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THE DUALITY THEOREM FOR TWISTED SMASH PRODUCTS
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Abstract. Let A #T H denote the twisted smash product of an arbitrary algebra A
and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner–
Montgomery duality theorem for A#T H, and as an application we establish the relation-
ship between the homological dimensions of A#T H and A if H and its dual H∗ are both
semisimple.

1. Introduction and preliminaries. In the theory of Hopf algebras,
the Blattner–Montgomery duality theorem [5] is a celebrated result, and sev-
eral versions of it have appeared (see [1] and [6] for example). These duality
theorems play an important role in actions of Hopf algebras (see [14]), and
also offer us a method to investigate the homological dimensions of some
algebraic structures over Hopf algebras.

The notion of the twisted smash product A#T H of an arbitrary algebra
A and a Hopf algebra H was introduced in [12], and the relationship between
the homological dimensions of A#TH and A was first investigated. However,
the duality theorem for twisted smash products has not been given yet,
because of the abstract twisting map T . Fortunately, we have now succeeded
in obtaining a duality theorem for twisted smash products. As applications,
we study the homological dimensions of twisted smash products.

Throughout this paper, we fix a field k, and by an algebra and a Hopf
algebra we mean a k-algebra and a Hopf k-algebra. We freely use the Hopf al-
gebras and coalgebras terminology introduced in [9], [14], [16], [19] and [20].
H will always denote a Hopf algebra with multiplication µ, comultiplica-
tion ∆, counit ε and antipode S. For the comultiplication of H, we write

∆(h) =
∑
h1 ⊗ h2 for h ∈ H,

and denote the structure of right H-comodule of M by

ρ(m) =
∑
m(0) ⊗m(1) for m ∈M.
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Let H be a Hopf algebra and A an algebra. Recall from [20] the “finite
dual” H0 of H, defined by

(1) H0 = {f ∈ H∗ | Ker f contains an ideal of H of finite codimension}.
Then the operations of H dualize to turn H0 into a Hopf algebra, whose
multiplication, comultiplication, counit and antipode will also be denoted
by µ, 4, ε and S, respectively.

Let f ∈ H0 and h ∈ H. Define a left action of H0 on H by f ⇀ h =∑
f(h2)h1, and a right action of H0 on H by h↼ f =

∑
f(h1)h2. Then H

is both a left and right H0-module algebra (see [5]).
We recall from [5] and [14] that an ordinary smash product A#H of an

algebra A and a Hopf algebra H is an algebra with unit 1A # 1H defined on
the k-space A⊗H with multiplication given by

(2) (a# h)(b# g) =
∑
a(h1 · b) # h2g

for all a, b ∈ A and h, g ∈ H.
The reader is also referred to the recent papers [2], [3] and [21] for a

study of the representation type properties and the uniseriality of special
smash products, namely, for twisted group algebras SλG with respect to a
2-cocycle λ : G×G→ S∗, and for local weak crossed product orders.

2. The duality theorem for twisted smash products. In this sec-
tion, we give the duality theorem for twisted smash products.

Definition 2.1. Let A and B be two algebras with units.

(a) A normal twist on the tensor product B⊗A is defined to be a k-linear
map

T : B ⊗A→ A⊗B
satisfying the following two conditions:

T (x⊗ 1A) = 1A ⊗ x for any x ∈ B,
T (1B ⊗ a) = a⊗ 1B for any a ∈ A.

The normal twist T is called quasi-triangular if it satisfies the fol-
lowing two conditions:

T (m⊗ id) = (id⊗m)T12T23, T (id⊗m) = (m⊗ id)T23T12,

where m is the product map of the algebras A and B, T12 = T ⊗ id
and T23 = id⊗ T .

(b) Given a normal twist T : B ⊗ A → A⊗ B, we define A#T B to be
the k-vector space A#T B := A⊗B with multiplication defined by

(a#T x)(b#T y) =
∑
abT #T xT y,

where T (x⊗ b) is denoted by
∑
bT ⊗ xT .
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(c) The k-vector space A#T B is defined to be a twisted smash product
(also called “T -smashed product” in [12]) of algebras A and B if the
multiplication defined in (b) defines an associative algebra structure
on A#T B with unit 1A #T 1B.

(d) The twisted smash product A#T B is said to be strong if the twist
T is invertible.

By [11, Proposition 1.3], A #T B is strong if and only if B#T−1A is
strong.

The following lemma proved in [12] is very useful.

Lemma 2.2. Under the notations introduced above, the k-space A#T B
is a normal twisted smash product if and only if the normal twist T satisfies
the following two quasi-triangularity conditions:

T (xy ⊗ a) =
∑
aTt ⊗ xtyT ,(3)

T (x⊗ ab) =
∑
aT bt ⊗ xTt,(4)

for all a, b ∈ A and x, y ∈ B, where
∑
at ⊗ xt is the copy of

∑
aT ⊗ xT ≡

T (x⊗ a).

Assume that A#T B is a twisted smash product. Then it is easy to see
that A and B are subalgebras of A#T B.

Let H be a Hopf algebra and A an algebra. Then it is easy to see that
A⊗H is a right H-comodule via

ρA⊗H(a⊗ h) =
∑
a⊗ h1 ⊗ h2,

and H ⊗A is a right H-comodule via

ρH⊗A(h⊗ a) =
∑
h1 ⊗ a⊗ h2,

for all a ∈ A and h ∈ H.

Lemma 2.3. Let H be a Hopf algebra, A an algebra, and T : H ⊗ A →
A⊗H a normal twist. Then A#T H is a right H-comodule algebra if and
only if T is a right H-comodule homomorphism.

Proof. For any a, b ∈ A and x, y ∈ H, if T is a right H-comodule map,
then

(5)
∑
bT #T (hT )1 ⊗ (hT )2 =

∑
bT #T h1T ⊗ h2.

Then

ρA#TH((a#T h)(b#T g)) = ρA#TH(
∑
abT #T hT g)

=
∑
abT #T (hT )1g1 ⊗ (hT )2g2 =

∑
abT #T h1T g1 ⊗ h2g2

=
∑

(a#T h1 ⊗ h2)(b#T g1 ⊗ g2) = ρA#TH(a#T h)ρA#TH(b#T g).
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Conversely, if A#T H is a right H-comodule algebra, then for any b ∈ A
and h ∈ H we have

ρA#TH((1A #T h)(b#T 1H)) = ρA#TH(1A #T h)ρA#TH(b#T 1H),

that is, (5) holds, so the map T is H-colinear.

Definition 2.4. Let H be a Hopf algebra and A an algebra. A normal
twist T : H ⊗ A → A ⊗ H is defined to be an H-comodule twist if T is
a homomorphism of right H-comodules. In this case we call A #T H the
twisted smash product of A and H along the H-comodule twist T .

Throughout this paper, we assume that H is a Hopf algebra, A an al-
gebra, T : H ⊗A→ A⊗H an H-comodule twist, and A#T H the twisted
smash product of A and H along the H-comodule twist T .

By Lemma 2.3, A#T H is a left module over H0 (see (1)) with the left
H0-module structure defined by

f · (a#T h) = a#T (f ⇀ h)

for all a ∈ A, h ∈ H and f ∈ H0. Consequently, we can form the ordinary
smash product (A#T H) #H0.

Definition 2.5. Let H be a Hopf algebra, and let U be a Hopf subal-
gebra of H0. Then U is said to satisfy the RL-condition with respect to H
in [5] if

%H,U (U) ⊆ λH,U (H # U),

where %H,U is the algebra anti-homomorphism

%H,U : U → End(H), %H,U (f)(h) = h↼ f,

and λH,U is the algebra homomorphism

λH,U : H # U → End(H), λH,U (h# f)(g) = h(f ⇀ g).

Here, End(H) denotes the set of k-maps from H to H.

Definition 2.6. Let A#T H be a twisted smash product, and let U be
a Hopf subalgebra of H0. Then A is said to be U -locally finite if, for any
a ∈ A, there exist f1, . . . , fr ∈ U such that

(idA ⊗ ε)
(∑

aT ⊗
( r⋂
j=1

Ker fj

)
T

)
= 0.

Lemma 2.7. Let A #T H be a twisted smash product, and U a Hopf
subalgebra of H0. Then A is U -locally finite if and only if, for every a ∈ A,
there exist f1, . . . , fr ∈ U and a1, . . . , ar ∈ A such that

(6)
∑
ε(hT )aT =

r∑
j=1

fj(h)aj

for all h ∈ H.
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Proof. Suppose A is U -locally finite. Choose f1, . . . , fr ∈ U as in Def-
inition 2.6. We may assume f1, . . . , fr to be linearly independent. Choose
h1, . . . , hr ∈ H such that fi(hj) = δij for 1 ≤ i, j ≤ r. Then h−

∑r
j=1 fj(h)hj

is in Ker fj for all h ∈ H such that, for any a ∈ A,∑
ε(hT )aT =

r∑
j=1

fj(h)ε((hj)T )aT .

Let aj =
∑
ε((hj)T )aT . Then the desired relation holds. The converse is

obvious.

Following [5], we define k-linear maps

α : (A#T H)#U → End(A#T H) and β : A⊗ (H#U)→ End(A#T H)

by setting α = λA#TH,U and β = L ⊗ λH,U , where L : A → End(A) is the
left regular representation. In other words, we have

α((a#T h) # f)(b#T g) = (a#T h)(b#T (f ⇀ g)),

β(a⊗ (h# f))(b#T g) = ab#T h(f ⇀ g),

for all a, b ∈ A, h, g ∈ H and f ∈ U .

Lemma 2.8. Let H be a Hopf algebra with bijective antipode S, U a Hopf
subalgebra of H0, and A an algebra. Suppose that A#T H is a twisted smash
product. Then α and β are injective algebra homomorphisms.

Proof. Since λA#TH,U , λH,U and L are algebra homomorphisms, it fol-
lows that α and β are also algebra homomorphisms.

Define

Φ : End(A#T H)→ End(A#T H),

Φ(σ)(b#T g) =
∑

[σ(b#T g2)](1A #T g1).

Then Φ is injective with a left inverse given by

Ψ : End(A#T H)→ End(A#T H),

Ψ(σ)(b#T g) =
∑

[σ(b#T g2)](1A #T S
−1(g1)).

Indeed,

Ψ ◦ Φ(σ)(b#T g) =
∑

[Φ(σ)(b#T g2)](1A #T S
−1(g1))

=
∑

[σ(b#T g3)](1A #T g2)(1A #T S
−1(g1))

=
∑

[σ(b#T g3)]((1A)T #T g2TS
−1(g1))

=
∑

[σ(b#T g3)](1A #T g2S
−1(g1)) = σ(b#T g).

Thus Ψ is a left inverse for Φ. Define

α̃ : (A#T H) # U → End(A#T H),

α̃((a#T h) # f)(b#T g) = f(g)(a#T h)(b#T 1H).
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It follows easily that the diagram

End(A#T H)

Φ

((
(A#T H) # U

α̃
66

α // End(A#T H)

is commutative. Indeed, let σ = α̃((a#T h) # f). Then

Φ(σ)(b#T g) =
∑

[σ(b#T g2)](1A #T g1)

=
∑

(a#T h)(b#T 1H)(1A #T f(g2)g1)

= (a#T h)(b#T (f ⇀ g)) = α((a#T h) # f)(b#T g),

which shows that Φ ◦ α̃ = α, as desired.

Hence, to show α is injective, we have to prove that α̃ is injective. Let
u ∈ Ker α̃, and write u =

∑r
j=1 vj # fj , where vj ∈ A#T H and {f1, . . . , fr}

is a linearly independent subset of U . Choose h1, . . . , hr ∈ H such that
fi(hj) = δij , 1 ≤ i, j ≤ r. Then 0 = α̃(u)(1A #T hj) =

∑r
i=1 fi(hj)vi = vj

for all j, so that u = 0. Thus α̃ is injective.

Define

β̃ : A⊗ (H # U)→ End(A#T H),

β̃(a⊗ (h# f))(b#T g) = f(g)(ab#T h).

Then the diagram

End(A#T H)

Φ

((
A⊗ (H # U)

β̃
66

β // End(A#T H)

is commutative. Indeed, let σ = β̃(a⊗ (h# f)). Then

Φ(σ)(b#T g) =
∑

[σ(b#T g2)](1A #T g1)

= [β̃((a#T h) # f)(b#T g2)](1A #T g1)

=
∑

(ab#T h)(1A #T f(g2)g1) =
∑
ab(1A)T #T hT (f ⇀ g)

= ab#T h(f ⇀ g) = β(a⊗ (h# f))(b#T g).

This shows that Φ ◦ β̃ = β, as desired.

Hence, to show that β is injective, we have to prove that β̃ is injective. Let
u ∈ Ker β̃, and write u =

∑r
j=1 aj⊗(gj#fj), where {f1, . . . , fr} is a linearly

independent subset of U . Choose h1, . . . , hr ∈ H such that fi(hj) = δij ,

1 ≤ i, j ≤ r. Then 0 = β̃(u)(1A #T hj) =
∑r

i=1 fi(hj)ai #T gi = aj #T gj for

all j, so that u = 0. Thus β̃ is injective.
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Lemma 2.9. The map

γ : A#T H → A#T H, γ(a#T h) =
∑
ε(S−1(h1)T )aT #T h2,

is invertible with inverse ν given by

ν : A#T H → A#T H, ν(a#T h) =
∑
ε(h1T )aT #T h2,

for all a ∈ A and h ∈ H.

Proof. Indeed, for any a ∈ A and h ∈ H,

γ(ν(a#T h)) = γ
(∑

ε(h1T )aT #T h2
)

=
∑
ε(h1T )ε(S−1(h2)t)aTt #T h3

(3)
=
∑
ε((S−1(h2)h1)T )aT #T h3 = a#T h,

ν(γ(a#T h)) = ν
(∑

ε(S−1(h1)T )aT #T h2
)

=
∑
ε(S−1(h1)T )ε(h2t)aTt #T h3

=
∑
ε((h2S

−1(h1))T )aT #T h3 = a#T h.

The next two lemmas show the map of γ conjugating β(A⊗ (H #U)) is
onto α((A#T H) #U). We now compute ν ◦ β(1A ⊗ (h# f)) ◦ γ, ν ◦ β(a⊗
(1H # ε)) ◦ γ and γ ◦ α((a#T 1H) # ε) ◦ ν for all a ∈ A, h ∈ H and f ∈ U ,
respectively.

Lemma 2.10. ν ◦ β(1A ⊗ (h# f)) ◦ γ = α((1A #T h) # f).

Proof. For any b ∈ A and g ∈ H, since 4(f ⇀ g) =
∑
g1 ⊗ (f ⇀ g2)

by [5, Lemma 1.1], we have

[ν◦β(1A⊗(h#f))◦γ](b#T g) =
∑

[ν◦β(1A⊗(h#f))]
(
ε(S−1(g1)T )bT #T g2

)
=
∑
ν
(
ε(S−1(g1)T )bT #T h(f ⇀ g2)

)
=
∑
ε(S−1(g1)T )ε((h1(f ⇀ g2)1)t)bTt #T h2(f ⇀ g2)2

=
∑
ε(S−1(g1)T )ε((h1g2)t)bTt #T h2(f ⇀ g3)

=
∑
ε((h1g2)tS

−1(g1)T )bTt #T h2(f ⇀ g3)

(3)
=
∑
ε((h1g2S

−1(g1))T )bT #T h2(f ⇀ g3) =
∑
ε(h1T )bT #T h2(f ⇀ g)

(5)
=
∑
ε((hT )1)bT #T (hT )2(f ⇀ g) =

∑
bT #R hT (f ⇀ g)

= (1A #T h)(b#T (f ⇀ g)) = α((1A #T h) # f)(b#T g).

Fix a ∈ A. Choose f1, . . . , fr ∈ U and a1, . . . , ar ∈ A as in Lemma 2.7.
In the following, by using the fact that A is a U -locally finite algebra, we
get

Lemma 2.11. If the antipode of U is bijective, then:

(i) ν◦β(a⊗(1H#ε))◦γ =
∑r

j=1 α((aj#T 1H)#ε)◦ν◦(idA⊗%H,U (fj))◦γ,

(ii) γ◦α((a#T 1H)#ε)◦ν =
∑r

j=1 β(aj⊗(1H#ε))◦(idA⊗%H,U (S−1(fj))).
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Proof. (i) For any b ∈ A, g ∈ H, f ∈ H0, since4(g↼f) =
∑

(g1↼f)⊗g2
by [5, Lemma 1.2], we have

ν ◦ β(a⊗ (1H # ε)) ◦ γ(b#T g)

=
∑
ν ◦ β(a⊗ (1H # ε))

(
ε(S−1(g1)T )bT #T g2

)
=
∑
ν
(
aε(S−1(g1)T )bT #T (ε ⇀ g2)

)
=
∑
ν
(
aε(S−1(g1)T )bT #T g2

)
=
∑
ε(g2t)ε(S

−1(g1)T )(abT )t #T g3
(4)
=
∑
ε(g2tt′S

−1(g1)T )atbTt′ #T g3
(3)
=
∑
ε[(g2tS

−1(g1))T ]atbT #T g3 =
∑
ε[(g2t)1((g2t)2S

−1(g1))T ]atbT #T g3
(5)
=
∑
ε[(g21)t(g22S

−1(g1))T ]atbT #T g3

=
∑

(at #T 1H)[ε(g2t(g3S
−1(g1))T )bT #T g4]

=
∑
α((at #T 1H) # ε)[ε(g2t(g3S

−1(g1))T )bT #T g4]

(6)
=

r∑
j=1

α((aj #T 1H) # ε)[
∑
ε((fj(g2)g3S

−1(g1))T )bT #T g4]

=
r∑
j=1

α((aj #T 1H) # ε)[
∑
ε(((g2 ↼fj)S

−1(g1))T )bT #T g3]

=
r∑
j=1

α((aj #T 1H) # ε)[
∑
ε((g2 ↼fj)tS

−1(g1)T )bTt #T g3]

=
r∑
j=1

α((aj #T 1H) # ε)[
∑
ε((g2 ↼fj)1t)ε(S

−1(g1)T )bTt #T (g2 ↼fj)2]

=
r∑
j=1

α((aj #T 1H) # ε) ◦ ν[
∑
ε(S−1(g1)T )bT #T (g2 ↼fj)]

=
r∑
j=1

α((aj #T 1H) # ε) ◦ ν ◦ (idA ⊗ %H,U (fj))[
∑
ε(S−1(g1)T )bT #T g2]

=
r∑
j=1

α((aj #T 1H) # ε) ◦ ν ◦ (idA ⊗ %H,U (fj)) ◦ γ(b#T g)

as required.

(ii) Similarly to (i), we have

γ ◦ α((a#T 1H) # ε) ◦ ν(b#T g)=
∑
γ ◦ α((a#T 1H) # ε)

(
ε(g1T )bT #T g2

)
=
∑
γ[(a#T 1H)(ε(g1T )bT #T g2)] =

∑
γ(ε(g1T )abT #T g2)

=
∑
ε(g1TS

−1(g2)t)(abT )t #T g3 =
∑
ε(g1TS

−1(g2)tt′)atbTt′ #T g3

=
∑
ε((S−1(g2)tg1)T )atbT #T g3

=
∑
ε((S−1(g2)t2g1)T )ε(S−1(g2)t1)atbT #T g3

(5)
=
∑
ε((S−1(g2)2g1)T )ε((S−1(g2)1)t)atbT #T g3

=
∑
ε((S−1(g2)g1)T )ε(S−1(g3)t)atbT #T g4 =

∑
ε(S−1(g1)t)atb#T g2
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=
∑
β
(
ε(S−1(g1)t)at ⊗ (1H # ε)

)
(b#T g2)

=
r∑
j=1

β(aj ⊗ (1H # ε))
(∑

b#T fj(S
−1(g1))g2

)
=

r∑
j=1

β(aj ⊗ (1H # ε))(b#T (g ↼ S−1(fj)))

=
r∑
j=1

β(aj ⊗ (1H # ε)) ◦
(
idA ⊗ %H,U (S−1(fj))

)
(b#T g).

Now, we are ready to give the main result of this section, that is, the
duality theorem for twisted smash products.

Theorem 2.12. Let H be a Hopf algebra with bijective antipode, and U
a Hopf subalgebra of H0 with bijective antipode. Assume that A is a U -locally
finite algebra, and U satisfies the RL-condition with respect to H. Then

(A#T H) # U ∼= A⊗ (H # U).

Proof. Let a ∈ A, h ∈ H and f ∈ U . We first show that

ν ◦ β(a⊗ (h# f)) ◦ γ ∈ α((A#T H) # U).

Since a⊗ (h# f) = (a⊗ (1H # ε))(1A ⊗ (h# f)), since α and β are algebra
homomorphisms by Lemma 2.8, and since ν = γ−1 by Lemma 2.10, it suffices
to show that ν ◦β(1A⊗ (h#f))◦γ and ν ◦β(a⊗ (1H #ε))◦γ both belong to
α((A#TH)#U). The first does by Lemma 2.11. By the RL-condition, there
exists some z ∈ H#U such that idA⊗%H,U (fj) = β(1A⊗z). Then by Lemma
2.11(i), ν ◦ β(a⊗ (1H # ε)) ◦ γ =

∑r
j=1 α((aj #T 1H) # ε) ◦ ν ◦ β(1A⊗ z) ◦ γ,

hence by Lemma 2.10 we know that ν ◦ β(a ⊗ (1H # ε)) ◦ γ belongs to
α((A#T H) # U).

One can similarly prove that

γ ◦ α((a#T h) # f) ◦ ν ∈ β(A⊗ (H # U)).

Since we know that (a#T h) # f = ((a#T 1H) # ε)((1A #T h) # f), it
suffices to show that γ ◦α((a#T 1H)#ε)◦ν and γ ◦α((1A#T h)#f)◦ν both
belong to β(A ⊗ (H # U)). That the second one does can be immediately
seen by Lemma 2.10. Lemma 2.11(ii) and the RL-condition imply that the
first one also does.

We have proved that

γ−1 ◦ β(A⊗ (H # U)) ◦ γ = α((A#T H) # U).

Since α and β are injective homomorphisms by Lemma 2.7, our theorem
is proved.

If H is a finite-dimensional Hopf algebra, then it is not difficult to see
that A is an H∗-locally finite algebra and H∗ satisfies the RL-condition with
respect to H. Hence, by [5, Corollary 2.7], we get
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Corollary 2.13. Let H be a finite-dimensional Hopf algebra with
dim(H) = n, and A#TH a twisted smash product such that T is H-colinear.
Then

(A#T H) #H∗ ∼= A⊗ (H #H∗) ∼= Mn(A).

3. Applications of the duality theorem. In this section, we give
some applications of the duality theorem to the global dimensions for twisted
smash products.

In what follows, we always suppose that H is a finite-dimensional Hopf
algebra and A #T H a twisted smash product. Assume further that T is
H-colinear and satisfies the following condition as in [12]:

(7)
∑
aS(h1)⊗ h2 =

∑
S(h1)aT ⊗ h2T

for all a ∈ A and h ∈ H, where we denote ah := a #T h and ha :=
(1A #T h)(a#T 1H), respectively.

Lemma 3.1. Let H be a finite-dimensional semisimple Hopf algebra, and
P a left A#T H-module. Then P is a projective left A#T H-module if and
only if P is a projective left A-module.

Proof. Suppose that P is a projective left A#TH-module. Since A#TH
is a free left A-module, P is a projective left A-module.

Conversely, for any left A#T H-modules M and N , let g : M → N and
h : P → N be A#T H-module homomorphisms such that g is onto. In order
to prove that P is projective as a left A#T H-module, it is sufficient to find
f̃ ∈ HomA#TH(P,M) satisfying h = g ◦ f̃ .

Since A and H are subalgebras of A #T H, we know that M,N are
left A-modules, and h, g are left A-module and H-module homomorphisms.
Since P is projective as an A-module, there exists f ∈ HomA(P,M) such
that h = g ◦ f .

Define
f̃(p) =

∑
S(t1) · f(t2 · p)

for any p ∈ P , where t ∈
	r

is such that ε(t) = 1. Then f̃ is an A#TH-module
homomorphism.

As a matter of fact, for any a#T h ∈ A#T H and p ∈ P , since it is well
known that

(8)
∑
S(t1)⊗ t2h =

∑
hS(t1)⊗ t2,

we have

f̃((a#T h) · p) =
∑
S(t1) · f(t2(a#T h) · p) =

∑
S(t1) ·f((aT #T t2Th) · p)

=
∑
S(t1)aT · f((1A #T t2Th) · p)

(7)
=
∑
aS(t1) · f((1A #T t2h) · p)

(8)
=
∑
ahS(t1) · f((1A #T t2) · p) = (a#T h) · f̃(p).
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Moreover,

g ◦ f̃(p) = g
(∑

S(t1) · f(t2 · p)
)

=
∑
S(t1) · gf(t2 · p)

=
∑
S(t1) · h(t2 · p) =

∑
S(t1)t2 · h(p) = ε(t)h(p) = h(p).

Hence, P is a projective left A-module.

By the proof of sufficiency in Lemma 3.1, we can get the following

Remark 3.2. Let H be a finite-dimensional semisimple Hopf algebra,
and Q a left A#T H-module. If Q is an injective left A#T H-module, then
Q is an injective left A-module.

It is obvious that the k-space H⊗A (and A#TH) is both a left H-module
via the left multiplication of H and a right A-module via the right multipli-
cation of A (via the left and right multiplication of A #T H, respectively).
This allows us to prove the following useful lemma.

Lemma 3.3. If A#T H is strong, then T and T−1 are isomorphisms of
left H-modules and right A-modules.

Proof. For any a, b ∈ A and h, g ∈ H,

T (g · (h⊗ a)) = T (gh⊗ a) =
∑
aTt #T gthT

= (1A #T g)(
∑
aT #T hT ) = g · T (h⊗ a),

T ((h⊗ a) · b) = T (h⊗ ab) =
∑
aT bt #T hTt

= (
∑
aT #T hT )(b#T 1H) = T (h⊗ a) · b.

Hence, T is both left H-linear and right A-linear. Moreover,

T−1(g · (a#T h)) = T−1(
∑
aT #T gTh) =

∑
gTT−1ht−1 ⊗ aTT−1t−1

=
∑
ght−1 ⊗ at−1 = g · T−1(a#T h),

T−1((a#T h) · b) = T−1(
∑
abT #T hT ) =

∑
hTT−1t−1 ⊗ at−1bTT−1

=
∑
ht−1 ⊗ at−1b = T−1(a#T h) · b.

Hence, T−1 is also both left H-linear and right A-linear.

Lemma 3.4. Let H be a finite-dimensional Hopf algebra with z ∈
	l

such that H∗ is unimodular. Suppose that Q is a left A #T H-module, and∑
ε(zT )cT = 1A for some c ∈ Z(A), the center of A. If Q is an injective

left A-module, then Q is an injective left A#T H-module.

Proof. By the assumptions and [17], one can see that S2(z) = z and
t = S(z) ∈

	r
. For any left A #T H-modules M,N , let g : M → N and

h : M → Q be A#TH-module homomorphisms such that g is monomorphic.
In order to prove that Q is an injective left A#T H-module, it is sufficient
to find f̃ ∈ HomA#TH(N,Q) such that f̃ ◦ g = h.
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Since Q is injective as an A-module, there exists an A-module homomor-
phism f : N → Q such that f ◦ g = h. We now define

f̃ : N → Q, f̃(n) =
∑
S(t1)c · f(t2 · n).

Then f̃ is a left A #T H-module morphism. Indeed, for any a ∈ A, h ∈ H
and n ∈ N ,

f̃((a#T h) ·n) =
∑
S(t1)c ·f(t2(a#T h) ·n) =

∑
S(t1)c ·f((aT #T t2Th) ·n)

=
∑
S(t1)caT ·f((1A #T t2Th) · n) =

∑
S(t1)aT c ·f((1A #T t2Th) ·n)

(7)
=
∑
aS(t1)c · f((1A #T t2h) · n)

(8)
=
∑
ahS(t1)c · f((1A #T t2) · n)

= (a#T h) · f̃(n).

Moreover, for any m ∈M , since g and h are H-linear, and

(9) S(t)⊗ 1H =
∑
S(t2)⊗ S(t1)t3,

by [25], we obtain

f̃ ◦ g(m) =
∑

(cT #T S(t1)T ) · f(t2 · g(m))

=
∑(

cT ε(S(t1)T1) #T S(t1)T2
)
· f(g(t2 ·m))

(5)
=
∑(

cT ε(S(t2)T ) #T S(t1)
)
· h(t3 ·m)=

∑(
cRε(S(t2)T ) #T S(t1)t3

)
·h(m)

(9)
=
∑

(cT ε(S(t)T ) #T 1H) · h(m) =
∑

(cT ε(zT ) #T 1H) · h(m)

= (1A #T 1H) · h(m) = h(m).

Hence, Q is an injective left A#T H-module.

Lemma 3.5. Let H be a finite-dimensional Hopf algebra with z ∈
	l

and
M a right A#T H-module. Suppose that T is invertible. If either

(i) H is semisimple, or
(ii) H∗ is unimodular and there exists c ∈ Z(A) with

∑
ε(zT )cT = 1A,

then M is a flat right A-module if and only if M is a flat right
A#T H-module.

Proof. Any free right A#T H-module is free as a right A-module, since
A #T H is free as a right A-module by Lemma 3.3. Let M be a flat right
A#T H-module, and consider an exact sequence of right A#T H-modules

0→ K → F →M → 0,

where F is a free right A#T H-module. Then F is free as a right A-module.
Now, one can easily deduce that M is a flat right A-module from [18, The-
orem 3.62].

Conversely, let M be a flat right A-module. We regard Q (the field of
rational numbers) and Z (the ring of integers) as Z-modules. Then M∗ =
HomZ(M,Q/Z) is a leftA#TH-module and hence a leftA-module defined in
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the natural way [(a#T h) ·f ](m) = f(m ·a)ε(h). Thus, M∗ is an injective left
A-module. Now, if (i) or (ii) holds, M∗ is an injective left A #T H-module
by Remark 3.2 or Lemma 3.4, and it follows that M is a flat right A#T H-
module.

Let us recall from [4] that the finitistic dimension of an algebra A is
defined by

fin.dim(A) = sup{proj.dim(A) <∞ |
M is an A-module and proj.dim(M) <∞}.

Proposition 3.6. Assume that H and H∗ are semisimple. Then:

(i) gl.dim(A #T H) = gl.dim(A). Hence A #T H is semisimple (resp.
hereditary) if and only if A is semisimple (resp. hereditary).

(ii) fin.dim(A#T H) = fin.dim(A).
(iii) If T is bijective, then w.dim(A#T H) = w.dim(A). Hence A#T H

is von Neumann if and only if A is von Neumann.

Proof. (i) It is harmless to assume that gl.dim(A) = n < ∞. For any
left A#T H-module N , consider any one of its projective resolutions

PN : · · ·Pn
dn−→ Pn−1 → · · · → P0

d0−→ N → 0.

By Lemma 3.1, PN is also a projective resolution for N as an A-module
and hence a projective resolution as an A #T H-module. This implies that
proj.dim(N) ≤ n.

Since gl.dim(B # H) ≤ gl.dim(B) for an H-module algebra B by [22,
proof of Theorem 2.2], we can obtain

gl.dim((A#T H) #H∗) ≤ gl.dim(A#T H).

Since Mn(A) is Morita equivalent to A, and by Corollary 2.12

(A#T H) #H∗ ∼= Mn(A),

we get

gl.dim(A) = gl.dim((A#T H) #H∗) ≤ gl.dim(A#T H) ≤ gl.dim(A).

This shows that gl.dim(A#T H) = gl.dim(A).
(ii) If the finitistic dimension of A is infinite, the result is obviously

true. Assume that fin.dim(A) < ∞. For any A #T H-module P with finite
projective dimension, we have

proj.dim(A#THP ) = proj.dim(AP )

by Lemma 3.1. This implies fin.dim(A#T H) ≤ fin.dim(A).
Next, similarly to the proof of (i), we have

fin.dim(A) = fin.dim((A#T H) #H∗) ≤ fin.dim(A#T H) ≤ fin.dim(A).

This shows that fin.dim(A#T H) = fin.dim(A).
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(iii) Suppose that T is invertible. SinceH is semisimple, there exists z ∈
	l

such that ε(z) = 1. Then
∑
ε(zT )(1A)T = ε(z)1A = 1A. Hence by Lemma

3.5, we know that w.dim(A#T H) ≤ w.dim(A). On the other hand, we also
have w.dim((A#T H) #H∗) ≤ w.dim(A#T H) by [25, Lemma 2]. Then

w.dim(A) = w.dim((A#T H) #H∗ ≤ w.dim(A#T H) ≤ w.dim(A),

which implies that w.dim(A#T H) = w.dim(A).

4. Examples of twisted smash products. In this section, we give
some examples of twisted smash products.

Example 4.1. For a given field k of characteristic 6= 2, let H4 denote
the four-dimensional Sweedler Hopf algebra over k (see [14]). It is described
as follows:

H4 = k〈1, g, x, gx | g2 = 1, x2 = 0, xg = −gx〉
with coalgebra structure

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x, ε(g) = 1, ε(x) = 0,

and antipode
S(g) = g, S(x) = −gx.

Let A = k〈1, x〉. Define

T : H4 ⊗A→ A⊗H4

by
T (1, 1A) = 1A ⊗ 1, T (1, x) = x⊗ 1, T (g, 1A) = 1A ⊗ g,

T (gx, 1A) = 1A ⊗ gx, T (g, x) = x⊗ g, T (x, x) = 0, T (gx, x) = 0.

Then A#T H4 is a twisted smash product.
Indeed, it is easy to check that T (h, x2) = 0 = (m⊗ id)T23T12(h⊗x⊗x)

for any h ∈ H, that is, condition (4) holds.
In what follows, we prove that T (hh′, x) = (id ⊗m)T12T23(h ⊗ h′ ⊗ x);

for any h, h′ ∈ H4 : if h′ = g, we have

T (gg, x) = T (1, x) = x⊗ 1 = (id⊗m)T12T23(g ⊗ g ⊗ x) = x⊗ 1,

T (xg, x) = 0 = (id⊗m)T12T23(x⊗ g ⊗ x),

T ((gx)g, x) = 0 = (id⊗m)T12T23(gx⊗ g ⊗ x).

The rest of the proof is straightforward, so condition (3) holds. Hence,
by Lemma 2.2, A#T H4 is a twisted smash product.

However, A has no non-trivial left H4-module algebra for any module
action.

Indeed, assume that A is a left H4-module algebra for some module
action “·”. Then, from g · x = g · (x + x2) = g · x + (g · x)2, we see that
(g · x)2 = 0. In addition, x = 1 · x = g · (g · x), so g · x 6= 0, hence g · x = ±x.
Here, we only consider the case g · x = x.
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Let x · x = a1A + bx with a, b ∈ k. Then g · (x · x) = a(g · 1A) + b(g · x) =
a1A + bx = x · x. Since g · (x · x) = (gx) · x = (−x) · (g · x) = −x · x, we have
x · x = g · (x · x) = −x · x, and hence x · x = 0.

Consequently, (gx) · x = 0. In this case, A has only a trivial left H4-
module algebra.

Example 4.2. Let H be a bialgebra and σ : H ⊗H → k a linear map.
If for any h, g, x ∈ H,

(P1) σ(1, x) = ε(x),
(P2) σ(h, 1) = ε(h),
(P3) σ(hg, x) =

∑
σ(h, x2)σ(g, x1),

(P4) σ(h, xy) =
∑
σ(h1, x)σ(h2, y),

then (H,σ) is called a skew paired bialgebra (see [23]).
Define

T : H ⊗H → H ⊗H, h⊗ g 7→
∑
σ(h1, g1)g2 ⊗ h2.

Then H #T H is a twisted smash product. If σ is invertible, then T is a
bijection, that is, H #T H is a strong twisted smash product. Indeed, for
any h, g, x, y ∈ H, we have

T (1, x)
(P1)
=
∑
σ(1, x1)x2 ⊗ 1 = x⊗ 1,

T (h, 1)
(P2)
=
∑
σ(h1, 1)1⊗ h2 = 1⊗ h,

T (hg, x) =
∑
σ(h1g1, x1)x2 ⊗ h2g2

(P3)
=
∑
σ(h1, x2)σ(g1, x1)x3 ⊗ h2g2

= (id⊗m)T12T23(h⊗ g ⊗ x),

T (h, xy) =
∑
σ(h1, x1y1)x2y2 ⊗ h2

(P4)
=
∑
σ(h1, x1)σ(h2, y1)x2y2 ⊗ h3

= (m⊗ id)T23T12(h⊗ x⊗ y),

so, by Lemma 2.2, H #T H is a twisted smash product.
If σ is invertible with inverse σ−1, then it is easy to see that T is a

bijection with inverse

T−1 : H ⊗H → H ⊗H, h⊗ g 7→
∑
σ−1(g1, h1)g2 ⊗ h2.

Moreover, T is colinear by a direct computation.
In particular, the Long bialgebra (H,σ) with antipode S (see [13] and

[23]) and the coquasi-triangular Hopf algebra (H,σ) of [14] are skew paired
bialgebras with bijection σ.

Example 4.3. Let H be a Hopf algebra with bijective antipode S, and
A an H-bimodule algebra. The diagonal crossed product A ./ H (see [7],
[10] and [15]) is the k-space A⊗H with multiplication given by

(a ./ h)(b ./ g) =
∑
a(h1 ⇀ b↼ S−1(h3)) ./ h2g

for all a, b ∈ A and h, g ∈ H.
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Then A ./ H is a strong twisted smash product, where

T : H ⊗A→ A⊗H, T (h⊗ a) =
∑
h1 ⇀a↼S−1(h3)⊗ h2,

with inverse

T−1 : A⊗H → H ⊗A, T−1(a⊗ h) =
∑
h2 ⊗ S−1(h1)⇀a↼ h3,

for all a ∈ A and h ∈ H.

As a matter of fact, the multiplication of A ./ H is exactly that of the
twisted smash product A#T H. For any a, b ∈ A and h, g ∈ H, it is easy to
see that T (h⊗ 1A) = 1A ⊗ h and T (1H ⊗ a) = a⊗ 1H , and

T (hg ⊗ a) =
∑
h1g1 ⇀a↼S−1(h3g3)⊗ h2g2

=
∑
h1 ⇀ (g1 ⇀a↼S−1(g3))↼S−1(h3)⊗ h2g2

=
∑(

h1 ⇀aT ↼S−1(h3)⊗ h2
)
(1A ⊗ gT )

=
∑
T (h⊗ aT )(1A ⊗ gT ) =

∑
aTt ⊗ htgT ,

T (h⊗ ab) =
∑
h1 ⇀ (ab)↼S−1(h3)⊗ h2

=
∑

(h1 ⇀a↼S−1(h5))(h2 ⇀ b↼ S−1(h4))⊗ h3
=
∑(

h1 ⇀a↼S−1(h3)⊗ 1H
)
(bt ⊗ h2t)

=
∑(

h1 ⇀a↼S−1(h3)⊗ h2t
)
(bt ⊗ 1H)

=
∑

(aT ⊗ hTt)(bt ⊗ 1H) =
∑
aT bt ⊗ hTt,

so A ./ H is a twisted smash product.

Moreover,

TT−1(a⊗ h) =
∑
T
(
h2 ⊗ S−1(h1)⇀a↼ h3

)
=
∑
h2 ⇀ (S−1(h1)⇀a↼ h5)↼S−1(h4)⊗ h3

=
∑
h2S

−1(h1)⇀a↼ h5S
−1(h4)⊗ h3

= a⊗ h,
T−1T (h⊗ a) =

∑
T−1

(
h1 ⇀a↼S−1(h3)⊗ h2

)
=
∑
h3 ⊗ S−1(h2)⇀ (h1 ⇀a↼S−1(h5))↼h4

=
∑
h3 ⊗ S−1(h2)h1 ⇀a↼S−1(h5)h4

= h⊗ a,

so T is invertible, and hence A ./ H is a strong twisted smash product.

By Lemma 2.3, A ./ H is a right H-comodule algebra if and only if (5)
holds, that is,

(10)
∑
h1 ⇀a↼S−1(h4)⊗ h2 ⊗ h3 =

∑
h1 ⇀a↼S−1(h3)⊗ h2 ⊗ h4.

It is easy to see that (10) holds if and only if for any a ∈ A and h ∈ H,

(11)
∑
a↼ h1 ⊗ h2 =

∑
a↼ h2 ⊗ h1.



SMASH PRODUCTS OF HOPF ALGEBRAS 41

In fact, if (10) holds, then∑
a↼ S−1(h2)⊗ h1 =

∑
S(h1)⇀ (h2 ⇀a↼S−1(h4))⊗ h3

=
∑
S(h1)⇀ (h2 ⇀a↼S−1(h3))⊗ h4

=
∑
a↼ S−1(h1)⊗ h2,

so (11) holds. Conversely, if (11) holds, it is obvious that (10) holds.

So, A ./ H is a right H-comodule algebra if and only if (11) holds, if
and only if T is H-colinear.

In particular, if A is a left H-module algebra with the trivial right action,
then (11) holds, so T : H⊗A→ A⊗H, h⊗a 7→

∑
h1 ·a⊗h2, is H-colinear.

In this case, the diagonal crossed product A ./ H is exactly the usual smash
product A#H. So A#H is a strong twisted smash product such that T is
H-colinear.

Example 4.4. Let H be a finite-dimensional Hopf algebra with bijective
antipode S. Define the following actions: for all h ∈ H and f ∈ H∗,

f ⇀ h =
∑
〈f, h2〉h1, h ↼ f =

∑
〈f, h1〉h2.

Then, by [24], (H,⇀,↼) is an H∗-bimodule algebra. Hence, we have the
diagonal crossed product H ./ H∗ with multiplication

(x ./ f)(y ./ g) =
∑
x(f1 ⇀y↼ S−1(f3)) ./ f2g

for all x, y ∈ H and f, g ∈ H∗. So, by the above example, H ./ H∗ is a
strong twisted smash product.

Example 4.5. Let (H,σ) be a finite-dimensional coquasi-triangular Hopf
algebra. Define two actions on H:

x⇀ h =
∑
σ(x, h1)h2, h ↼ x =

∑
σ(h2, S(x))h1,

for all x, y, h, g ∈ H. Then, by [24], (H,⇀,↼) is an H-bimodule algebra.
Hence, we have the diagonal crossed product H ./ H with multiplication

(h ./ x)(g ./ y) =
∑
h(x1 ⇀ g↼ S−1(x3)) ./ x2y

=
∑
h(σ(x1, g1)g2 ↼S−1(x3)) ./ x2y

=
∑
hσ(x1, g1)g2σ(g3, x3) ./ x2y.

The diagonal crossed product H ./ H is a strong twisted smash product.

Moreover, h↼S−1(x2)⊗x1 =
∑
σ(h2, x2)h1⊗x1 and h↼S−1(x1)⊗x2 =∑

σ(h2, x1)h1 ⊗ x2, so (11) holds if and only if for any h, x ∈ H,

(12)
∑
σ(h, x1)x2 =

∑
σ(h, x2)x1.

Hence, by the above examples, we obtain the following duality theorems
and Maschke theorems of diagonal crossed products and Long bialgebras.
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Proposition 4.6.Let H be a finite-dimensional Hopf algebra, and A./H
the diagonal crossed product such that (11) holds. Then:

(i) There is an isomorphism of algebras

(A ./ H) #H∗ ∼= A⊗ (H #H∗) ∼= Mn(A),

where dim(H) = n.
(ii) Assume that H and H∗ are semisimple. Then A ./ H is semisimple

if and only if A is semisimple.

Proof. (i) By Theorem 2.12 and Corollary 2.13.

(ii) It is easy to see that (7) holds for A ./ H if (11) holds, so, by
Proposition 3.6 and the well-known Maschke theorem for the smash product
in [8], conclusion (ii) holds.

Proposition 4.7. Let H be a finite-dimensional Hopf algebra with
dim(H) = n.

(i) Assume that (H,σ) is a skew paired bialgebra. Then there is an iso-
morphism of algebras

(H #T H) #H∗ ∼= H ⊗ (H #H∗) ∼= Mn(A).

(ii) Assume that (H,σ) is a Long bialgebra. If H∗ is semisimple, then
H #T H is semisimple if and only if H is semisimple.

Proof. (i) By Corollary 2.13 and Example 4.2.

(ii) Since (H,σ) is a Long bialgebra,
∑
σ(h1, x)h2 =

∑
σ(h2, x)h1 for

any h, x ∈ H. Hence∑
S(x1)hT ⊗ x2T =

∑
(1H #T S(x1))(hT #T 1H)⊗ x2T

=
∑

(1H #T S(x1))(h2 #T 1H)⊗ σ(h1, x2)x3

=
∑
h2T #T S(x1)T ⊗ σ(h1, x2)x3

=
∑
h3 #T σ(h2, S(x2))S(x1)⊗ σ(h1, x3)x4

=
∑
h3 #T σ(h1, S(x2))S(x1)⊗ σ(h2, x3)x4

=
∑
h3 #T σ(h1, S(x2))σ(h2, x3)S(x1)⊗ x4

=
∑
h#T S(x1)⊗ x2,

so (7) holds. By Proposition 3.6 and the above duality theorem for H#T H,
we see that conclusion (ii) holds.
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