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THE QUASI ISBELL TOPOLOGY ON FUNCTION SPACES

BY

D. N. GEORGIOU (Patras) and A. C. MEGARITIS (Messolonghi)

Abstract. In this paper, on the family O(Y ) of all open subsets of a space Y we
define the so called quasi Scott topology, denoted by τqSc. This topology defines in a
standard way, on the set C(Y,Z) of all continuous maps of the space Y to a space Z,
a topology tqIs called the quasi Isbell topology. The latter topology is always larger than
or equal to the Isbell topology, and smaller than or equal to the strong Isbell topology.
Results and problems concerning the topology tqIs are given.

1. Preliminaries. For every topological space Y we denote by O(Y )
the set of all open subsets of Y . Recall the definitions of some topologies
on O(Y ).

The Scott topology τSc on O(Y ) (see, for example, [13]) is the family of
all subsets H of O(Y ) such that:

(a) The conditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H.
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that

⋃
{Ui : i ∈ I} ∈ H,

there exists a finite subset J of I such that
⋃
{Ui : i ∈ J} ∈ H.

The strong Scott topology τsSc on O(Y ) (see [18]) is the family of all subsets
H of O(Y ) such that:

(a) The conditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H.
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that

⋃
{Ui : i ∈ I} = Y ,

there exists a finite subset J of I such that
⋃
{Ui : i ∈ J} ∈ H.

Let Y , Z be topological spaces and C(Y, Z) the set of all continuous
maps of Y into Z.

If τSc is the Scott topology on O(Y ), then the Isbell topology tIs on
C(Y, Z) (see, for example, [13]) is the topology for which the family of all
sets of the form

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H},
where H ∈ τSc and U ∈ O(Z), is a subbasis.

If τsSc is the strong Scott topology on O(Y ), then the strong Isbell topol-
ogy tsIs on C(Y,Z) (see [18]) is the topology for which the family of all sets
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of the form

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H},

where H ∈ τsSc and U ∈ O(Z), is a subbasis.

The compact-open topology tco on C(Y,Z) (see [7]) is the topology for
which the family of all sets of the form

(K,U) = {f ∈ C(Y,Z) : f(K) ⊆ U},

where K is a compact subset of Y and U ∈ O(Z), is a subbasis.

It is known that tco ⊆ tIs ⊆ tsIs (see, for example, [18] and [20]).

In what follows, if t is a topology on the set C(Y, Z), then the corre-
sponding topological space is denoted by Ct(Y,Z).

Let F : X × Y → Z be a continuous map and x ∈ X. We denote by Fx

the continuous map of Y into Z defined by Fx(y) = F (x, y) for every y ∈ Y .

Also, F̂ denotes the map of X into C(Y,Z) defined by F̂ (x) = Fx for every

x ∈ X. Let G be a map of X into C(Y,Z). We denote by G̃ the map of

X × Y into Z given by G̃(x, y) = G(x)(y) for every (x, y) ∈ X × Y .

A topology t on C(Y, Z) is called splitting if for every space X, the conti-

nuity of a map F : X×Y → Z implies that of F̂ : X → Ct(Y, Z). A topology
t on C(Y, Z) is called admissible if for every space X, the continuity of a

map G : X → Ct(Y,Z) implies that of G̃ : X × Y → Z (see [2]). Let A be
a fixed family of topological spaces. If in the above definitions it is assumed
that the space X belongs to A, then the topology t is called A-splitting
(respectively, A-admissible) (see [12]).

A subset B of a space Y is called bounded if for every family {Ui : i ∈ I}
⊆ O(Y ) such that Y =

⋃
{Ui : i ∈ I} there exists a finite subset J of I such

that B ⊆
⋃
{Ui : i ∈ J}. A topological space Y is called locally bounded if

each of its points has an open neighborhood that is bounded.

A topological space Y is called core-compact if for every y ∈ Y and for
every open neighborhood U of y there exists an open neighborhood V of y
such that the set V is bounded in the space U . We observe that a topological
space Y is core-compact if and only if for every y ∈ Y and for every open
neighborhood U of y there exists an open neighborhood V of y satisfying
the following conditions:

(a) V ⊆ U .
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that U ⊆

⋃
{Ui : i ∈ I}

there exists a finite subset J of I such that V ⊆
⋃
{Ui : i ∈ J}.

We recall the following results:

(1) Each splitting topology is contained in each admissible topology
(see [2]).
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(2) A topology which is larger than an admissible topology is also ad-
missible (see [2]).

(3) A topology which is smaller than a splitting topology is also split-
ting (see [2]).

(4) The function space C(Y,Z) can have at most one topology that
is both admissible and splitting. Such a topology is necessarily the
largest splitting topology and the smallest admissible topology (see,
for example, [6]).

(5) The compact open topology and the Isbell topology on C(Y,Z) are
always splitting (see, for example, [2], [7], [20]).

(6) A topology t on C(Y,Z) is admissible if the evaluation map e :
Ct(Y,Z)×Y → Z, defined by e(f, y) = f(y) for (f, y)∈C(Y, Z)×Y ,
is continuous.

(7) The compact-open topology on C(Y,Z) is admissible if Y is a reg-
ular locally compact space (see [2]).

(8) The Isbell topology on C(Y,Z) is admissible if Y is a core-compact
space. In this case the Isbell topology is also the greatest splitting
topology (see, for example, [18] and [24]).

(9) The strong Isbell topology on C(Y,Z) is admissible if Y is locally
bounded (see [18]).

(10) If Y is a Ti-space, where i = 0, 1, 2, then Ctco(Y,Z) is a Ti-space.

For a summary of all the above results and some open problems on
function spaces see [11]. In the past years, there has been a great deal of
progress in the field of function spaces. In particular, there are several papers
about the Isbell topology (see, for example, [4], [5], [15], [19], [22]).

2. The quasi Scott topology on O(Y ), core-compactness, and
local boundedness

Definition 2.1. Let Y be a topological space. The quasi Scott topology
τqSc on O(Y ) is the family of all subsets H of O(Y ) such that:

(a) The conditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H.
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that

⋃
{Ui : i ∈ I} is a

dense subset of Y and
⋃
{Ui : i ∈ I} ∈ H, there exists a finite subset

J of I such that
⋃
{Ui : i ∈ J} ∈ H.

Remark 2.2. We have τSc ⊆ τqSc ⊆ τsSc.

Example 2.3. We set N = {1, 2, . . .}. Let Y be the set of real numbers
with the usual topology. Consider the set O(Y ) of all open subsets of Y with
the inclusion as order. We set

H = O(Y ) \ {U ∈ O(Y ) : U ( (0, 1)}.
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Obviously, the conditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H. We
observe that ⋃

{(1/n, 1) : n ∈ N} = (0, 1) ∈ H,

but there does not exist a finite subset N of N such that
⋃
{(1/n, 1) : n ∈ N}

∈ H. Therefore, H /∈ τSc. Now, we consider a family {Ui : i ∈ I} ⊆ O(Y )
such that

⋃
{Ui : i ∈ I} is a dense subset of Y and

⋃
{Ui : i ∈ I} ∈ H. Then

there exists i0 ∈ I such that (2, 3)∩Ui0 6= ∅. It follows that Ui0 ∈ H. Hence,
H ∈ τqSc. By the above we have τSc 6= τqSc.

Example 2.4. We set N0 = {0, 1, 2, . . .}. Equip Y = {−1, 0, 1, 2, . . .}
with the topology

O(Y ) =
{
∅, {0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, 2, . . .}, Y

}
.

We consider the subset H = {{0, 1, 2, . . .}, Y } of O(Y ). Obviously, the con-
ditions U ∈ H, V ∈ O(Y ), and U ⊆ V imply V ∈ H. We observe that⋃

{{0, . . . , n} : n ∈ N0} = {0, 1, 2, . . .} ∈ H

and {0, 1, 2, . . .} is a dense subset of Y . But for every finite subset N of N0,⋃
{{0, . . . , n} : n ∈ N} = {0, . . . ,max(N)} /∈ H.

Therefore, H /∈ τqSc. Now, we consider a family {Ui : i ∈ I} ⊆ O(Y ) such
that

⋃
{Ui : i ∈ I} = Y . Then there exists i0 ∈ I such that −1 ∈ Ui0 . Hence,

Ui0 = Y ∈ H. It follows that H ∈ τsSc. By the above we have τqSc 6= τsSc.

Definition 2.5. Let Y be a topological space. The complete lattice
(O(Y ),⊆) is called q-continuous if for every y ∈ Y and for every open
neighborhood U of y there exists an open neighborhood V of y satisfying
the following conditions:

(a) V ⊆ U .
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that U ⊆

⋃
{Ui : i ∈ I}

and
⋃
{Ui : i ∈ I} is a dense subset of Y there exists a finite subset

J of I such that V ⊆
⋃
{Ui : i ∈ J}.

In what follows we give some new characterizations of the notions of
core-compactness and local boundedness.

Proposition 2.6. Let Y be a topological space. The complete lattice
O(Y ) is q-continuous if and only if the space Y is core-compact.

Proof. If Y is core-compact, then obviously O(Y ) is q-continuous. Con-
versely, suppose that O(Y ) is q-continuous. Let y ∈ Y and U be an open
neighborhood of y. Then there exists an open neighborhood V of y satisfying
conditions (a) and (b) of Definition 2.5. Let {Ui : i ∈ I} ⊆ O(Y ) be such
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that U ⊆
⋃
{Ui : i ∈ I}. Consider the family

{Ui : i ∈ I} ∪
{
Y \ ClY

(⋃
{Ui : i ∈ I}

)}
⊆ O(Y ).

The union of this family is a dense subset of Y . Therefore, there exists a
finite subset J of I such that V ⊆

⋃
{Ui : i ∈ J}.

Proposition 2.7. A space Y is locally bounded if and only if for every
y ∈ Y there exists an open neighborhood U of y satisfying the following
condition: For every family {Ui : i ∈ I} ⊆ O(Y ) such that ClY (U) ⊆

⋃
{Ui :

i ∈ I} and
⋃
{Ui : i ∈ I} is a dense subset of Y , there exists a finite subset

J of I such that U ⊆
⋃
{Ui : i ∈ J}.

Proof. If the condition is satisfied, then obviously Y is locally bounded.
Conversely, suppose that Y is locally bounded. Let y ∈ Y . Then there exists
an open neighborhood U of y satisfying the following condition: For every
family {Ui : i ∈ I} ⊆ O(Y ) such that Y =

⋃
{Ui : i ∈ I} there exists a finite

subset J of I such that U ⊆
⋃
{Ui : i ∈ J}. Let {Ui : i ∈ I} ⊆ O(Y ) be

such that ClY (U) ⊆
⋃
{Ui : i ∈ I} and

⋃
{Ui : i ∈ I} is a dense subset of Y .

Consider the family

{Ui : i ∈ I} ∪ {Y \ ClY (U)} ⊆ O(Y ).

Then ⋃
{Ui : i ∈ I} ∪ {Y \ ClY (U)} = Y.

Therefore, there exists a finite subset J of I such that U ⊆
⋃
{Ui : i ∈ J}.

3. The quasi Isbell topology

Definition 3.1. Let Y and Z be two topological spaces and τqSc the
quasi Scott topology on O(Y ). The quasi Isbell topology tqIs on C(Y,Z) is
the topology for which the family of all sets of the form

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H},
where H ∈ τqSc and U ∈ O(Z), is a subbasis.

The following proposition can be easily proved.

Proposition 3.2. The following statements are true:

(1) tco ⊆ tIs ⊆ tqIs ⊆ τsIs.
(2) If Y is a Ti-space, where i = 0, 1, 2, then the space CtqIs(Y, Z) is a

Ti-space.

Remark 3.3. Let 2 be the Sierpiński space, that is, 2 = {0, 1} with the
topology {∅, {1}, {0, 1}}. If Y is another topological space, then

C(Y,2) = {XU : U ∈ O(Y )},
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where XU : Y → 2 denotes the characteristic function of U ,

XU (y) =

{
1 if y ∈ U ,

0 if y ∈ Y \ U .

We note that:

(1) The spaces CtIs(Y,2) and (O(Y ), τSc) are homeomorphic (see [13]).
(2) The spaces CtsIs(Y,2) and (O(Y ), τsSc) are homeomorphic (see [18]).

Proposition 3.4. The spaces CtqIs(Y,2) and (O(Y ), τqSc) are homeo-
morphic for any space Y .

Proof. We consider the map h : CtqIs(Y,2) → (O(Y ), τqSc) defined by

h(f) = f−1({1}) for every f ∈ CtqIs(Y,2). Obviously, h is one-to-one and
onto. We observe that f is continuous. Indeed, let H ∈ τqSc. Then

h−1(H) = {f ∈ CtqIs(Y,2) : f−1({1}) ∈ H} = (H, {1}).
Also, f is open. Indeed, let (H, {1}) be a subbasic open set in CqIs(Y,2).
Then h((H, {1})) = H. Therefore, the map h is a homeomorphism.

Example 3.5. Let Y be the space given in Example 2.3. As τSc 6= τqSc,
we have tIs 6= tqIs on C(Y,2). Moreover, since Y is core-compact, the topol-
ogy tIs on C(Y,2) is admissible, and therefore the topology tIs is the greatest
splitting topology. Since tIs ⊆ tqIs, the topology tqIs on C(Y,2) is admissible.
It follows that the topology tqIs on C(Y,2) is not splitting.

Example 3.6. Let Y be the space given in Example 2.4. As τqSc 6= τsSc,
we have tqIs 6= tsIs on C(Y,2).

Definition 3.7 (see [3]). A topological space is called irreducible if every
non-empty open subset is dense.

Proposition 3.8. If the space Y is irreducible, then the quasi Isbell
topology tqIs and the Isbell topology tIs coincide on C(Y, Z).

Proof. The proof is a straightforward verification of the fact that if the
space Y is irreducible, then the quasi Scott topology τqSc and the Scott
topology τSc coincide on O(Y ).

Definition 3.9 (see [1]). A topological space is called Alexandroff if
the intersection of every family of open sets is open.

Proposition 3.10. Let A be the family of Alexandroff spaces. Then the
topology tqIs on C(Y,Z) is A-splitting.

Proof. Let X be an Alexandroff space and F : X × Y → Z be a con-
tinuous map. We prove that the map F̂ : X → CqIs(Y,Z) is continuous.

Let x ∈ X. Then the map F̂ (x) = Fx : Y → Z is continuous. Let (H, U)
be a subbasic open set in CqIs(Y,Z) containing Fx. Then F−1x (U) ∈ H. For
each y ∈ F−1x (U) we have F (x, y) = Fx(y) ∈ U . Hence there exist open
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sets Vy containing x and Wy containing y such that F (Vy ×Wy) ⊆ U . Since
F−1x (U) ⊆

⋃
y∈F−1

x (U)Wy and F−1x (U) ∈ H, we have
⋃

y∈F−1
x (U)Wy ∈ H. Let

V =
⋂

y∈F−1
x (U) Vy and W =

⋃
y∈F−1

x (U)Wy. Then x ∈ V . We prove that

F̂ (V ) ⊆ (H, U). Let v ∈ V . We prove that F̂ (v) ∈ (H, U) or equivalently
F−1v (U) ∈ H. Since W ∈ H, it suffices to prove that W ⊆ F−1v (U). Indeed,
let w ∈W . Then w ∈Wy0 for some y0 ∈ F−1x (U). Moreover, v ∈ Vy0 . Thus,
F (v, w) ∈ F (Vy0 × Wy0) ⊆ U , and therefore Fv(w) ∈ U or equivalently
w ∈ F−1v (U).

Proposition 3.11. The following statements are true:

(1) If Y is a regular locally compact space, then the topology tqIs on
C(Y, Z) is admissible.

(2) If Y is a core-compact space, then the topology tqIs on C(Y, Z) is
admissible.

Proof. The proof is a straightforward verification of the fact that a topol-
ogy which is larger than an admissible topology is also admissible.

Proposition 3.12. For every space Y the following statements are equiv-
alent:

(1) Y is core-compact.
(2) For every space Z the evaluation map e : CtqIs(Y,Z) × Y → Z is

continuous.
(3) The evaluation map e : CtqIs(Y,2) × Y → 2 is continuous, where 2

is the Sierpiński space.
(4) The set {(U, y) ∈ O(Y )× Y : y ∈ U} is open in (O(Y ), τqSc)× Y .
(5) For every open neighborhood U of a point y of Y there is an open

set H ∈ τqSc such that U ∈ H and the set
⋂
{W : W ∈ H} is a

neighborhood of y in Y .

Proof. (1) implies (2). Follows by Proposition 3.11(2).
(2) implies (3). It is obvious.
(3) implies (4). For every U ∈ O(Y ) we have XU ∈ CtqIs(Y,2) and

U = X−1U ({1}). Moreover, y ∈ U if and only if e(XU , y) = XU (y) = 1. By
Proposition 3.4 we have

e−1({1}) ∼= {(U, y) ∈ O(Y )× Y : y ∈ U},
and hence {(U, y) ∈ O(Y )× Y : y ∈ U} is open in (O(Y ), τqSc)× Y .

(4) implies (5). Let U be an open neighborhood of a point y of Y . By
(4) there exist H ∈ τqSc and an open neighborhood V of y in Y such that

(U, y) ∈ H× V ⊆ {(U, u) ∈ O(Y )× Y : u ∈ U}.
We prove that V ⊆

⋂
{W : W ∈ H}. Let v ∈ V and W ∈ H. Then

(W, v) ∈ H× V ⊆ {(U, u) ∈ O(Y )× Y : u ∈ U},
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and hence v ∈ W . It follows that
⋂
{W : W ∈ H} is a neighborhood of y

in Y .
(5) implies (1). By Proposition 2.6 we have to show that for every y ∈ Y

and for every open neighborhood U of y there exists an open neighborhood
V of y satisfying the following conditions:

(a) V ⊆ U .
(b) For every family {Ui : i ∈ I} ⊆ O(Y ) such that U ⊆

⋃
{Ui : i ∈ I}

and
⋃
{Ui : i ∈ I} is a dense subset of Y there exists a finite subset

J of I such that V ⊆
⋃
{Ui : i ∈ J}.

Let U be an open neighborhood of y. By (5) there exists an open set
H ∈ τqSc such that U ∈ H and the set

⋂
{W : W ∈ H} is a neighborhood of

y in Y . Therefore, there exists an open neighborhood V of y such that

V ⊆
⋂
{W : W ∈ H}.

Since U ∈ H, we have V ⊆ U . Let {Ui : i ∈ I} ⊆ O(Y ) be a family such
that U ⊆

⋃
{Ui : i ∈ I} and

⋃
{Ui : i ∈ I} is a dense subset of Y . Since

U ∈ H and U ⊆
⋃
{Ui : i ∈ I}, we have

⋃
{Ui : i ∈ I} ∈ H. Hence, there

exists a finite subset J of I such that
⋃
{Ui : i ∈ J} ∈ H. It follows that

V ⊆
⋃
{Ui : i ∈ J}.

Corollary 3.13. Let Y be a locally bounded space. If the space Y is
not core-compact, then tqIs 6= tsIs on C(Y,2).

Proof. By Proposition 3.12, the topology tqIs on C(Y,2) is not admis-
sible. However, the topology tsIs on C(Y,2) is admissible. Thus, they are
different.

Example 3.14 (see [17]). Let Y consist of points α, β, γi, αij , bij , i, j∈N,
and let O(Y ) be the topology on Y defined by the neighborhood basis B(y)
of each point y ∈ Y as follows:

B(α) =
{
V n(α) = {α} ∪ {αij : i ≥ n, j ∈ N

}
: n ∈ N},

B(β) =
{
V n(β) = {β} ∪ {βij : i ≥ n, j ∈ N} : n ∈ N

}
,

B(αij) = {{αij}}, i, j ∈ N,
B(βij) = {{βij}}, i, j ∈ N,
B(γi) =

{
V n(γi) = {γi} ∪ {αij : j ≥ n} ∪ {βij : j ≥ n} : n ∈ N

}
, i ∈ N.

The space Y is locally bounded. However, this space is not core-compact.
By Corollary 3.13, tqIs 6= tsIs on C(Y,2).

Example 3.15. Let Y consist of the set of points of the plane R2. Neigh-
borhoods of points other than the origin (0, 0) are the usual open sets of
R2 \ {(0, 0)}. As a neighborhood basis of (0, 0), we take

B(0, 0)=
{
V n(0, 0)={(α, β) ∈ Y : α2+β2<1/n2, β > 0} ∪ {(0, 0)} : n∈N

}
.
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(0, 0)

Fig. 1

Since the plane R2 is locally bounded, each point (α, β) ∈ R2\{(0, 0)} has
an open neighborhood that is bounded. Moreover, the open neighborhood
V 1(0, 0) = {(α, β) ∈ Y : α2 + β2 < 1, β > 0} ∪ {(0, 0)} of (0, 0) is bounded.
Hence, Y is locally bounded. We show that Y is not core-compact. Indeed,
consider the point (0, 0) of Y , the open neighborhood V 1(0, 0) of (0, 0),
and an arbitrary open neighborhood V of (0, 0) such that V ⊆ V 1(0, 0).
Without loss of generality we can suppose that V = V n(0, 0) for some
n ∈ N. Let (βi)

∞
i=1 be a strictly decreasing sequence of numbers in (0, 1)

such that limi→∞ βi = 0. We set

I = N ∪ {0}, U0 = V 2n(0, 0),

Ui = {(α, β) ∈ Y : −1 < α < 1, βi < β < 1}, i ∈ N,
and consider the family {Ui : i ∈ I}. Note that V 1(0, 0) ⊆

⋃
{Ui : i ∈ I}

and there does not exist a finite subset J of I such that V ⊆
⋃
{Ui : i ∈ J}.

Therefore, Y is not core-compact. By Corollary 3.13, tqIs 6= tsIs on C(Y,2).

(0, 0)(−1, 0) (1, 0)

(−1, 1) (1, 1)

V 1(0, 0)

Ui

U0

V

Fig. 2

Proposition 3.16. Let A be a family of topological spaces such that the
topology tqIs on C(Y,Z) is A-splitting. If Y is core-compact, then for every
space X ∈ A the map

E : C(X × Y, Z)→ C(X,CtqIs(Y,Z))

defined by E(F ) = F̂ for every F ∈ C(X × Y,Z) is a bijection.
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Proof. First, we note that since the topology tqIs on C(Y,Z) is A-
splitting, the map E is well defined. Suppose that Y is core-compact. By
Proposition 3.11(2) the topology tqIs on C(Y, Z) is admissible. It follows
that for every space X, the continuity of a map G : X → CqIs(Y,Z) implies

that of the map G̃ : X × Y → Z. We consider the map

R : C(X,CtqIs(Y,Z))→ C(X × Y, Z)

defined by R(G) = G̃ for every G ∈ C(X,CtqIs(Y,Z)). We observe that

E ◦R = idC(X,CtqIs
(Y,Z)) and R ◦ E = idC(X×Y,Z),

where idA denotes the identity map on A. Therefore, E is a bijection.

4. Problems. In this section we give some problems on quasi Isbell
topology on function spaces.

Problem 4.1. Is the space CtqIs(Y, Z) regular (respectively, Tychonoff )
when Z is regular (respectively, Tychonoff )?

By w(X) we denote the weight of an arbitrary topological space X. It
is known (see, for example, [21]) that if Y and Z are arbitrary topological
spaces, then w(CtIs(Y,Z)) ≤ w(Y )w(Z).

Problem 4.2. Is it true that

w(CtqIs(Y, Z)) ≤ w(Y )w(Z)

for any topological spaces Y and Z?

A family F ⊆ C(Y, Z) is called evenly continuous at a point y ∈ Y
(see [16]) if for every z ∈ Z and every open neighborhood P of z in Z
there are open neighborhoods W and R, of y and z respectively such that
f(W ) ⊆ P whenever f ∈ F and f(y) ∈ R. The subset F of C(Y, Z) is called
evenly continuous if it is evenly continuous at each point y ∈ Y .

Theorem 4.3 (see [23]). Let Y be an arbitrary topological space, Z a
regular topological space and F ⊆ C(Y,Z). Then F is compact in CtIs(Y,Z)
if the following conditions are satisfied:

(1) F is closed.
(2) Cl({g(y) : g ∈ F}) is a compact subset of Z for every y ∈ Y .
(3) F is evenly continuous.

Problem 4.4. Is the above Ascoli type theorem true for the topology tqIs?

A family F ⊆ C(Y,Z) satisfies the condition G2 (see [8] and [14]) if for
each open set U of Z and each G ⊆ F such that G = Cl(G) ∩ F the set⋂
{g−1(U) : g ∈ G} is open in Y (where Cl(G) denotes the pointwise closure

of G).
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Theorem 4.5 (see [22]). Let Y be an arbitrary topological space, Z a
regular topological space and F ⊆ C(Y,Z). Then F is compact in CtIs(Y,Z)
if the following conditions are satisfied:

(1) F is closed.

(2) {g(y) : g ∈ F} is a compact subset of Z for every y ∈ Y .

(3) F satisfies the condition G2.

Problem 4.6. Is the above Ascoli type theorem true for the topology tqIs?

Problem 4.7. Compare the quasi Isbell and strong Isbell topologies with
the fine Isbell topology of Jordan (see [15]).

Remark 4.8. For some other open problems on function spaces see [11],
[10], and [9].
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