf. [Gi2, (29.5) Theorem]
or [Gi1, Corollary1]).

The condition
⋂∞

n=1 I
n = (0) is clearly satisfied for every ideal contained

in the Jacobson radical J(R) (the intersection of all maximal ideals of R).
Therefore this condition is valid for all proper ideals in a Noetherian local
ring.
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In this connection, we would like to mention two extreme classes of rings:
idempotent-free rings and fully idempotent rings.

A ring R with an identity is called idempotent-free if the only idem-
potent ideals of R are the zero ideal and R itself. A commutative ring is
idempotent-free only if the only idempotents of R are 0 and 1. The con-
verse is false for general commutative rings but it is true for commutative
Noetherian rings, since if I is a finitely generated idempotent ideal of a
commutative ring R, then I is principal and is generated by an idempotent
element [Gi3, Lemma 1].

A ring R (not necessarily commutative and with an identity) in which
I = I2 for each ideal I is referred to as a fully idempotent ring . It is proved
in [Co, 1.2 Theorem] that a ring R is fully idempotent if and only if ev-
ery factor ring of R is a semiprime ring (a ring is called semiprime if no
nonzero ideal is nilpotent). In [JKL, Proposition 1.4], the authors prove
that a commutative domain is fully idempotent if and only if it is a field.
The assumption of being a domain is essential. For instance, a direct product
of two fields has two ideals, both idempotent (and both maximal).

The previous proposition gives an impetus to the following modification
of the Dirichlet condition defined in [KP]: Given an S-coprime topology on a
ring R, we say that R satisfies the S-Dirichlet condition for a subset A ⊂ R
if every S-coprime coset in R (or, equivalently, every τS-open set) contains
infinitely many pairwise nonassociated elements from A.

4.2. Corrections and extensions to [KP]. The paper [KP] includes
an extensive discussion relating the Dirichlet condition to density, specifi-
cally to strong density. It partly depends on the following assumptions about
the rings R under investigation:

(i) R admits a nonnegative integer-valued norm mapping N with the
properties:

(a) N(x) = 0 if and only if x = 0,
(b) N(x) = 1 if and only if x is a unit,
(c) N(ab) = N(a)N(b) for all a, b ∈ R.

(ii) For any fixed x, y ∈ R and any units u, v of R, N(ux + vy) is
bounded uniformly relative to N(x) and N(y).

(iii) GR contains only finitely many elements a for which N(a) takes any
given, fixed value k ∈ N.

Most of the rings appearing in number theory are Dedekind and residu-
ally finite. Here if I is a nonzero ideal of a ring R such that the ring R/I is
finite, then I is said to be residually finite. The ring R is said to be residually
finite if every nonzero ideal of R is residually finite. In this case, the positive
integer N (I) = card(R/I) is called the norm of I.
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Unfortunately, Lemma 17 of [KP] is not completely true in the stated
form, as was pointed out by W. Narkiewicz. The source of the incorrect
conclusion is the fact that the norms N(ux + vy) of ideals (ux + vy) with
fixed x, y ∈ R but varying units u, v of R are not uniformly bounded relative
to N(x) and N(y) in general. One obvious circumstance when condition (ii)
is satisfied is when the ring R has only finitely many units (2). Therefore
one possibility to correct Lemma 17 of [KP] is as follows.

Lemma 4.4. Every residually finite Dedekind domain with a finite num-
ber of units satisfies assumptions (i)–(iii) with N = N and N(0) = 0.

Theorem 19 of [KP] can be replaced by a special case (when S = P) of
the next statement.

Theorem 4.5. Suppose S contains at least one maximal ideal of R, and
R satisfies assumptions (i)–(iii). If P is a subset of R such that P̃ = {x :
x ∈ P} is infinite, then the S-Dirichlet condition for P is valid if and only

if P̃ is ∆∗S-strongly dense in GR.

Proof. For necessity, use the definition of the topology ∆∗S to infer that

the S-Dirichlet condition for P implies the ∆∗S-strong density of P̃ in GR

without any restriction on S or R.
Conversely, let P̃ be ∆∗S-strongly dense in GR. Then for each S-coprime

coset x+A, where A 6= {0}, there exists p ∈ P∩(x+A) such that p � x. Since
x+A is S-coprime, there exist tM ∈ R and xM ∈ A such that tMx+xM = 1,
where M is a maximal ideal belonging to S. Then x + (xM) is also an
S-coprime coset, and Lemma 3.3 shows that so is x+ (xM)n for every n =
1, 2, . . . . The rest of the proof is analogous to that of [KP, Theorem 19].

Lemma 4.4 now implies the following consequence.

Corollary 4.6. Assume that R is a residually finite Dedekind domain
which has only a finite number of units, and S contains at least one maximal
ideal of R. If P is a subset of R such that P̃ = {x : x ∈ P} is infinite,

then the S-Dirichlet condition for P is valid if and only if P̃ is ∆∗S-strongly
dense in GR.

The following statements extend Theorems 20 and 21 of [KP], and they
can be proved by adapting the corresponding proofs in [KP].

Theorem 4.7. Suppose S contains at least one maximal ideal of R.
If R satisfies (i) and (ii), then the set P of irreducible elements in R has

empty interior in the topology τ∗S on R0, and similarly for P̃ in (GR, ∆
∗
S).

(2) It is well-known that the only number fields with finitely many units are Q and

Q(
√
−D), where D > 0. Another such class of rings are polynomial rings F [X] over a

finite field F .
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Theorem 4.8. Let P1 be the set of all the irreducible elements p ∈ R
for which the principal ideal (p) belongs to S, and suppose P̃1 is infinite.

(1) If R satisfies (i) and (iii), then (R0, τ∗S) is a Hausdorff space.

(2) If R satisfies (i)–(iii), then (GR, ∆
∗
S) is a Hausdorff space.

Perhaps more transparent is the following adaptation of the last result.

Theorem 4.9. Assume every nonzero proper ideal of R is contained
only in finitely many maximal ideals of R, and S contains infinitely many
proper maximal ideals of R. Then both topological spaces (R, τS) and (R0, τ∗S)
are Hausdorff. Moreover, if R has only a finite number of units, then
(GR, ∆

∗
S) is also Hausdorff.

Proof. Let x, y ∈ R0, x 6= y. Then there exists a maximal ideal M ∈ S
such that M 6⊂ (x), M 6⊂ (y) and M 6⊂ (x− y). Since M is maximal, x+ M
and y+M are open in τS and τ∗S . Since (x+M)∩(y+M) = ∅, the Hausdorff
property for (R, τS) and (R0, τ∗S) follows.

To prove the second statement, suppose that α, β are two distinct ele-
ments from GR. If x ∈ α and y ∈ β, x, y ∈ R0, then x − uy 6= 0 for every
unit u. Let M ∈ S be such that M 6⊂ (x), M 6⊂ (y) and M 6⊂ (ux + vy)
for all units u, v. Then no element of x + M is associated with an element
of y + M: if x + m1 = u(y + m2) for some unit u and m1,m2 ∈ M, then
0 6= x− uy = um2−m1 ∈M, which is impossible due to the choice of M.

The following statement and its corollaries extend Theorem 25 and Co-
rollaries 25.1 and 25.3 of [KP].

Theorem 4.10. Let R be a residually finite Dedekind domain which
has only a finite number of units such that the set P̃1 of nonassociated
prime elements of R is infinite. Assume S contains infinitely many prime

ideals (p), where p ∈ P̃1. If P is a subset of R such that P̃ = {x : x ∈ P}
is infinite, then the S-Dirichlet condition for P is valid if and only if P̃ is
S-dense in GR.

Corollary 4.11. Let R be a residually finite Dedekind domain which

has only a finite number of units such that the set P̃1 is infinite. Assume

S contains infinitely many prime ideals (p), where p ∈ P̃1. Then R satisfies

the S-Dirichlet condition for P1 if and only if P̃1 is S-dense in GR.

Corollary 4.12. Let R be a residually finite Dedekind domain which
has only a finite number of units such that the set P̃1 is infinite. Assume S
contains infinitely many prime ideals (p), where p ∈ P̃1. Let Ps, for s ∈ N,

denote the set of products of s nonassociated primes of R. Then P̃s satisfies
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the S-Dirichlet condition for P̃s for every s ∈ N if and only if P̃1 is S-dense
in GR.

The following statement is Corollary 25.2 of [KP] (see [KP, p. 146] for
references and discussion):

Let (a, b) = 1 with 0 ≤ b < a. Then ax + b assumes for x = 0, 1, 2, . . .
infinitely many prime values if and only if it assumes at least one prime
value.

The second proof of this statement on p. 146 of [KP] does not prove this
corollary but only a weaker statement as follows.

Proposition 4.13. Assume that every arithmetic progression ax + b,
x = 0, 1, 2, . . . , such that (a, b) = 1 and 0 ≤ b < a assumes at least one
prime value. Then every such ax+ b assumes infinitely many prime values.

Proof. Proceed as on p. 146 of [KP] to conclude that the set P of all
primes is strongly dense in the quotient topology D∗ relative to the topology
∆∗ and a cross-section mapping ρ : GR → R0 (consult [KP] for more details)
and apply Corollary 4.6.

5. Closure of primes in the S-coprime topology for Z. The pur-
pose of this section is to generalize some results of [Br] and determine the
cluster points of arithmetic progressions in certain coprime topologies.

In this section we assume that R = Z, and identify P with the set
P ⊂ N of prime numbers, and a subset S ⊂ P with a subset S ⊂ P . The
next proposition is a generalization of Theorem 4.2 of [Br].

Proposition 5.1. The closure P of the set P in the topology τS is
P ∪ {±

∏
pi∈S p

ni
i : ni ≥ 0}.

Proof. Let a be a composite number divisible by a prime p 6∈ S and
suppose pl > |a|. Then the coset a+(pl) is S-coprime and does not intersect
P because any number a+ plz = p(a/p+ pl−1z) is composite.

On the other hand, if a = ±
∏

pi∈S p
ni
i and the coset a+(x) is S-coprime,

then x is coprime to a. By the Dirichlet theorem about primes in arithmetic
progressions, the set a + (x) contains infinitely many primes. This implies
that a ∈ P .

Remark 5.2. Let ∆∗S be the quotient topology on N induced by τS on Z.
Then the closure of P with respect to ∆∗S is P = P ∪ {

∏
pi∈S p

ni
i : ni ≥ 0}.

Now we turn our attention to infinite sets S ⊂ P related to arithmetic
progressions.

Proposition 5.3. Let S be a set of primes in an arithmetic progression
{b+ cn}∞n=1, where (b, c) = 1 and c ≥ 1. Then the cluster points of S in the
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topology τS are precisely the numbers a = ±
∏

pi∈S p
ni
i for ni ≥ 0 satisfying

the following property:

(∗) If a prime power pt, t ≥ 1, divides c but p does not divide a, then
a ≡ b mod pt.

Proof. Assume a = ±
∏

pi∈S p
ni
i does not satisfy (∗). Then there is pt

that divides c, p does not divide a and a 6≡ b (mod pt). The coset a+ (pt) is
invertible (hence S-coprime), but its intersection with the arithmetic pro-
gression {b+ cn}∞n=1 is empty since b+ cn ≡ b (mod pt) 6≡ a (mod pt). Thus
a is not a cluster point of S.

Assume now that a = ±
∏

pi∈S p
ni
i satisfies (∗) and a+ (x), where x ≥ 1,

is S-coprime. Then x is coprime to a and a ≡ b (mod A), where

A =
∏
q
tj
j ||c
qj -a

q
tj
j

and qj are primes. Since x is coprime to a, we find that (c, x) divides A.
Then (c/A, x) = 1 and (c/A,A) = 1, which implies (c/A, xA) = 1.

The cosets a+ (xA) and b+ (c/A) are invertible, and their intersection
is nonempty and of the form d + (xc) by the Chinese remainder theorem.
By Lemma 3.2, d+ (xc) is an invertible coset.

The Dirichlet theorem implies that there are infinitely many primes in
the arithmetic progression {d+n(xc)}∞n=1. Since d+(xc) ⊂ a+(A) = b+(A),
d + (xc) ⊂ b + (c/A) and (c/A,A) = 1, we infer that d + (xc) ⊂ b + (c).
Since {d+n(xc)}∞n=1 is contained in a+ (x), and it contains infinitely many
elements of S, we conclude that a is a cluster point of S.

Finally, if a is divisible by a prime p 6∈ S, then a+ (p) is S-coprime and
does not intersect S, showing that a is not a cluster point of S.

Proposition 5.4. Let S be a set of primes in an arithmetic progres-
sion {b + cn}∞n=1, where (b, c) = 1 and c ≥ 1. Then the cluster points of
P \ S in the topology τP\S are precisely the numbers a = ±

∏
pi∈P\S p

ni
i for

ni ≥ 0 such that either a 6≡ b (mod A) or c > 2A, where A =
∏

q
tj
j ||c, qj -a

q
tj
j

and the qj are primes.

Proof. If a is divisible by a prime p ∈ S, then a+ (p) is (P \ S)-coprime
and does not intersect P \ S, showing that a is not a cluster point of P \ S.

Let a = ±
∏

pi∈P\S p
ni
i and assume first that a does not satisfy (∗),

that is, there is a prime p that does not divide a, pt divides c for some
t ≥ 1 and a 6≡ b (mod pt). If a + (x), where x ≥ 1, is (P \ S)-coprime,
then (x, a) = 1, hence a+ (x) is invertible. The coset a+ (xpt) is invertible
(hence (P \S)-coprime) and it contains infinitely many primes of the arith-
metic progression {a+ xptn}∞n=1 by the Dirichlet theorem. Since b+ cn ≡ b



234 F. MARKO AND Š. PORUBSKÝ

(mod pt) 6≡ a ≡ a + xptn (mod pt), none of these primes belongs to S.
Therefore a+ (xpt) ⊂ a+ (x) contains infinitely many elements from P \S,
and so a is a cluster point of P \ S.

Next, let a = ±
∏

pi∈P\S p
ni
i and assume that a ≡ b (mod A).

If c = A, then (a, c) = 1 and a ≡ b (mod c). Therefore the coset a+ (c)
is invertible (hence (P \S)-coprime) and a+ (c) contains only finitely many
elements of P \ S. There is a large enough x such that (x, a) = 1 and the
invertible coset a+ (xc) contains no elements of P \ S except for a itself (if
a ∈ P \ S). Therefore such an element a is not a cluster point of P \ S.

If c = 2A, then (a, c) = 2 and a ≡ b (mod c/2). Every prime (possibly
except 2) in the invertible (hence (P \S)-coprime) coset a+(c/2) belongs to
a+ c/2 + (c). Since (b, c) = 1, we must have a+ c/2 ≡ b (mod c). Therefore
there are only finitely many elements of P \S in a+(c/2). Taking x suitably
large such that (x, a) = 1 we obtain an invertible coset a + (cx/2) that
contains no elements of P \ S except for a itself. Thus a is not a cluster
point of P \ S.

Assume now that c/A = D > 2 and a + (x), where x ≥ 1, is (P \ S)-
coprime. Then x is coprime to a, a ≡ b (mod A) and A = c/D. Since
x is coprime to a, we find that (c, x) divides A. Then (c/A, x) = 1 and
(c/A,A) = 1, which implies (c/A, xA) = 1.

The cosets a + (xA) and b + (D) are invertible, and their intersection
is a nonempty invertible coset d + (xc) by the Chinese remainder theorem
and Lemma 3.2. By the Chebotarev density theorem, the density of primes
in the sequence {a + xAn}∞n=1 equals 1/φ(xA), where φ denotes the Euler
function. If a prime from S belongs to a+ (xA), then it belongs to d+ (xc).
But the density of primes in the sequence {d + xcn}∞n=1 equals 1/φ(xc),
which is smaller than 1/φ(xA) because c/A = D > 2. Therefore there are
infinitely many primes from P \ S in the sequence {a + xAn}∞n=1 and we
have a+ (xA) ⊂ a+ (x). Hence a is a cluster point of P \ S.

6. Infinitude of primes

6.1. A topological property. The nucleus of Furstenberg’s topolog-
ical proof [Fu] of the infinitude of rational primes in Z is the observation
(cf. Remark 2.2) that the set of units is not open in the linear topology. As
observed in the text preceding Theorem 14 in [KP], the set of units cannot
be open in the invertible cosets topology if we assume that every arithmetic
progression a+ bZ with (a, b) = 1 contains at least one rational prime.

The next theorem unifies the above mentioned Theorem 14 of [KP]
addressing the invertible cosets topology and the known modification of
Furstenberg’s linear topology for rings R in terms of the F-coprime topol-
ogy.
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Theorem 6.1. If a subset MS of maximal ideals in S of a ring R is
such that ⋃

M∈MS

(M \ {0})

is not closed in τF on R, then MS is infinite.

Proof. If M ∈ MS , then W =
⋃

x∈R\M(x+ M) is a union of S-coprime

cosets, and thus open in R. Hence M\{0} is closed for each M ∈MS . Since⋃
M∈MS

(M \{0}) is not closed, it cannot be a finite union of the closed sets

M \ {0}. Consequently, MS must be infinite.

Corollary 6.2. If there exists a set MS satisfying the assumptions of
Theorem 6.1, then the set of prime ideals in S is infinite.

Since the set of units in a commutative ring R with identity is the com-
plement of the union of its maximal ideals, we have:

Corollary 6.3. If the set U of units is not open in the invertible cosets
topology or the linear topology on R, then the set of maximal ideals in R is
infinite.

The proof of the next theorem is analogous to the last one and is omitted.

Theorem 6.4. Let MS be the set of all maximal ideals of R that contain
an ideal of S. If the set ⋃

M∈MS

(M \ {0})

is not closed in τF on R0, then MS is infinite.

Analogues of the last two theorems remain true for the induced topology
τ∗F on R0 = R \ {0}.

6.2. Infinitude of primes in number fields. In this subsection we
assume thatK is a number field and R = RK is the ring of algebraic numbers
of K, I = IK is the set of all proper ideals of R, and P = PK is the set of
all prime ideals of R.

As was observed in Remark 2.2, every open set in RK must be infinite,
and this simple observation was used to extend Furstenberg’s result to derive
the infinitude of prime ideals in number fields with a finite set of units.
However, the assumption of the finiteness of the group U is not necessary
in the case of number fields.

Proposition 6.5. For any number field K, the set UK of units is not
open in the invertible cosets topology on RK . Consequently, the set of prime
ideals in RK is infinite.

Proof. If UK is open in the invertible cosets topology on RK , then it
contains a coset 1 + A for some ideal A 6= RK of RK . For a ∈ A, if
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a 6= 0, then A = NormK/Q(a) is an integer different from 0, −1 and 1.
Then 1 + 2A ∈ 1 + A is an integer different from 1 and −1, hence is not a
unit, which is a contradiction.
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