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Abstract. The classical Denjoy–Young–Saks theorem gives a relation, here termed
the Denjoy property, between the Dini derivatives of an arbitrary one-variable function
that holds almost everywhere. Concerning the possible generalizations to higher dimen-
sions, A. S. Besicovitch proved the following: there exists a continuous function of two
variables such that at each point of a set of positive measure there exist continuum many
directions, in each of which one Dini derivative is infinite and the other three are zero,
thus violating the bilateral Denjoy property.

Our aim is to show that for two-variable continuous functions it is possible that on a
set of positive measure there exist directions in which even the one-sided Denjoy behaviour
is violated. We construct continuous functions of two variables such that (i) both of its
one-sided derivatives equal ∞ in continuum many directions on a set of positive measure,
and (ii) all four directional Dini derivatives are finite and distinct in continuum many
directions on a set of positive measure.

1. Introduction and main results. Let f be a real-valued function
defined on E ⊆ R. The function f has the Denjoy property at x ∈ E if one
of the following holds:

• The function is differentiable at x.
• −∞ < D+f(x) = D−f(x) <∞ and D−f(x) = −D+f(x) =∞.
• −∞ < D−f(x) = D+f(x) <∞ and D+f(x) = −D−f(x) =∞.
• D+f(x) = D−f(x) = −D−f(x) = −D+f(x) =∞.

The Denjoy–Young–Saks theorem states that any real-valued one-variable
function has the Denjoy property at a.e. point.

Let f be a real-valued function defined on E ⊆ R2. The directional (or
linear) Dini derivatives of f at a point x ∈ E in a direction 0 ≤ η < 2π are:

∂ηf(x) := lim sup
E∩l3y→x

f(y)− f(x)

|y − x| ,

∂ηf(x) := lim inf
E∩l3y→x

f(y)− f(x)

|y − x| ,
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where l denotes the half-line l(x, η) extending from the point x in direction η.
If ∂ηf(x) = ∂ηf(x) then we denote by f ′η(x) this common value. We allow
f ′η(x) = ±∞.

We denote by l(x, η) the line l(x, η) ∪ l(x, η + π). If the function f re-
stricted to the line l(x, η) has the Denjoy property at x ∈ E as a one-variable
function, we say that f has the linear (or directional) Denjoy property at
the point x in the direction η.

By a theorem of Ward [W], the linear Denjoy property does hold for
two-variable Borel measurable functions at a.e. point in a.e. direction. This
is false for Lebesgue measurable functions (see Davies [D2]). On the other
hand, Besicovitch [B] showed that the Denjoy property may fail on a set
of positive measure, even for continuous functions. In Besicovitch’s example
the Denjoy property fails by having

∂ηxf(x) =∞, ∂ηxf(x) = 0, f ′ηx+π(x) = 0

on a set of positive measure, where f is a continuous function. (In fact he
gives continuum many such directions at each point.)

By the Denjoy–Young–Saks theorem, for one-variable functions, on a set
of positive measure it cannot be the case that either any two Dini derivatives
are finite and distinct, or a one-sided derivative exists and equals∞ or −∞.
These are the only restrictions holding for one-sided Dini derivatives a.e.;
all other cases are possible on a set of positive measure.

Our aim is to show that for two-variable functions, it is possible that
on a set of positive measure there exist directions in which this one-sided
behaviour is violated. In Besicovitch’s example this is not the case. In the
following we show that even for continuous functions, it is possible that (i)
the one-sided derivative equals ∞ in suitable directions on a set of positive
measure, and (ii) all four directional Dini derivatives are finite and distinct
in suitable directions on a set of positive measure. Both violate the Denjoy
behaviour even in the one-sided sense. More precisely, we prove the following.

Theorem 1.1. There exists a continuous function f : [0, 1]2 → R and
a measurable set M ⊂ [0, 1]2 of positive measure such that for each point
x ∈ M there exists a set F (x) ⊂ [0, π) of cardinality continuum such that
f ′η(x) = f ′η+π(x) =∞ for every η ∈ F (x).

Theorem 1.2. There exists a continuous function f : [0, 1]2 → R and
a measurable set M ⊂ [0, 1]2 of positive measure such that at each point
x ∈M there exists a set F (x) ⊂ [0, π) of cardinality continuum such that for
every η ∈ F (x) the directional Dini derivatives ∂ηf(x), ∂ηf(x), ∂η+πf(x),
∂η+πf(x) are finite and distinct.

By the theorem of Ward [W] mentioned above, for every Borel measur-
able function, at a.e. point, the set of non-Denjoy directions is of measure
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zero. Consequently, at a.e. x ∈M the sets F (x) of Theorems 1.1 and 1.2 are
of measure zero. It is still reasonable to ask whether they can be of second
category. We claim that this is never the case.

For Theorem 1.1, this follows from the theorems on the contingent of
subsets of R3 [S, Theorems 13.7 and 13.11]; we omit the details. For Theorem
1.2, we can argue as follows. If f : G → R is a continuous function on an
open set G ⊆ R2, then it is easy to check that at any x ∈ G, the set of
directions

H(x) = {η ∈ [0, 2π) : ∂ηf(x) <∞, ∂ηf(x) > −∞}
is an Fσ set. Therefore ifH(x) is of second category, it has nonempty interior.
Then, by [S, Theorem (14.2)], f is differentiable at a.e. point x for which
H(x) is of second category.

It follows from the theorem of Stepanoff that the function of Theorem
1.1 is not locally Lipschitz a.e. on M . Zaj́ıček [Z] has recently constructed
a related function, which is Lipschitz on R2, but at each point of a residual
set there exists a direction in which the function is nondifferentiable.

We conclude with the following question. Does there exist a continuous
function f : [0, 1]2 → R and a measurable set M ⊂ [0, 1]2 of positive measure
with the property that for each point x ∈ M there exists a direction η for
which f ′η(x) and f ′η+π(x) exist, are finite and distinct?

2. Proof of Theorem 1.1. By a theorem of R. O. Davies [D1, Theo-
rem 5] there exists a set M of full measure in the plane, each point of which
is linearly accessible by 2ℵ0 many lines. This means that we can assign to
every point x ∈M a set L(x) of continuum many lines such that l∩M = {x}
for every l ∈ L(x). (Another construction is given in [F].)

First we show that there exists a compact set K ⊂M of positive measure
such that the map x 7→ L(x) (x ∈ K) can be chosen to be continuous with
respect to an appropriate topology.

Let K0 ⊂ M be a compact set of positive measure. It is easy to check
that for every x ∈ K0 the set H(x) = {η ∈ [0, 2π] : l(x, η) ∩K0 = {x}} is
Gδ. Since it is of cardinality of the continuum by the choice of M , it follows
that H(x) contains a nonempty perfect set.

Let K denote the set of nonempty compact subsets of [0, 2π] equipped
with the Hausdorff metric. Then K is a compact metric space. It is easy to
check that P = {H ∈ K : H is perfect} is a Gδ set in K (see [K, (4.31)
Exercise, p. 27]). We claim that the set

B = {(x,H) ∈ K0 × P : l(x, η) ∩K0 = {x} for every η ∈ H}
is Borel in K0 × K. Let B(x, r) denote the open ball of centre x ∈ R2 and
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radius r, and set

Bn = {(x,H) ∈ K0 ×K : (l(x, η) \B(x, 1/n)) ∩K0 = ∅ for every η ∈ H}
for every n. It is easy to check that Bn is a relatively open subset of K0×K
for every n = 1, 2, . . . . Since

B = (K0 × P) ∩
∞⋂
n=1

Bn,

we see that B is a Gδ subset of K0 ×K.

As seen above, the section {H : (x,H) ∈ B} is nonempty for every x ∈ K0.
Therefore, by the uniformization theorem of Jankov and von Neumann [K,
(18.1) Theorem, p. 120], there exists a function F : K0 → K such that
(x, F (x)) ∈ B for every x ∈ K0, and F is measurable with respect to the
σ-algebra generated by the analytic subsets of K0. Since all analytic sets are
Lebesgue measurable and K is a separable metric space, it follows that F is
Lebesgue measurable. Consequently, there exists a compact set K ⊂ K0 of
positive measure such that F , restricted to K, is continuous. It follows from
the choice of F that the set

L =
⋃
{l(x, η) : x ∈ K, η ∈ F (x)}

is closed.

Lemma 2.1. There exists a strictly increasing continuous function
h : [0,∞)→ [0,∞) such that

(1) h(t) ≤ dist((x1 + t cos η, x2 + t sin η),K)

for every x = (x1, x2) ∈ K, η ∈ F (x) and t ≥ 0.

Proof. For every x ∈ K, the set

Lt(x) =
⋃
{l(x, η) : η ∈ F (x)} \B(x, t)

is closed and disjoint from K for every t > 0 by the definition of F (x).
Therefore, dt(x) = dist(Lt(x),K) > 0 for every t > 0 and every x ∈ K. Since
F is continuous, it follows that for every fixed t > 0, the map x 7→ dt(x) is
continuous on K. Then, by compactness, it has a positive minimum on K,
which we denote by m(t). Clearly, m is a positive and increasing function
on (0,∞). Let hn (n = 1, 2, . . .) be a strictly decreasing sequence of positive
numbers such that hn ≤ m(1/(n + 1)) for every n, and let h : [0,∞) →
[0, h1) be a strictly increasing continuous function such that h(1/n) ≤ hn
for every n. Then h(t) ≤ m(t) for every t > 0, and thus (1) holds.

Let u : [0,∞) → [0,∞) be defined as follows: u equals the inverse of h
on the interval [0, h(1)], and u(x) = 1 for every x ≥ h(1). Then u is an
increasing and continuous function on [0,∞), and so is v =

√
u.
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We define f(x) = v(dist(x,K)) for every x ∈ R2. Then f is continuous
and f(x) = 0 for every x ∈ K.

Let x = (x1, x2) ∈ K and η ∈ F (x) be fixed. We prove that f ′η(x) =
f ′η+π(x) =∞. If 0 < t < 1, then by (1) we have

f(x1 + t cos η, x2 + t sin η) ≥ v(h(t)) =
√
u(h(t)) =

√
t.

This implies f ′η(x) =∞, and a similar argument proves f ′η+π(x) =∞.

3. Proof of Theorem 1.2. The following recursive construction bears
similarities to Davies’ construction of an accessible set of positive mea-
sure [D1]. See also [Cs] and [T].

We shall use the following notation and terminology.
By the direction of a nonhorizontal line ` we mean the angle, belonging

to (0, π), between the halfline ` ∩ {(x, y) ∈ R2 : y > 0} and the positive x
axis.

All parallelograms considered will have two sides parallel to the x axis;
these are referred to as the bases of the parallelogram, and the other two
sides are its sides. The direction determined by the sides of a parallelogram
P is called the direction of the parallelogram and is denoted by θ(P ). We say
that P is supported by the parallelogram Q if the bases of P are contained
in the respective bases of Q. Therefore, if P is supported by Q then the
orthogonal projections of P and Q onto the y axis coincide, and P ⊂ Q.

For every parallelogram P we shall denote by L(P ) the union of all lines
intersecting both bases of P . Then L(P ) is a closed subset of R2. Note that
if P ⊂ Q are parallelograms, then L(P ) ⊂ L(Q) if and only if every line
intersecting both bases of P also intersects both bases of Q. In particular,
if P is supported by Q, then L(P ) ⊂ L(Q).

The two-dimensional Lebesgue measure is denoted by m.
The triangle of vertices A,B,C is denoted by 4ABC . The parallelogram

of vertices A,B,C,D is denoted by �ABCD. We always list the vertices
A,B,C,D counter-clockwise and in such a way that A is the lower left
vertex. Therefore, the bases of the parallelogram are the segments AB and
DC.

Let P = �ABCD be a parallelogram. We divide the sides AD and BC
into 10 equal subintervals by points A = A0, A1, . . . , A10 = D and B =
B0, B1, . . . , B10 = C. The parallelogram �AiBiBi+1Ai+1 will be denoted by
P (i) (i = 0, . . . , 9).

We denote by D the set of finite sequences of digits 0, 1, . . . , 9. Then
D =

⋃∞
n=0Dn, where D0 = {∅} and, for n = 1, 2, . . . ,

Dn = {0, . . . , 9}n = {(a1, . . . , an) : ai ∈ {0, . . . , 9} (i = 1, . . . , n)}.
If σ = (a1, . . . , an) ∈ Dn (n ≥ 1), then we set d(σ) = 0.a1 . . . an. We define
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d(∅) = 0. For σ ∈ Dn the rectangle [0, 1]×[d(σ), d(σ)+10−n] will be denoted
by Rσ.

The set of finite sequences of 0’s and 1’s will be denoted by B. Thus
B =

⋃∞
n=0Bn, where B0 = {∅} and, for n = 1, 2, . . . ,

Bn = {0, 1}n = {(a1, . . . , an) : ai ∈ {0, 1} (i = 1, . . . , n)}.
The length of a finite sequence σ will be denoted by |σ|. If σ, τ are finite
sequences, then σ < τ will denote that σ is a proper initial segment of τ .
The concatenation of the sequence σ and the digit i is denoted by σi.

The proof of Theorem 1.2 consists of two parts. In the first part we
construct a set M0 such that to each point x ∈M0 given by coordinates x =
(x1, x2) we associate continuum many lines `(x, c), indexed by infinite 0-1
sequences c ∈ 2ω. To each such c there is a sequence of nested parallelograms
Pn = P σn,εnjn

containing x, where εn ∈ Bn is the nth initial segment of
c and σn ∈ Dn is the sequence of the first n decimal digits of x2. The
parallelograms are constructed in such a way that each such sequence c
defines a different line `(x, c) through x intersecting each Pn. Furthermore,
we construct sets Kσ (σ ∈ D), with the property that if σn+1 = σni, where
i ∈ {0, 9}, then `(x, c)∩Kσn 6= ∅, and if i ∈ {1, . . . , 8}, then `(x, c)∩Kσn = ∅.
The construction is described by Lemmas 3.2 and 3.3.

In the second part of the construction we define the function f using the
sets listed above.

We shall construct the parallelograms P σ,εj by induction on |σ| = |ε|. In
order to describe the induction step we shall need a simple lemma on invisible
sets. We say that a set A ⊂ R2 is invisible if its orthogonal projection is of
measure zero in almost every direction.

Lemma 3.1. Let P = �ABCD be a parallelogram, and let A′, B′ be inner
points of the base AB. Then there exists a closed and invisible set K(P ) ⊂
intP (2) such that its projection in the direction of P onto the base AB
contains the segment A′B′.

Proof. It is well-known that there exists a compact invisible set K0 ⊂
[0, 1]2 such that the orthogonal projection of K0 onto the x axis equals [0, 1]
(see [M, 18.12. Lemma, p. 261]). Taking an appropriate similar copy of K0

we obtain a compact invisible set K1 ⊂ intP (2) such that the projection
of K1 in the direction of P onto the base AB is a closed segment. If K1 is
taken small enough, then we can take a finite number of translated copies
of K1 such that their union, K, satisfies the desired condition.

Now we turn to describing one step of induction.

Lemma 3.2. Let n be a nonnegative integer, and let σ ∈ Dn be fixed.
Suppose that P is a finite set of parallelograms such that every P ∈ P is
supported by the rectangle Rσ. Then for every P ∈ P, i ∈ {0, . . . , 9} and
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ν ∈ {0, 1} there are finitely many parallelograms P i,νj (j = 1, . . . , j(P, i, ν))
having the properties listed below, where

Σ = {(P, i, ν, j) : P ∈ P, i ∈ {0, . . . , 9}, ν ∈ {0, 1}, 1 ≤ j ≤ j(P, i, ν)}.
(i) P i,νj is supported by P (i) ((P, i, ν, j) ∈ Σ).

(ii) For every P ∈ P and ν ∈ {0, 1} the parallelograms P i,νj (i ∈
{0, . . . , 9}, j = 1, . . . , j(P, i, ν)) are nonoverlapping.

(iii) L(P i,νj ) ⊂ L(P ) ((P, i, ν, j) ∈ Σ).
(iv) For every P ∈ P and ν ∈ {0, 1}, the area of the set

P \
⋃
{P i,νj : i = 0, . . . , 9, j = 1, . . . , j(P, i, ν)}

is less than 2−2n−3m(P ).

(v) The set of directions of the lines contained by any of the sets L(P i,0j )
(P ∈ P, i = 0, . . . , 9, j = 1, . . . , j(P, i, 0)) is disjoint from the set of

directions of the lines contained by any of the sets L(P i,1j ) (P ∈ P,
i = 0, . . . , 9, j = 1, . . . , j(P, i, 1)).

Furthermore, there exist open sets U, V such that

(vi) U ⊂ clU ⊂ V ⊂ (0, 1)× (d(σ2), d(σ3)) = intRσ2.

(vii) For every (P, i, ν, j) ∈ Σ, if i ∈ {1, . . . , 8}, then L(P i,νj ) ∩ V = ∅.
(viii) For every (P, i, ν, j) ∈ Σ, if i ∈ {0, 9} and ` ⊂ L(P i,νj ) is a line,

then ` ∩ U 6= ∅.

Fig. 1. The parallelograms of Lemma 3.2

Proof. For every P ∈ P we choose a parallelogram P 1 such that P 1 is
supported by P , the area of P \ P 1 is less than 2−2n−9m(P ), and
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(2) {θ(P 1) : P ∈ P} ∩ {θ(P ) : P ∈ P} = ∅.
We set P 0 = P for every P ∈ P.

Let P ν = �ABCD, where P ∈ P and ν ∈ {0, 1}. We choose a parallel-
ogram P̃ ν = �A′B′C′D′ supported by P ν such that �AA′D′D and �B′BCC′

are nondegenerate parallelograms of area less than 2−2n−9m(P ). Applying
Lemma 3.1 we find an invisible compact set K(P ν) ⊂ intP ν(2) whose pro-
jection in the direction of P ν onto the base AB contains the segment A′B′.
In this way we have defined the parallelograms P̃ ν , and the sets K(P ν)
for every P ∈ P and ν = 0, 1. Note that since �AA′D′D and �B′BCC′ are
parallelograms, we have θ(P̃ ν) = θ(P ν) for every P ∈ P and ν ∈ {0, 1}.
Therefore, by (2),

(3) {θ(P̃ 0) : P ∈ P} ∩ {θ(P̃ 1) : P ∈ P} = ∅.
We define

(4) K =
⋃
{K(P 0) ∪K(P 1) : P ∈ P}.

Then K is an invisible compact set, and

(5) K ⊂ (0, 1)× (d(σ2), d(σ3)) = intRσ2.

Let P ∈ P and ν ∈ {0, 1} be fixed, and let P̃ ν = �A′B′C′D′ . Take a point I
in the interior of the segment A′B′ close to B′, and a point J in the interior
of the segment D′C ′ close to D′ such that

• the segments A′J and IC ′ are parallel to each other,
• the area of 4A′JD′ and of 4IB′C′ is less than 2−2n−9m(P ),
• the projection of K in the direction of A′J and IC ′ onto the x axis is

null.

The existence of I, J follows from the fact that K is invisible, and thus its
projection in almost every direction is null. Furthermore, since P is a finite
set and (2) holds, we can also achieve

(ix) the set of directions of the parallelograms P̃ 0 and of the correspond-
ing segments A′J (for P ∈ P) is disjoint from the set of directions of

the parallelograms P̃ 1 and of the corresponding segments A′J (for
P ∈ P).

Again, let P̃ ν = �A′B′C′D′ , where P ∈ P and ν ∈ {0, 1}. Let θ denote the
direction of the segments A′J and IC ′.

Let P ν = �A′IC′J . Then P ν is supported by P̃ ν , and θ(P ν) = θ. Let
π(K) denote the projection of K in the direction of θ onto the x axis. Then
π(K) is a compact set of linear measure zero. Thus for every ε > 0 there
are open segments I1, . . . , Ik ⊂ R covering π(K) of total length < ε. Let S
be the union of all lines of direction θ and intersecting I1 ∪ · · · ∪ Ik. Then S



LINEAR DENJOY PROPERTY 165

is open and K ⊂ S. Choosing ε small enough we may assume that the area
of P ν ∩ S is less than 2−2n−9m(P ).

For every i = 0, . . . , 9, the components of the set P ν(i) \ S are parallel-
ograms of direction θ such that if a line has direction θ and meets any of
these parallelograms, then it is disjoint from K.

We choose a large integer N , and for each i = 1, . . . , 8 decompose each
of the components of P ν(i) \ S into N congruent nonoverlapping parallel-
ograms supported by P ν(i). We list the small parallelograms obtained by

this construction as P i,νj (j = 1, . . . , j(P, i, ν)).

If N is chosen large enough then L(P i,νj ) ⊂ L(P ) for every P ∈ P, i =

1, . . . , 8, ν = 0, 1 and j = 1, . . . , j(P, i, ν). Indeed, P i,νj is a thin parallelogram

of direction θ. Since P i,νj ⊂ P (i) ⊂ P̃ (i) ⊂ intP , it is clear that if P i,νj is

thin enough and a line ` intersects both bases of P i,νj , then it intersects both
bases of P .

It follows from (ix) that if N is chosen large enough, then the following
will be true:

(x) The set of directions of the lines contained in any of the sets L(P i,0j )

(P ∈ P, i = 1, . . . , 8, j = 1, . . . , j(P, i, 0)) and the directions of P̃ 0

(P ∈ P) is disjoint from the set of directions of the lines contained

in any L(P i,1j ) (P ∈ P, i = 1, . . . , 8, j = 1, . . . , j(P, i, 1)) and the set

of directions of P̃ 1 (P ∈ P).

Now we claim that if we choose N large enough, then for every P ∈ P,
i = 1, . . . , 8, ν = 0, 1 and j = 1, . . . , j(P, i, ν) we have

(6) L(P i,νj ) ∩K = ∅.

Indeed, the parallelograms P i,νj were obtained by cutting the components of

P ν(i) \ S into thin slices of the same direction. From K ⊂ S it follows that
P ν \ S does not intersect K. Since K is compact, its distance from P ν \ S
is positive. From this it is clear that if a line ` intersects P ν(i) \ S and its
direction is close enough to the direction of P ν and S, then ` ∩ K = ∅.
If the slices are thin enough, that is, if N is large enough, then the lines
intersecting the bases of the slices will have directions close to that of P ν ,
and so (6) will hold. We set

(7) V =
(⋃
{intP (2) : P ∈ P}

)
\⋃

{L(P i,νj ) : P ∈ P, i = 1, . . . , 8, ν = 0, 1, j = 1, . . . , j(P, i, ν)}.
Then V is open, and K ⊂ V by (4) and (6). It follows from (7) that (vii) is
satisfied.
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Let U be an open set satisfying K ⊂ U ⊂ clU ⊂ V . Since P (2) ⊂ Rσ2

for every P ∈ P, we have (vi).

Now we define the parallelograms P i,νj with i ∈ {0, 9}. Let P ∈ P and

ν ∈ {0, 1} be fixed, and let P̃ ν = �A′B′C′D′ . Let i ∈ {0, 9}. We decompose
P̃ ν(i) into M congruent nonoverlapping parallelograms supported by P (i).

We list the small parallelograms obtained by this construction as P i,νj (j =
1, . . . , j(P, i, ν)).

If M is chosen large enough, then (viii) will hold. Indeed, the set K(P ν)
was constructed in such a way that its projection in the direction of P ν onto
the base AB covers A′B′. Therefore, every line which meets P̃ ν and has the
direction of P̃ ν meets K. Since K is compact and U ⊃ K is open, it follows
that U contains a δ-neighbourhood of K for a suitable δ > 0. This implies
that if a line ` meets P̃ ν and if the direction of ` is close enough to that
of P̃ , then ` meets U . If M is large enough, then all lines intersecting both
bases of the thin slices obtained from P̃ ν(i) will have this property, and thus
(viii) holds.

It is clear from the construction that (ii) holds.

One can easily check that choosing M large enough we also have (iii).
For large enough M we also have (v) by (ix).

We still have to check property (iv). Let P ∈ P and ν ∈ {0, 1} be
arbitrary. If P ν = �ABCD, then the set in (iv) is covered by P \ P 1, the
parallelograms �AA′D′D, �B′BCC′ , the triangles 4A′JD′ , 4IB′C′ , and the
set P ν \S. Since each of these sets has area less than 2−2n−9m(P ), the area
of the set in (iv) is less than 2−2n−3m(P ). This completes the proof of the
lemma.

We shall apply the construction of Lemma 3.2 inductively. We set P ∅,∅1 =
[0, 1]2 and k(∅, ∅) = 1. Let n ≥ 0, and suppose that the parallelograms P σ,εk
(k = 1, . . . , k(σ, ε)) have been defined for every σ ∈ Dn and ε ∈ Bn such that
P σ,εk is supported by Rσ for every σ ∈ Dn, ε ∈ Bn and k = 1, . . . , k(σ, ε).
Let

Pσ = {P σ,εk : ε ∈ Bn, k = 1, . . . , k(σ, ε)}
for every σ ∈ Dn. Applying Lemma 3.2 with P = Pσ we obtain the paral-
lelograms

(8) (P σ,εk )i,νj

and the open sets Uσ, V σ. If σ ∈ Dn, i ∈ {0, . . . , 9}, ε ∈ Bn, ν ∈ {0, 1} are
fixed, then we arrange the parallelograms in (8), when k and j run through

the corresponding finite sets, in a single sequence P σi,ενl , l = 1, . . . , k(σi, εν).

Then, by Lemma 3.2(i), P σi,ενl is supported by Rσi for every σ ∈ Dn, i ∈
{0, . . . , 9}, ε ∈ Bn, ν ∈ {0, 1} and l = 1, . . . , k(σi, εν). By induction, this
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completes the construction of the open sets Uσ, V σ and the parallelograms
P σ,εk (k = 1, . . . , k(σ, ε)) for every σ ∈ D and ε ∈ B with |σ| = |ε|.

We introduce the notation

Π(σ, ε, k) = {P σi,ενl : i ∈ {0, . . . , 9}, ν ∈ {0, 1}, l = 1, . . . , k(σi, εν),

P σi,ενl ⊂ P σ,εk }
for all σ ∈ D, ε ∈ B with |σ| = |ε| and k = 1, . . . , k(σ, ε). Set also

Σn = {(σ, ε, k) : σ ∈ Dn, ε ∈ Bn, k = 1, . . . , k(σ, ε)}
for all n.

Lemma 3.3. The parallelograms P σ,εk (k = 1, . . . , k(σ, ε)) and the open
sets Uσ, V σ constructed above have the following properties:

(a) P σ,εk is supported by Rσ for all σ ∈ D, ε ∈ B, |σ| = |ε|, k =
1, . . . , k(σ, ε).

(b) For every ε ∈ Bn, the parallelograms P σ,εk (σ∈Dn, k = 1, . . . , k(σ, ε))
are nonoverlapping.

(c) L(P ) ⊂ L(P σ,εk ) for every P ∈ Π(σ, ε, k).
(d) The set

M0 :=

∞⋂
n=0

⋂
ε∈Bn

⋃
{intP σ,εk : σ ∈ Dn, 1 ≤ k ≤ k(σ, ε)}

has positive measure.
(e) For every σ ∈ Dn+1, ε ∈ Bn, 1 ≤ j ≤ k(σ, ε0), 1 ≤ k ≤ k(σ, ε1), the

set of directions of the lines contained in L(P σ,ε0j ) is disjoint from

the set of directions of the lines contained in L(P σ,ε1k ).
(f) Uσ ⊂ clUσ ⊂ V σ ⊂ intRσ2 for every σ ∈ D.
(g) For every σ ∈ Dn, ζ ∈ Bn+1 and for every i ∈ {1, . . . , 8} and k =

1, . . . , k(σi, ζ) we have L(P σi,ζk ) ∩ V σ = ∅.
(h) For every σ ∈ Dn, ζ ∈ Bn+1, i ∈ {0, 9}, k = 1, . . . , k(σi, ζ) and

every line ` contained in L(P σi,ζk ) we have ` ∩ Uσ 6= ∅.
(j) The sets V σ (σ ∈ D) are pairwise disjoint.
(k) M0 ∩ clV σ = ∅ for every σ ∈ D.

Proof. Property (a) has already been checked.

Note that if we apply Lemma 3.2 to a set of parallelograms P, andQ ⊂ P
is a set of nonoverlapping parallelograms, then for each ν ∈ {0, 1}, the par-

allelograms P i,νk ((P, i, ν, k) ∈ Σ, P ∈ Q) obtained from the lemma are

nonoverlapping by property (ii). Now P∅ = {P ∅,∅1 } consists of nonoverlap-

ping parallelograms, so for each ν ∈ {0, 1} the resulting P i,νj parallelograms
are nonoverlapping, and by induction (b) follows.
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We claim that if (σ, ε, k) ∈ Σn is given and P ∈ Π(σ, ε, k), then P is
obtained from P σ,εk by applying Lemma 3.2. Indeed, if P is obtained from
another parallelogram P σ,εl , then, by property (b), intP σ,εk ∩ intP σ,εl = ∅.
Hence, from P ⊂ P σ,εl we have P ∩ intP σ,εk = ∅ and P /∈ Π(σ, ε, k), which is
a contradiction. Thus property (iii) translates as (c).

By (iv), for every (σ, ε, j) ∈ Σn and ν ∈ {0, 1}, the area of the set

(9) P σ,εj \
⋃
{P σi,ενl ∈ Π(σ, ε, j)}

is less than 2−2n−3m(P σ,εj ). Let

Aε =
⋃
σ∈Dn

k(σ,ε)⋃
j=1

P σ,εj

for every ε ∈ Bn. Since M0 and
⋂∞
n=0

⋂
ε∈Bn

Aε only differ in a countable
union of line segments (the boundaries of the parallelograms P σ,εj ), it is

enough to show that
⋂∞
n=0

⋂
ε∈Bn

Aε is of positive measure. We prove that

(10)
⋂
ε∈Bn

Aε \
⋂

ξ∈Bn+1

Aξ ⊂
⋃
ε∈Bn

1⋃
ν=0

(Aε \Aεν)

for every n. Indeed, if x is in the left hand side of (10), then x /∈ ⋂ξ∈Bn+1
Aξ,

and thus there is a ξ ∈ Bn+1 such that x /∈ Aξ. Let ξ = εν, where ε ∈ Bn
and ν ∈ {0, 1}. Then x ∈ Aε, hence x ∈ Aε \Aεν , which proves (10).

Let ε ∈ Bn and ν ∈ {0, 1} be fixed. It is clear from the definition of
Aε that Aε \ Aεν is covered by the sets (9), where σ runs through Dn and
1 ≤ j ≤ k(σ, ε). We have just seen that the area of the set in (9) is less than
2−2n−3m(P σ,εj ), and the total area of the parallelograms P σ,εj is at most 1

by (b), so the area of Aε \Aεν is at most 2−2n−3.
Therefore, by (10), the area of the left hand side of (10) is at most 2n+1 ·

2−2n−3 = 2−n−2. Since A∅ = P ∅,∅0 = [0, 1]2, the measure of
⋂∞
n=0

⋂
ε∈Bn

Aε
is at least 1−∑∞n=0 2−n−2 = 1/2. This proves m(M0) ≥ 1/2.

Properties (v)–(viii) translate directly into (e)–(h).
We prove (j). Let σ, τ ∈ D be different sequences. If σ and τ are incom-

patible, that is, neither σ < τ nor τ < σ, then the intervals (d(σ), d(σ) +
10−|σ|) and (d(τ), d(τ) + 10−|τ |) are disjoint, and thus (f) yields

(11) V σ ∩ V τ = ∅.
Suppose that σ < τ . Then there is an i ∈ {0, . . . , 9} such that σi = τ or
σi < τ . Suppose V σ ∩ V τ 6= ∅, and let x ∈ V σ ∩ V τ . By the definition
(7) of V the relation x ∈ V τ implies that there are ζ ∈ B, |ζ| = |τ | and
1 ≤ k ≤ k(τ, ζ) such that

x ∈ P τ,ζj (2) ⊂ P τ,ζj ⊂ P σi,ενk



LINEAR DENJOY PROPERTY 169

with suitable ε ∈ B, |ε| = |σ|, ν ∈ {0, 1} and 1 ≤ k ≤ k(σi, εν). If i 6= 2
then (f) yields (11), which is impossible. If i = 2 then, by the construction

of V σ (see (7)), we have V σ ∩ L(P σi,ενk ) = ∅. Since P σi,ενk ⊂ L(P σi,ενk ), we

obtain V σ ∩ P σi,ενk = ∅, which is impossible. This proves (j).
Let σ ∈ Dn and x ∈ M0 ∩ clV σ. Fix an ε ∈ Bn. Then there are τ ∈ Dn

and a k = 1, . . . , k(τ, ε) such that x ∈ intP τ,εk . Hence we must have τ = σ

by (f). Also, x ∈ intP ξ,ε0k with a suitable ξ ∈ Dn+1 and 1 ≤ k ≤ k(ξ, ε0).

Then ξ = σ2 by (f). However, (7) implies clV σ ∩ intP σ2,ε0
k = ∅, which is a

contradiction. This proves (k).

Finally, we prove Theorem 1.1 using Lemma 3.3. We construct a contin-
uous function f : [0, 1]2 → R with supp f ⊂ ⋃σ∈D V

σ. Using the parallelo-
grams P σ,εk we shall construct the lines `(x, c) for a.e. x ∈M0 and for every
0-1 sequence c. Then we shall use properties (g) and (h) to obtain bounds
on the differential quotients of f along `(x, c).

By Tietze’s theorem, for every σ ∈ Dn there exists a continuous function
fσ : R2 → [0, 10−n] such that fσ(x) = 10−n if x ∈ clUσ, and fσ(x) = 0 if
x /∈ V σ. We put

f =
∞∑
n=0

(−1)n
∑
σ∈Dn

fσ.

Since fσ is zero outside V σ and the open sets V σ (σ ∈ Dn) are pairwise
disjoint, it follows that fn =

∑
σ∈Dn

fσ is continuous, and its range equals

[0, 10−n]. Therefore, the series
∑∞

n=0(−1)nfn is uniformly convergent, and
thus f =

∑∞
n=0(−1)nfn is continuous on R2.

In the remaining part of the proof of Theorem 1.1 we show that at almost
every point x ∈ M0 there exist continuum many directions η such that the
directional Dini derivatives ∂ηf(x), ∂ηf(x), ∂η+πf(x), ∂η+πf(x) are finite
and distinct.

By property (k) (M0 ∩ V σ = ∅), we have f(x) = 0 for every x ∈M0.
Let 2ω denote the set of infinite 0-1 sequences. We shall construct, for

every x ∈ M0 and c ∈ 2ω, a line `(x, c) going through x. Let εn denote the
nth initial segment of c. Then for every n there are a sequence σn ∈ Dn and
an index 1 ≤ jn ≤ k(σn, εn) such that x ∈ intP σn,εnjn

. This implies that

(12) intP σn,εnjn
∩ intP

σn+1,εn+1

jn+1
6= ∅,

and thus by (a), σn+1 is a continuation of σn for every n. Therefore, there
is an infinite sequence (a1, a2, . . .) such that σn = (a1, . . . , an) for every n.
Let x = (x1, x2). It is clear from (a) that d(σn) < x2 < d(σn) + 10−n for
every n. Therefore, 0.a1a2 . . . is the decimal expansion of x2.

For brevity, we shall write Pn for P σn,εnjn
. Then, by (b) applied with ε = εn

and by (12), we have Pn+1 ∈ Π(σn, εn, jn) for every n. Thus L(Pn+1) ⊂
L(Pn) follows from (c) for every n.
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We denote by `n(x, c) the line containing x and parallel to the sides of Pn.
Then `n(x, c) intersects both bases of Pn, and so `n(x, c) ⊂ L(Pn). We select
a line `(x, c) so that it contains x and its slope is a point of accumulation
of the sequence of the slopes of Pn (n = 0, 1, . . .). Then `(x, c) ⊂ L(Pn) for
every n = 0, 1, . . . . In particular, `(x, c) intersects both bases of P0 = [0, 1]2.

Let c, d ∈ 2ω be distinct, and let εn and ζn denote their respective nth
initial segments. Since c 6= d, there is an n and an ε ∈ Bn such that εn+1 =
ε0 and ζn+1 = ε1 or the other way around. This implies by (e) that the
directions of the lines `(x, c) and `(x, d) are different. This proves that for
every x ∈M0, the lines `(x, c) (c ∈ 2ω) are distinct.

Fix x ∈M0 and c ∈ 2ω, and let θ denote the direction of the line `(x, c).
Our next aim is to prove that

−10 ≤ ∂θf(x) ≤ 0 ≤ ∂θf(x) ≤ 10,(13)

−5/3 ≤ ∂θ+πf(x) ≤ 0 ≤ ∂θ+πf(x) ≤ 5/3.(14)

Let `+(x, c) ⊂ `(x, c) and `−(x, c) ⊂ `(x, c) denote the halflines having
x as endpoint, and intersecting the upper and lower base of [0, 1]2 (that is,
[0, 1]×{1} and [0, 1]×{0}), respectively. We have proved above that x /∈ clV σ

for every σ ∈ D. This implies that `+(x, c)\⋃σ∈D V
σ is nonempty. Moreover,

it contains a sequence converging to x. Indeed, otherwise an initial open
segment of `+(x, c) would be covered by the pairwise disjoint open sets V σ.
Since the segment is connected, it would be covered by one of the sets V σ,
implying x ∈ clV σ, which is impossible.

Therefore, f(xi) = 0 for a suitable sequence of points xi ∈ `+(x, c)
converging to x, which implies ∂θf(x) ≤ 0 ≤ ∂θf(x). A similar argument
gives ∂θ+πf(x) ≤ 0 ≤ ∂θ+πf(x).

Suppose that f(y) 6= 0 for some y = (y1, y2) ∈ `+(x, c). Then y ∈ V τ for
some τ ∈ Dn, so by (f), we have

d(τ2) < y2 < d(τ3).

Since y ∈ `+(x, c), we have

d(σn) < x2 < y2 < d(τ3) < d(τ) + 10−n,

hence d(σn) ≤ d(τ).

Suppose d(σn) = d(τ); then τ = σn. Since `(x, c) ⊂ L(Pn+1) and y ∈
`(x, c)∩V τ , by (g) we have an+1 ∈ {0, 9}. However, since x2 < y2 < d(σn3),
we must have an+1 = 0. Thus x2 < d(τ1) < d(τ2) < y2 and y2−x2 > 10−n−1.

If d(τ) > d(σn), then

x2 < d(σn) + 10−n ≤ d(τ) < d(τ2) < y2.

In both cases, y2 − x2 > 10−n−1. Since y ∈ V τ , we have |f(y)| ≤ 10−n.
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y = (y1, y2)

x = (x1, x2)

V σ

`−(x, c)

d(σ)

d(σ2)

d(σ3)

d(σ) + 10−n

Pn = P σn,εn
jn

Pn+1

`+(x, c)

Fig. 2. Estimates on |y − x|

Therefore
|f(y)− f(x)|
|y − x| ≤ 10−n − 0

y2 − x2
≤ 10−n

10−n−1
= 10.

It follows that ∂θf(x) ≤ 10 and ∂θf(x) ≥ −10.
Now suppose that f(y) 6= 0 for some y = (y1, y2) ∈ `−(x, c). Then y ∈ V τ

for some τ ∈ Dn, so by (f),
d(τ2) < y2 < d(τ3).

Since y ∈ `−(x, c), we have

d(τ) < d(τ2) < y2 < x2 < d(σn) + 10−n,

so there are two cases: either d(τ) = d(σn), or d(τ) < d(σn).
Suppose τ = σn. Since `(x, c) ⊂ L(Pn+1) and y ∈ `(x, c)∩ V τ , by (g) we

have an+1 ∈ {0, 9}. However, as d(τ2) < y2 < x2, we must have an+1 = 9
and

y2 < d(τ3) < d(τ9) < x2.

If d(τ) < d(σn), then

y2 < d(τ3) < d(τ) + 10−n ≤ d(σn) < x2.

In both cases, x2 − y2 > 6 · 10−n−1. Since y ∈ V τ , we have |f(y)| ≤ 10−n.
Therefore |f(y)− f(x)|

|y − x| ≤ 10−n − 0

x2 − y2
≤ 10−n

6 · 10−n−1
=

5

3
.

It follows that ∂θ+πf(x) ≤ 5/3 and ∂θ+πf(x) ≥ −5/3.
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Let T denote the set of numbers t ∈ [0, 1] such that in the decimal
expansion 0.a1a2 . . . of t there are infinitely many odd as well infinitely
many even indices n with an = 0, and there are infinitely many odd as well
infinitely many even indices n with an = 9. Since a.e. number is normal
to base 100, it follows that T is of full measure in [0, 1]. We set M =
M0∩ ([0, 1]×T ). Then M is a measurable set of positive measure. We prove
that

−10 ≤ ∂θf(x) ≤ −2, 2 ≤ ∂θf(x) ≤ 10,(15)

−5/3 ≤ ∂θ+πf(x) ≤ −5/6, 5/6 ≤ ∂θ+πf(x) ≤ 5/3,(16)

for every x ∈M .
Let x = (x1, x2) ∈M , and let the decimal expansion of x2 be 0.a1a2 . . . .

Then x ∈ intPn = intP σn,εnjn
for every n, where σn = (a1, . . . , an).

Suppose that an+1 = 0 and n is even. Since σn+1 = σn0, it follows
from (h) that if a line intersects both bases of Pn+1, then it intersects Uσn .
Now `(x, c) is such a line, and thus we can select y ∈ `+(x, c) ∩ Uσn . Then
y2 − x2 ≤ 3 · 10−n−1, and thus

f(y)− f(x)

|y − x| =
10−n − 0

|y − x| ≥
10−n√

2 (y2 − x2)
≥ 10−n

5 · 10−n−1
= 2.

Here we have used |y − x| ≤
√

2 (y2 − x2), which follows from the fact that
`(x, c) intersects both bases of the unit square [0, 1]2.

Since there are infinitely many even n with an+1 = 0, this implies
∂θf(x) ≥ 2. The same argument shows ∂θf(x) ≤ −2, which proves (15).

The proof of (16) is similar. Suppose that an+1 = 9 and n is even. Since
σn+1 = σn9, it follows from (h) that if a line intersects both bases of Pn+1,
then it intersects Uσn . Now `(x, c) is such a line, and thus we can select
y ∈ `−(x, c) ∩ Uσn . Then x2 − y2 ≤ 8 · 10−n−1, and thus

f(y)− f(x)

|y − x| =
10−n − 0

|y − x| ≥
10−n√

2 (x2 − y2)
≥ 10−n

12 · 10−n−1
=

10

12
.

Since there are infinitely many even n with cn+1 = 9, this implies ∂θ+πf(x)
≥ 5/6. The same argument shows ∂θ+πf(x) ≤ −5/6. This proves (16). Now
(15) and (16) imply that the four Dini derivatives ∂θf(x), ∂θf(x), ∂θ+πf(x),
∂θ+πf(x) are finite and distinct. This completes the proof of Theorem 1.2.
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Eötvös Loránd University
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