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LARGE FREE SUBGROUPS OF AUTOMORPHISM GROUPS OF
ULTRAHOMOGENEOUS SPACES

BY

SZYMON GŁĄB and FILIP STROBIN (Łódź)

Abstract. We consider the following notion of largeness for subgroups of S∞. A group
G is large if it contains a free subgroup on c generators. We give a necessary condition
for a countable structure A to have a large group Aut(A) of automorphisms. It turns out
that any countable free subgroup of S∞ can be extended to a large free subgroup of S∞,
and, under Martin’s Axiom, any free subgroup of S∞ of cardinality less than c can also
be extended to a large free subgroup of S∞. Finally, if Gn are countable groups, then
either

∏
n∈N Gn is large, or it does not contain any free subgroup on uncountably many

generators.

1. Introduction. In this paper we study properties of the automor-
phism group Aut(A) of an ultragomogeneous countable structure A. An
ultrahomogeneous structure A can be seen as the Fraïssé limit of its Fraïssé
class, that is, the classK of all finitely generated substructures of A. A Fraïssé
class has three properties: the hereditary property, the joint embedding prop-
erty, and the amalgamation property. (For details see [H].) Some connections
between properties of the Fraïssé classes K and the automorphism groups of
their Fraïssé limits are given for example in [KPT], [KS].

We are going to search for large free subgroups of Aut(A), for count-
able structures A. Macpherson [M1] showed that if A is ω-categorical, then
Aut(A) contains a dense free subgroup of rank ω, and the automorphism
group of the random graph contains a dense free subgroup on two gener-
ators. Cameron [C, p. 84] proved that every closed oligomorphic subgroup
of S∞ contains Aut(Q,≤), and the latter group contains a free subgroup
of rank continuum. Melles and Shelah [MS] proved that if A is a saturated
model of a complete theory T with |A| = λ > |T |, then Aut(A) has a dense
free subgroup of cardinality 2λ. Gartside and Knight [GK] showed that if
A is ω-categorical and Kn = {(g1, . . . , gn) ∈ Aut(A)n : g1, . . . , gn are free
generators}, then Kn is comeager in Aut(A)n for every n. Some other re-
sults of this sort can be found in the survey paper [M2]. It was proved by
Shelah [Sh1] that Aut(A) cannot be a free uncountable group when A is a
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countable structure. Recently, Shelah [Sh2] proved that even no uncountable
Polish group can be free.

Let (A, C,F ,R) be a countable structure where C stands for the set of
all constants, F for the set of functions and R for the set of relations. We
will use one symbol A for both a structure and its underlying set. Recall
that a structure A is ultrahomogeneous if every embedding of a finitely gen-
erated substructure can be extended to an automorphism of A. We denote
by gen(X) the substructure of A generated by X, i.e., the intersection of
all substructures containing X. In particular, gen(∅) = gen(C). Let Aut(A)
denote the group of all automorphisms of A. Since A is countable, Aut(A)
is isomorphic to a closed subgroup of the group S∞ of all permutations
of N. With the topology inherited from S∞, Aut(A) is a topological group.
If B1, B2 ⊂ A are finitely generated substructures and g : B1 → B2 is an iso-
morphism, then g will be called a partial isomorphism. The set of all partial
isomorphisms of A will be denoted by Part(A).

We denote by P the set of all pairs (n, p) where p : {0, 1}n → Part(A)
and dom(p(s)) is an n-element substructure of A for every s ∈ {0, 1}n. The
set P is ordered in the following way: (n, p) ≤ (k, q) if and only if k ≤ n and
q(t) ⊂ p(s) (i.e., p(s) extends q(t)) provided t ≺ s (i.e., s is an extension
of t). We will show that, under some reasonable assumption on A, the generic
filter G on P produces a family of c free generators in Aut(A). Note that the
poset P is countable, and therefore it has the countable chain property. In
Section 2 we will use the Rasiowa–Sikorski lemma to get a generic filter G
that intersects countably many dense subsets of P. In this way we will infer
that Aut(A) contains a free subgroup on c generators, and this result is valid
in ZFC. In Section 3 it will be proved (by a similar argument and also under
ZFC) that any countably generated free subgroup of S∞ can be extended
to a c-generated free subgroup of S∞, and that under Martin’s Axiom any
<c-generated free subgroup of S∞ can be extended to a c-generated free
subgroup of S∞. In Section 4 we prove the following dichotomy: the product∏
n∈NGn of countable groups Gn either contains a c-generated free subgroup,

or contains no uncountably generated free subgroup. Section 5 brings final
remarks and open questions.

2. c-generated free subgroups of Aut(A). In this section we will
assume that every finitely generated substructure of A is finite, that is,
its Fraïssé class consists of finite structures. The next lemma shows that
a generic filter gives a family of functions which map A onto itself.

Lemma 2.1. For every k ∈ A, the set

Dk := {(n, p) ∈ P : ∀s ∈ {0, 1}n k ∈ dom(p(s)) ∩ rng(p(s))}
is dense in P.
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Proof. Let k ∈ A and (n, p) ∈ P. For any s ∈ dom(p), let p̃(s) be
an automorphism of A such that p(s) ⊂ p̃(s). Let (Cm) be an increasing
sequence of finitely generated structures such that A =

⋃
m∈NCm. Then

there exists n0 such that for any s ∈ dom(p), we have dom(p(s)) ⊂ Cn0 and

k ∈ dom(p̃(s)�Cn0) ∩ rng(p̃(s)�Cn0).

Let n′ = |Cn0 |, and for any t ∈ {0, 1}n′ , set p′(t) = p̃(t�n)�Cn0 . Then
(n′, p′) ≤ (n, p) and (n′, p′) ∈ Dk.

In the following reasoning, we will apply the above trick of using an
increasing sequence (Cm) without any comments.

If g ∈ Part(A), then we set V (g) := {f ∈ Aut(A) : g ∈ f}. It is well
known that the family of all sets of the form V (g) constitutes a basis of the
natural topology on Aut(A).

Lemma 2.2. Let F be a nowhere dense subset of Aut(A). Then the set

DF = {(n, p) ∈ P : ∀s ∈ {0, 1}n V (p(s)) ∩ F = ∅}
is dense in P.

Proof. Let (n, p) ∈ P. Since F is nowhere dense, for every s ∈ {0, 1}n
there exists an embedding gs : Bs → A (Bs is a finitely generated sub-
structure) such that gs is an extension of p(s) and V (gs) ∩ F = ∅. Let
C = gen(

⋃
{dom(gs) : s ∈ dom(p)}). Let n′ = |C|, and for every t ∈ {0, 1}n′

let p′(t) : C → A be an embedding and an extension of gt�n. Then (n′, p′) ≤
(n, p) and (n′, p′) ∈ DF (because V (p′(t)) ⊂ V (gt�n)).

Consider the following example. Let A = N, and define unary relations
Rn on A, n ∈ N, by x ∈ Rn if and only if x = 2n or x = 2n+1. Since (A, {Rn :
n ∈ N}) is a relational structure, any of its finitely generated substructures
is finite. If f ∈ Aut(A), then f(2n) = 2n and f(2n + 1) = 2n + 1, or
f(2n + 1) = 2n and f(2n) = 2n + 1. Clearly, A is ultrahomogeneous and
Aut(A) is isomorphic to ZN

2 . Hence for any f ∈ Aut(A) we have f ◦ f = id,
which means that Aut(A) does not even contain a free subgroup on one
generator.

This example shows that to get a promised large free subgroup, we need
an additional assumption.

Let us introduce the following definition. We say that a relational struc-
ture A is ω-independent if for any finitely generated substructures B1, B2

of A, and for any m, there is a set D ⊂ A \ (B1 ∪ B2) consisting of m + 1
elements such that, for any embedding f : B1 → B2 and any partial permu-
tation g of D, the function f ∪ g is an embedding of B1 ∪ dom(g) into A.

Now we show that some natural examples of ultrahomogeneous struc-
tures are ω-independent and have the property that every finitely generated
substructure is finite.
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1. First consider N without any structure. Then every finite set is a
finitely generated substructure, and the embeddings are exactly the one-
to-one mappings. To see that N is ω-independent, fix two finite subsets
B1, B2 ⊂ N. Let C = B1 ∪ B2 and let x0, . . . , xm be pairwise distinct ele-
ments of N \ C. Then it is clear that the union of any one-to-one mapping
f : B1 → B2 and a partial permutation g of x0, . . . , xm is an embedding.

2. The next example is a rational Urysohn space U. Recall that a metric
space is a rational Urysohn space if it is countable and every finite rational
space (i.e., with rational distances) has an isometric copy in U. It is known
that U is ultrahomogeneous in the sense that, for every finite rational metric
space C ⊂ U and every isometric embedding f : C → U, there is an isometry
f̃ : U→ U which extends f . The following is standard and well known:

Claim 2.3. Assume that A is an ultrahomogeneous structure. Let Y be a
structure which is isomorphic to a finitely generated substructure of A such
that Y = X ∪ Z, X ∩ Z = ∅ and X ⊂ A, for some X,Z. Then there
is Z ′ ⊂ A and a partial isomorphism g : Z → Z ′ such that the mapping
h : Y → X ∪ Z ′ given by h(x) = x for x ∈ X and h(x) = g(x) for x ∈ Z is
a partial isomorphism of Y and X ∪ Z ′.

Now we prove that the Urysohn space is ω-independent. Let B1, B2 be
two finite subspaces of U, C = B1 ∪ B2, let d be a metric on U, and let
M = max{d(z, c) : z, c ∈ C}+ 1. Define a finite rational metric space (Y, ρ)
as follows. Let Y = C ∪ {a0, . . . , am} where a0, . . . , am are distinct elements
which do not belong to C. If x, y ∈ C, then set ρ(x, y) = d(x, y); if x ∈ C and
y = ai, then set ρ(x, y) = M ; finally, if x = ai and y = aj , then ρ(x, y) = 1
if i 6= j and ρ(x, y) = 0 if i = j.

Then (Y, ρ) is a finite rational metric space. Moreover, by Claim 2.3,
there are x0, . . . , xm ∈ U \ C such that d(x, xi) = M for every x ∈ C and
i = 0, . . . ,m, and d(xi, xj) = 1 for i 6= j. If f : B1 → B2 is an isometric
embedding and g is partial permutation of x0, . . . , xm, then it is easy to see
that the union of f and g is an isometric embedding. Hence the rational
Urysohn space U is ω-independent.

3. Let G be a random graph, that is, a countable infinite graph where
for any finite disjoint sets X and Y we can find a vertex with edges going
to every vertex in X but to no vertex in Y . We will show that G is ω-
independent. Fix two finite graphs B1 and B2. Take any distinct x0, . . . , xm,
and define a graph B1 ∪B2 ∪ {x0, . . . , xm} as an extension of B1 ∪B2 such
that there are no edges between x0, . . . , xm and B1 ∪ B2, and there is no
edge between xi and xj for i, j ≤ m. Using Claim 2.3 we may assume that
x0, . . . , xm ∈ G \ (B1 ∪B2). Let g be any partial permutation of x0, . . . , xm
and f : B1 → B2 be an embedding. Set fg = f ∪ g : B1 ∪ dom(g) → G.
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Let a, b ∈ B1 ∪ dom(g). If a, b ∈ B1, then there is an edge between a and b
if and only if there is an edge between fg(a) and fg(b). If a or b is among
x0, . . . , xm, then there is neither an edge between a and b nor one between
fg(a) and fg(b). Thus fg embeds B1 ∪ dom(g) into G.

4. Let Gn be the random Kn-free graph, that is, the ultrahomogeneous
countable graph which omits Kn, the complete graph on n vertices. Equiv-
alently, Gn is the Fraïssé limit of the class of all finite Kn-free graphs. Us-
ing the same argument as for the random graph, one can see that Gn is
ω-independent.

5. Let E be a countable equivalence relation with infinitely many infinite
equivalence classes. Let f : B1 → B2 be an embedding between two finite
equivalence relations B1 and B2 (i.e., finite sets with equivalence classes
induced from E). Take a set {x0, . . . , xm} of elements from a fixed equiva-
lence class such that {x0, . . . , xm} ∩ (B1 ∪ B2) = ∅. Clearly for any partial
permutation g of {x0, . . . , xm} the function f ∪ g is an embedding.

6. The same reasoning remains true if one considers En, a countable
equivalence relation with n infinite equivalence classes.

7. Let (D,≤) be the universal countable ultrahomogeneous partially or-
dered set. This is the Fraïssé limit of all finite partially ordered sets—see
[Sch] and [So] for more information. Let f : B1 → B2 be an embedding
between two finite suborders B1 and B2 of D. Take a set {x0, . . . , xm} ⊂ D
such that

∀i, j (i 6= j ⇒ ¬(xi ≤ xj)) and ∀y ∈ B1∪B2 ∀i (¬(xi ≤ y) and ¬(y ≤ xi)).
Then for any partial permutation g of {x0, . . . , xm}, the function f ∪ g is an
embedding.

Let x0, . . . , xm be pairwise distinct elements of A. A shift on {x0, . . . , xm}
is a partial function ϕ : {x0, . . . , xm} → A such that ϕ(xi) = xi−1 for
i = 1, . . . ,m (ϕ is a left-shift) or ϕ(xi) = xi+1 for i = 0, . . . ,m−1 (ϕ is a right-
shift). Note that ϕ is undefined either at x0 or at xm, so ϕ is actually a partial
mapping on {x0, . . . , xm}. An (x0, . . . , xm)-function, where x0, . . . , xm are
pairwise distinct, is a partial function g :

⋃k
i=1 Ii → A such that:

(i) I1, . . . , Ik are pairwise disjoint;
(ii) each Ii is of the form {xp, xp+1, . . . , xq} for some 0 ≤ p < q ≤ m;
(iii) each restriction g�Ii is a shift.

We will consider the following condition:

(∗) For any finitely generated substructures B1, B2 ⊂ A and any m ∈ N,
there exist pairwise distinct x0, . . . , xm ∈ A \ (B1 ∪B2) such that for
any embedding f : B1 → B2 and any (x0, . . . , xm)-function g, there
exists an embedding fg : gen(B1 ∪ dom(g))→ A with f, g ⊂ fg.
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Since every (x0, . . . , xm)-function g is a partial permutation of {x0, . . . , xm},
condition (∗) is weaker than ω-independence.

Assume that A is the Fraïssé limit of a class K0. Let
K = K0 ? LO := {〈B,≤〉 : B ∈ K0 and ≤ is a linear ordering on B}.

The class K0 has the strong amalgamation property if for any A,B,C ∈ K0

and embeddings f : A→ B and g : A→ C, there is D ∈ K0 and embeddings
r : B → D and s : C → D with r ◦ f = s ◦ g such that r(B) ∩ s(C) =
r(f(A)) = s(g(A)). In [KPT] it was proved that if K0 is a Fraïssé class with
strong amalgamation property, then so is K. We will denote the Fraïssé limit
of K by A≤.

Lemma 2.4. Let A be an ω-independent ultrahomogeneous relational
countable structure. Then A≤ satisfies (∗).

Proof. Let B1, B2 ⊂ A and let m ∈ N. Since A is ω-independent, there
is a set {y0, . . . , ym} ⊂ A \ (B1 ∪ B2) such that, for any embedding f :
B1 → B2 and any partial permutation g of y0, . . . , ym, the function f ∪ g
is an embedding. We define a linear order � on B1 ∪ B2 ∪ {y0, . . . , ym} as
follows: � on B1∪B2 equals ≤, yi � yk provided i ≤ k, and x � yi for every
x ∈ B1∪B2 and i = 0, . . . ,m. Since B1∪B2∪{y0, . . . , ym} is a substructure
of A, and � is a linear order on it, the structure 〈B1 ∪B2 ∪ {y0, . . . , ym},�〉
can be embedded into A≤. By Claim 2.3 we can find x0, . . . , xm ∈ A such
that 〈B1∪B2∪{x0, . . . , xm},≤〉 is a substructure of A≤ isomorphic to 〈B1∪
B2 ∪ {y0, . . . , ym},�〉.

Take any A≤-embedding f : B1 → B2 and any (x0, . . . , xm)-function g.
Then f ∪ g is an A-embedding. Note that both f and g preserve ≤. Since
each element of B1 ∪B2 is in relation ≤ to each xi, the function f ∪ g is an
A≤-embedding.

8. Consider the structure (Q,≤) of all rational numbers. If N stands for
the natural numbers without any structure, then (Q,≤) is isomorphic to N≤.
By Lemma 2.4, (Q,≤) has (∗).

9. Let (B,∨,∧,¬, 0, 1) be a countable atomless Boolean algebra. Let
B1, B2 ⊂ B be finite subalgebras and let f : B1 → B2 be an embedding. Let
C = gen(B1 ∪ B2) be the smallest subalgebra of B containing B1 and B2.
Let {ci : i ∈ I} be the set of all atoms of C. We say that a finite subalgebra
X of B is independent of C provided there is a finite set {xj : j ∈ J} with
gen({xj : j ∈ J}) = X and∧

j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ci 6= 0

for every i ∈ I and every partition J1, J2 of J . Clearly, such an algebra X
exists and any one-to-one self-mapping of {xj : j ∈ J} can be extended to
an automorphism of X.
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Claim 2.5. Let X be a finite algebra independent of X1 ∪ X2, and let
g be an automorphism of X. Then f ∪ g can be extended to an embedding
fg : gen(B1 ∪X)→ B.

Proof. Let {ak : k ∈ K} be the set of all atoms of B1, and {bk : k ∈ K}
⊂ B2 be such that f(ak) = bk. The atoms of gen(B1 ∪X) are of the form∧

j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak

for every k ∈ K and every partition J1, J2 of J . Define fg on atoms as follows:

fg

( ∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak
)
= g
( ∧
j∈J1

xj ∧
∧
j∈J2

¬xj
)
∧ f(ak).

Clearly, fg can be uniquely extended to a homomorphism fg : gen(B1 ∪X)
→ B. We need only prove that fg is one-to-one. Suppose that

fg

( ∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak
)
= fg

( ∧
j∈J ′1

xj ∧
∧
j∈J ′2

¬xj ∧ ak′
)
.

Then

g
( ∧
j∈J1

xj ∧
∧
j∈J2

¬xj
)
∧ f(ak) = g

( ∧
j∈J ′1

xj ∧
∧
j∈J ′2

¬xj
)
∧ f(ak′).

Since X is independent of B2, both sides of the above equality are nonzero.
As f is embedding, we have ak = ak′ . Moreover, g is an isomorphism of X,
so J1 = J ′1 and J2 = J ′2.

Let B1, B2 ⊂ B be finite subalgebras and let f : B1 → B2 be an em-
bedding. For any m ∈ N one can find x0, . . . , xm witnessing that X =
gen({x0, . . . , xm}) is independent of C = gen(B1 ∪B2). Let g be any partial
permutation of x0, . . . , xm. We extend g to an isomorphism of X, and using
Claim 2.5, we find an embedding fg extending f ∪ g. This shows that B is
ω-independent (in particular, it satisfies (∗)).

Note that B is not a relational structure, so we cannot apply Lemma 2.4.
It is folklore that U, G, Gn, E and En have the strong amalgamation

property, and there exist their ordered counterparts: the ordered rational
Urysohn space U≤, the ordered random graph G≤, the ordered Kn-free ran-
dom graph Gn

≤, and the ordered relations E≤ and En≤. All of those structures
are relational and ω-independent, so we can apply Lemma 2.4 to conclude
that each of them satisfies condition (∗).

Now we will show how (∗) implies the existence of a large free subgroup
of Aut(A).

Let m ∈ N and let r1, . . . , rk ∈ {1, . . . ,m} be such that ri 6= ri+1 for
i ∈ {1, . . . , k − 1}, and let n1, . . . , nk ∈ Z \ {0}. Then
(2.1) w(y1, . . . , ym) = yn1

r1 . . . y
nk
rk
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will be called a word of length n where n = |n1|+ · · ·+ |nk|. If additionally,
f1, . . . , fm are functions or partial functions defined on A, then we denote
by w(f1, . . . , fm) the function defined in a natural way: the operation is the
composition and the domain of w(f1, . . . , fm) is the natural domain. It is
possible that w(f1, . . . , fm) = ∅, and if all fi are elements of Aut(A), then so
is w(f1, . . . , fm). We also consider the empty set ∅ as a word of length zero.
In that case we also define w(f1, . . . , fk) = id, the identity function. Clearly,
f1, . . . , fm ∈ Aut(A) are free generators, i.e., they generate a free subgroup
of Aut(A), if w(f1, . . . , fm) 6= id for every nonempty word w(y1 . . . , ym).

Lemma 2.6. For every nonempty word w(y1, . . . , ym) of length n, and
for distinct x0, . . . , xn, there exist (x0, . . . , xn)-functions g1, . . . , gm such that
w(g1, . . . , gm)(x0) = xn.

Proof. Assume that w is given by (2.1). We will define grk , grk−1
, . . . , gr1

step by step. Since it is possible that ri = rj for i 6= j, some of the functions
g1, . . . , gm may be defined in more than one step.

If nk < 0, then set grk(xi) = xi−1 for i = 1, . . . , |nk|, and if nk > 0, then
set grk(xi) = xi+1 for i = 0, . . . , |nk| − 1.

If nk−1 < 0, then set grk−1
(xi) = xi−1 for i = |nk|+ 1, . . . , |nk|+ |nk−1|,

and if nk−1 > 0, then set grk−1
(xi) = xi+1 for i = |nk|, . . . , |nk|+ |nk−1| − 1.

We continue this procedure, and finally, if n1 < 0, we set gr1(xi) = xi−1
for i = |nk| + · · · + |n2| + 1, . . . , |nk| + · · · + |n1|, and if nk > 0, we set
gr1(xi) = xi+1 for i = |nk|+ · · ·+ |n2|, . . . , |nk|+ · · ·+ |n1| − 1.

To illustrate the reasoning consider the following example. Let w(y1, y2)
= y−21 y2y

3
1. Then r1 = 1, r2 = 2, r3 = 1, n1 = −2, n2 = 1, n3 = 3 and

we define g1 as the right-shift on {x0, x1, x2, x3}, g2 as the right-shift on
{x3, x4}, and finally g1 as the left-shift on {x4, x5, x6}. Then g1 is a union of
two shifts.

Lemma 2.7. Assume that A has property (∗). For any nonempty word
w(y1, . . . , ym) and any pairwise distinct finite sequences s1, . . . , sm of 0’s
and 1’s of the same length, the set

Ds1,...,sm
w =

{
(n, p) : |s1| ≤ n and for every t1, . . . , tm ∈ {0, 1}n with si ≺ ti

we have w(p(t1), . . . , p(tm)) 6= id
}

is dense in P.

Proof. Choose any (n, p) ∈ P and let B1 be a finitely generated substruc-
ture of A such that

⋃
{dom(p(s)) : s ∈ dom(p)} ⊂ B1 and |B1| ≥ |s1|. Set

n′ = |B1| and for every s ∈ {0, 1}n′ let p′(s) : B1 → A be an embedding
which extends p(s�n). Then (n′, p′) ≤ (n, p).

Let B2 = gen(
⋃
{rng(p′(s)) : s ∈ dom(p′)}), and let (x0, . . . , x|w|), where

|w| stands for the length of w, be chosen as in (∗). Then choose (x0, . . . , x|w|)-
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functions g1, . . . , gm as in Lemma 2.6. Now, for every i = 1, . . . ,m and every
s ∈ {0, 1}n′ with si ≺ s, let fs : gen(B1 ∪ dom(gi))→ A be chosen for p′(s)
and gi, according to (∗). Let E = gen(

⋃
{dom(fs) : si ≺ s}) and n′′ = |E|.

Finally, for every t ∈ {0, 1}n′′ , let p′′(s) : E → A be defined in the following
way. If si ≺ t for some i = 1, . . . ,m, then p′′(t) is an extension of ft�n′ ;
otherwise, let p′′(t) be any extension of p′(t�n′). Then (n′′, p′′) ≤ (n′, p′), and
consequently (n′′, p′′) ≤ (n, p).

We need to show that (n′′, p′′) ∈ Ds1,...,sm
w . If t1, . . . , tm ∈ {0, 1}n

′′ are such
that si ≺ ti, then p′′(t1), . . . , p′′(tm) are extensions of g1, . . . , gm, respectively.
Thus by Lemma 2.6 we obtain

w(p′′(t1), . . . , p
′′(tm))(x0) = w(g1, . . . , gm)(x0) = x|w|.

Theorem 2.8. Assume that A satisfies (∗). Then for every residual set
Z ⊂ Aut(A), there is a family F ⊂ Z of c free generators.

Proof. Let Z be a residual subgroup of Aut(A). By Lemmas 2.1, 2.2,
2.7 and the Rasiowa–Sikorski lemma, there exists a filter G on P, which has
nonempty intersection with all sets Dk, D

s1,...,sl
w and DFn , where (Fn) is a

sequence of nowhere dense sets such that Aut(A) \ Z =
⋃
Fn.

Let g : {0, 1}N → Aut(A) be defined in the following way. If α ∈ {0, 1}N,
then

g(α) =
⋃
{p(α�n) : (n, p) ∈ G}.

First we show that g(α) is well defined. If (n, p), (n′, p′) ∈ G, then there is
(m, q) ∈ G below (n, p) and (n′, p′). This ensures that if x ∈ dom(p(α�n)) ∩
dom(p′(α�n′)), then p(α�n)(x) = p′(α�n′)(x).

Now, we show that dom(g(α)) = rng(g(α)) = A. Let k ∈ A. Since Dk is
dense, there is (n, p) ∈ Dk ∩G. Then

k ∈ dom(p(α�n)) ∩ rng(p(α�n)) ⊂ dom(g(α)) ∩ rng(g(α)).

Now we show that g(α) ∈ Aut(A). It is enough to show that for any
finitely generated substructure C, g(α)�C is an embedding. Assume C =
{x1, . . . , xk}. Since C ⊂ dom(g(α)), there are (p1, n1), . . . , (pk, nk) ∈ G such
that xi ∈ dom(pi(α�ni)). Since G is a filter, there is (m, q) ∈ G below each
(ni, pi). This shows that g(α)(xi) = q(α�m)(xi) for every i = 1, . . . , k. Thus
g(α)�C = q(α�m)�C, which shows that it is an embedding.

Now we will show that g(α) ∈ Z. Let k ∈ N and let (n, p) ∈ G ∩ DFk
.

Then g(α) ∈ V (p(α�n)) ⊂ Aut(A) \ Fk. Since k has been taken arbitrarily,
g(α) ∈ Aut(A) \

⋃
n∈N Fn = Z.

It remains to show that {g(α) : α ∈ {0, 1}N} is a family of free gener-
ators. Let w(y1, . . . , ym) be any word and α1, . . . , αm be distinct elements
of {0, 1}N. Let k ∈ N be such that αi�k 6= αj�k for i 6= j, and let
(n, p) ∈ Dα1�k,...,αm�k

w ∩ G. Since αi�k ≺ αi�n for i = 1, . . . ,m, for some
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x ∈ A we have

w(g(α1), . . . , g(αm))(x) = w(p(α1�n), . . . , p(αm�n))(x) 6= x.

This ends the proof.

Let us note that condition (∗) does not imply that Aut(A) is oligomorphic
(e.g. let A be the rational Urysohn space), therefore our result is different
from that of Cameron mentioned in the Introduction.

3. Large free subgroups of S∞. Now we show that, in the case of S∞,
the automorphism group of N without any structure, we can strengthen the
conclusion of Theorem 2.8. Clearly, S∞ is simply the group of all bijections
of N. We say that a bijection f ∈ S∞ is proper (or has infinite support) if
for every finite set B ⊂ N, there is x /∈ B such that f(x) 6= x.

Lemma 3.1. Assume f1, . . . , fm are free generators and w(y1, . . . , ym) is
any nonempty word. Then w(f1, . . . , fm) is proper.

Proof. This follows from the fact that each f ∈ S∞ with fn 6= id for every
n > 0 (which clearly holds for the function w(f1, . . . , fm)) is automatically
proper. Indeed, otherwise f would correspond to a bijection of a finite set
(that is, f = g∪ idN\A for some finite A ⊂ N, where g is a permutation of A),
and hence fn = id where n = |A|!.

Lemma 3.2. Let A be a relational structure which is ω-independent. For
any bijections f1, . . . , fk ∈ Aut(A), k ≥ 2, such that f2, . . . , fk−1 are proper,
any nonzero numbers n1, . . . , nk−1 and every finite structure C ⊂ A, there
exist x ∈ A\C, finite structures B1, B2 ⊂ A\C and a bijection g : B1 → B2

such that x ∈ dom(fk ◦ gnk−1 ◦ fk−1 ◦ gnk−2 ◦ · · · ◦ gn1 ◦ f1) and
fk ◦ gnk−1 ◦ fk−1 ◦ gnk−2 ◦ · · · ◦ gn1 ◦ f1(x) 6= x.

Proof. We assume k > 2 (the case k = 2 is much simpler and will be
obvious after considering the case k > 2). Since A is ω-independent, there
exist y0, . . . , yt, t > 2|C|+5k, such that for any isomorphism h : C → C and
any partial permutation h′ of y0, . . . , yt, the function h∪h′ is an embedding.

We first show that there are elements x0, . . . , x2k−1 such that:

(a) xi /∈ C for i = 0, . . . , 2k − 1;
(b) fi(x2i−2) = x2i−1 for i = 1, . . . , k;
(c) x1, . . . , x2k−2 are distinct;
(d) x0 6= x2k−1.

First, take
x1 ∈ {y0, . . . , yt} \ (f−11 (C) ∪ C)

and set x0 = f−11 (x1). Then take

x2 ∈ N \
(
f−12 (C) ∪ C ∪ f−12 ({x0, x1}) ∪ {x0, x1}

)
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such that f2(x2) 6= x2 and set x3 = f2(x2). It is easy to see that (a) holds
for i = 0, 1, 2, 3; (b) holds for i = 1, 2; and x1, x2, x3 are distinct. In the next
step we take

x4 ∈ N \
(
f−13 (C) ∪ C ∪ f−13 ({x0, x1, x2, x3}) ∪ {x0, x1, x2, x3}

)
such that f3(x4) 6= x4 and set x5 = f3(x4). We continue this procedure, and
finally we take

x2k−2 ∈ N \
(
f−1k (C) ∪ C ∪ f−1k ({x0, . . . , x2k−3}) ∪ {x0, . . . , x2k−3}

)
and x2k−1 = fk(x2k−2). Then (a)–(d) are satisfied.

Now take elements y10, . . . , y
1
|n1|, y

2
0, . . . , y

2
|n2|, . . . , y

k−1
0 , . . . , yk−1|nk−1| such

that

(i) yi0 = x2i−1 and yi|ni| = x2i for i = 1, . . . , k − 1;
(ii) yij /∈ C for all i, j;
(iii) y10, . . . , y1|n1|, y

2
0, . . . , y

2
|n2|, . . . , y

k−1
0 , . . . , yk−1|nk−1| are distinct.

By (a) and (c), we can choose such elements. For every i = 1, . . . , k − 1, let

Di =

{
{yi0, . . . , yi|ni|−1} if ni > 0,
{yi1, . . . , yi|ni|} if ni < 0.

Now we define a function g on B = D1 ∪ · · · ∪ Dk−1 in the following way.
For every i = 1, . . . , k − 1, set

g(yil) =

{
yil+1 if ni > 0, l = 0, . . . , |ni| − 1,
yil−1 if ni < 0, l = 1, . . . , |ni|.

By (iii), the function g is well defined, one-to-one, and B ∪ g(B) ⊂ N \ C.
Also, for every i = 1, . . . , k − 1, by (i), we have

gni(x2i−1) = gni(yi0) = yi|ni| = x2i.

Together with (b) and (d), this gives the assertion.

Lemma 3.3. Assume that f1, . . . , fm ∈ S∞ are pairwise distinct free gen-
erators. Then there is g ∈ S∞ \ {f1, . . . , fm} such that f1, . . . , fm, g are free
generators.

Proof. It is enough to show that there exists g ∈ S∞ such that for any
word w = w(y1, . . . , ym+1) such that ym+1 appears in w, w(f1, . . . , fm, g) 6=
id. The family of such words is countable; enumerate it asW = {wn : n ∈ N}.
We will define sequences (Cn) and (C ′n) of pairwise disjoint, finite subsets
of N, and a sequence of partial functions (gn), such that for every n ∈ N,

1. C ′n ⊂ Cn;
2. Cn \ C ′n 6= ∅;
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3. gn : C ′n → Cn is one-to-one;
4. there is xn ∈ Cn such that xn ∈ dom(wn(f1, . . . , fm, gn)) and
wn(f1, . . . , fm, gn)(xn) 6= xn.

Then any bijective extension of g =
⋃
n∈N gn will satisfy our needs. Such

an extension exists, since by 1–3, the sets dom(g), N \ dom(g), rng(g) and
N \ rng(g) are infinite.

Let n = 1. Write y instead of ym+1. Then

w1 = uk · ynk−1 · uk−1 · ynk−2 · · · yn1 · u1
for some words u1, . . . , uk in which y does not appear (it is possible that u1
or uk are empty words, but for i /∈ {1, k}, ui is nonempty). By Lemma 3.2
applied to the functions fi = ui(f1, . . . , fm) (if ui is empty, then fi =
id) and C = ∅, there are finite sets B1, B2, an element x1 and a bi-
jective map g1 : B1 → B2 such that x1 ∈ dom(w1(f1, . . . , fm, g1)) and
w1(f1, . . . , fm, g1)(x1) 6= x1. Let C1 = B1 ∪B2 ∪ {x1, y1}, where y1 is not in
B1 ∪B2 ∪ {x1}, and C ′1 = B1.

Assume that we have already made the construction up to step n. Then
we proceed exactly as in the first step, but for the word wn+1, and we use
Lemma 3.2 for C = C1 ∪ · · · ∪ Cn.

If w,w′ are words, then we write w′ ≤ w whenever w′ is created from w
by erasing some symbols on the left side. In particular,

yn2
r2 . . . y

nk
rk
≤ yn1

r1 y
n2
r2 . . . y

nk
rk
,

and if n1 > 0, then

yn1−1
r1 yn2

r2 . . . y
nk
rk
≤ yn1

r1 y
n2
r2 . . . y

nk
rk
.

Also, we assume that ∅ ≤ w for any w.

Lemma 3.4. For any k, l ∈ N, any word w(y1, . . . , ym) with k + l = m,
any free generators f1, . . . , fk ∈ S∞, and any pairwise different sequences
s1, . . . , sl of 0’s and 1’s of the same length, the set

Ds1,...,sl
w,f1,...,fk

= {(n, p) : n ≥ |s1| and if t1, . . . , tl ∈ {0, 1}n with si ≺ ti
then w(f1, . . . , fk, p(t1), . . . , p(tl)) 6= id}

is dense in P.
Proof. Take any (n, p) ∈ P and set D =

⋃
{dom(p(s)) ∪ rng(p(s)) :

s ∈ dom(p)}. Let g1, . . . , gl ∈ S∞ \ {f1, . . . , fk} be pairwise distinct and
such that f1, . . . , fk, g1, . . . , gl are free generators; we can find such gi’s by
Lemma 3.3. Set B =

⋃
{w′(f1, . . . , fk, g1, . . . , gl)−1(D) : w′ ≤ w}, where

w′(f1, . . . , gl)
−1(D) denotes the preimage ofD under w′(f1, . . . , fk, g1, . . . , gl);

in particular, D ⊂ B. Since f1, . . . , fk, g1, . . . , gl are free and B is finite, by
Lemma 3.1 there exists x ∈ N \B such that w(f1, . . . , fk, g1, . . . , gl)(x) 6= x.
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For every i = 1, . . . , l, let

Ei = {w′(f1, . . . , fk, g1, . . . , gl)(x) : w′ ≤ w and w′ begins with yk+i},
Ei = {w′(f1, . . . , fk, g1, . . . , gl)(x) : yk+iw′ ≤ w}.

Since x ∈ N \ B, we have Ei ∩ D = ∅ and Ei ∩ D = ∅. Now for every
i = 1, . . . , n set hi = gi�Ei. Then hi is a bijection between Ei and Ei.

We are ready to define (n′, p′). Let

n′ = n+ |s1|+max{|E1|, . . . , |En|}.
For i = 1, . . . , l, let Gi ⊂ N \ (B ∪Ei ∪Ei) be such that |Gi|+n+ |Ei| = n′.

Now, for t ∈ {0, 1}n′ with si ≺ t, set
p′(t) = p(t�n) ∪ hi ∪ idGi .

For the remaining t ∈ {0, 1}n′ , let p′(t) be any bijective extension of p(t�n)
with |dom(p′(t))| = n′. Clearly, (n′, p′) ∈ P and (n′, p′) ≤ (n, p). If t1, . . . , tl
are in {0, 1}n′ and si ≺ ti for i = 1, . . . , l, then

w(f1, . . . , fk, p
′(t1), . . . , p

′(tl))(x) = w(f1, . . . , fk, h1, . . . , hl)(x)

= w(f1, . . . , fk, g1, . . . , gl)(x) 6= x.

Hence (n′, p′) ∈ Dg1,...,gl
w,f1,...,fk

.

Now we extend Theorem 2.8 and Lemma 3.3.

Theorem 3.5. For any residual set Z ⊂ S∞ and any countable family F
of free generators, there is a family F ′ ⊂ Z of free generators of cardinality
c such that F ∪ F ′ is a family of free generators.

Proof. The proof is very similar to that of Theorem 2.8: using the Rasio-
wa–Sikorski lemma, we choose a generic filter G which has nonempty inter-
section with all sets Dk, DFk

, Ds1,...,sl
w and Ds1,...,sl

w,f1,...,fk
(where f1, . . . , fk are

elements of F). Again, for every α ∈ {0, 1}N, we set

g(α) =
⋃
{p(α�n) : (n, p) ∈ G}.

In view of the proof of Theorem 2.8, we only have to show that F ∪ {g(α) :
α ∈ {0, 1}N} is a family of free generators. Let w = w(y1, . . . , yn) be any
word, let k, l ∈ N be such that k + l = n, and let f1, . . . , fk ∈ F be distinct.
Let α1, . . . , αl be different elements of {0, 1}N, and let r ∈ N be such that
αi�r 6= αj�r for i 6= j. Let (n, p) ∈ Dα1�r,...,αl�r

w,f1,...,fk
∩ G. Since αi�r ≺ αi�n for

i = 1, . . . , l, there is x ∈ N such that

w(f1, . . . , fk, g(α1), . . . , g(αl))(x)

= w(f1, . . . , fk, p(α1�n), . . . , p(αl�n))(x) 6= x.

This ends the proof.
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Let M stand for the σ-ideal of meager subsets of R. Let mcountable =
min{κ : “MA(κ) for countable posets” fails} (MA stands for Martin’s
Axiom). It is well known (see [V]) that

mcountable = cov(M) := min{|F| :
⋃
F = R, F ⊂M}.

Since the poset P is countable, we obtain the following.

Theorem 3.6. For any residual set Z ⊂ S∞ and any family F of free
generators of cardinality less than cov(M), there is a family F ′ ⊂ Z of free
generators of cardinality c such that F ∪ F ′ is a family of free generators.

4. Products of countable groups. In this section we will give a nec-
essary and sufficient condition on a sequence of countable groups G1, G2, . . .
for the existence of a free subgroup of

∏
Gn of c generators. A family

{Xs : s ∈ S} of subsets of N is independent if
⋂
s∈E Xs ∩

⋂
s∈F (N \Xs) 6= ∅

for every finite F,E ⊂ S with E ∩ F = ∅. It is well known that there is an
independent family of cardinality c.

Lemma 4.1. Let n ≥ 2. There exists a family F = {fα : α < c} of
functions from {0, . . . , n− 1}N such that for any α0 < · · · < αn−1 < c there
is k ∈ N such that fαi(k) = i.

Proof. Let {pk : k ∈ N} be an enumeration of all subsets of N of cardi-
nality n. Enumerate each pk as {pk(0), . . . , pk(n− 1)}. Let {Uα : α < c} be
an independent family of N. For any α we define fα : N→ {0, . . . , n− 1} as
follows. Fix k ∈ N. If there is i < n such that pk(i) ∈ Uα and pk(j) /∈ Uα for
every j 6= i, then set fα(k) = i; otherwise set fα(k) = 0.

Let α0 < · · · < αn−1. Pick mi ∈ Uαi \
⋃
j 6=i Uαj and set p(i) = mi for

i < n. There is k ∈ N with p = pk. Then fαi(k) = i.

Recall that if a word w is of the form w = w(y1, . . . , ym), then we assume
that all variables of w are in y1, . . . , ym, but not necessarily all yi’s must
appear in w.

Theorem 4.2. Let Gn, n ∈ N, be a family of groups.

(i) If for any nonempty word w(y1, . . . , ym) there are infinitely many n’s
for which there are gn,1, . . . , gn,m ∈ Gn with w(gn,1, . . . , gn,m) 6= en
where en is a neutral element of Gn, then

∏∞
n=1Gn contains a free

group on c generators.
(ii) If every Gn is countable, and for some nonempty word w(y1, . . . , ym),

almost every n and all gn,1, . . . , gn,m ∈ Gn we have w(gn,1, . . . , gn,m)
= en, then

∏∞
n=1Gn does not contain any free group on uncountably

many generators.

Proof. Assume that for any word w(y1, . . . , ym) there are infinitely many
n’s for which there are gwn,1, . . . , gwn,m ∈ Gn with w(gwn,1, . . . , gwn,m) 6= en. For
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any nonempty word w = w(y1, . . . , ym), set

Ew = {n ∈ N : there are gwn,1, . . . , g
w
n,m ∈ Gn with w(gwn,1, . . . , g

w
n,m) 6= en}.

Then {Ew : w = w(y1, . . . , ym) is a nonempty word} is a countable family of
infinite sets. Let {E′w : w = w(y1, . . . , ym) is a nonempty word} be a disjoint
refinement of this family, i.e., a family of pairwise disjoint infinite sets with
E′w ⊂ Ew for any nonempty word w. For any α < c, define fα ∈

∏
Gn as

follows. Let w be a word. Consider two cases.
1. If w = w(yk) is a word with one variable yk, then let {fwα : α < c} be

an enumeration of the set
∏
n∈E′w{en, g

w
n,k} \

∏
n∈E′w{en}.

2. If w = w(y1, . . . , ym), then using Lemma 4.1 we can find a family {fwα :
α < c} such that for any α1 < · · · < αm there is n ∈ E′w with fwαi

(n) = gwn,ki
for i ≤ m. Finally, let fα(n) = fwα (n) if n ∈ E′w, and fα(n) = en otherwise.
Clearly, in both cases, {fα : α < c} consists of free generators.

Assume now the Gn are countable, and let w(y1, . . . , ym) be a word such
that there is N with w(gn,1, . . . , gn,m) = en for n ≥ N and all gn,1, . . . , gn,m
in Gn. Suppose

∏∞
n=1Gn contains a free group on uncountably many gen-

erators, say {fα : α < ω1}. Then for any distinct α1, . . . , αm < ω1 there is
n < N , depending on αi’s, with w(fα1(n), . . . , fαm(n)) 6= en. As the groups
Gn are countable, one can find two distinctm-element sets {α1, . . . , αm} and
{β1, . . . , βm} of ordinals less than ω1 such that

w(fα1(n), . . . , fαm(n)) = w(fβ1(n), . . . , fβm(n))

for every n < N . Then

w(fα1(n), . . . , fαm(n))w
−1(fβ1(n), . . . , fβm(n)) = en

for every n ∈ N. This contradicts the fact that {fα : α < ω1} are free
generators.

From Theorem 4.2 we immediately obtain the following dichotomy.

Corollary 4.3. Let Gn, n ∈ N, be countable groups. Then
∏
n∈NGn

either contains free subgroups on c generators, or does not contain free sub-
groups on uncountably many generators.

5. Final remarks and open questions. The results of Section 2 can
be deduced from those of Section 3 for some class of structures. We say that
a subset X of A is independent if any bijection f : X → X can be extended
to an automorphism of A. If A contains an infinite independent set X, then
take a set F ⊂ S∞(X) of c free generators, and extend every f ∈ F to an
automorphism f ′ of A. Then F ′ = {f ′ : f ∈ F} is a set of free generators in
Aut(A).

Let X be an infinite independent, in the sense of Boolean algebras, set
in B. Then X is independent in the above sense. Now, let X ⊂ U be an
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isometric copy of N with the metric d given by d(x, y) = 1⇔ x 6= y. Then X
is an independent subset of U. However, Q does not contain an independent
subset of cardinality greater than 2. The direct sum of countably many copies
of (Q,+) is a countable ultrahomogeneous structure, and any of its finitely
generated substructures is a torsion free Abelian group. Note that all of
its finitely generated substructures are infinite and each of them contains
an infinite independent subset. Hence the automorphism group of such a
substructure contains a large free subgroup, and this cannot be proved by
our method.

We are interested in extending small free subgroups of Aut(A) to large
free groups. We introduce the cardinal number

fA = min{|F| : F is a maximal set of free generators in Aut(A)}
where “maximal” means that F cannot be extended to a larger set of free
generators. In Section 3 we proved that f := fN is an uncountable cardinal
≥ cov(M).

We end with a list of open questions:

1. Can one prove a similar result to that in Section 2 for structures whose
finitely generated substructures are infinite?

2. Does (∗) imply that fA is uncountable? Does Martin’s Axiom imply
that fA = c?

3. Is it true that f = cov(M)?
4. Is it true that either Aut(A) does not contain an uncountably (in-

finitely) generated free subgroup, or it contains a free subgroup on c
generators?
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