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ON A PROBLEM OF MAZUR FROM “THE SCOTTISH BOOK”

CONCERNING SECOND PARTIAL DERIVATIVES

BY
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Abstract. We comment on a problem of Mazur from “the Scottish Book” concerning
second partial derivatives. We prove that if a function f(x, y) of real variables defined on
a rectangle has continuous derivative with respect to y and for almost all y the function
Fy(x) := f ′

y(x, y) has finite variation, then almost everywhere on the rectangle the partial
derivative f ′′

yx exists. We construct a separately twice differentiable function whose partial
derivative f ′

x is discontinuous with respect to the second variable on a set of positive
measure. This solves the Mazur problem in the negative.

1. Introduction. By Banach’s classical result, for every (Lebesgue)
measurable function f : R → R the set D of differentiability points of f
is measurable and the derivative f ′ is measurable on D. Haslam-Jones [4]
generalized this result to functions of several variables. More exactly, he
established that the set D of differentiability points of a measurable function
f : Rn → R is measurable and each of its partial derivatives f ′xi is measurable
on D.

Investigation of the existence and measurability of partial derivatives
was continued in [13], [6]. In particular, in [13] it was proved that for a
measurable function f(x1, . . . , xn), defined on a rectangle P , which is mono-
tone with respect to the ith variable on almost all segments parallel to
the ith axis, f ′xi exists almost everywhere. In [6] it was proved that for
a measurable function f(x1, . . . , xn) the set of points where f ′xi exists is
measurable, under a weaker assumption. Moreover, Serrin [13] has con-
structed a measurable function f on [0, 1]2 which is a.e. differentiable on
each horizontal segment as a function of one variable, but for which the
set where the partial derivative with respect to the first variable exists is
non-measurable.

In the well known “Scottish Book” [8] S. Mazur posed the following
question (VII.1935, Problem 66):
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The real function z = f(x, y) of real variables x, y possesses the 1st par-
tial derivatives f ′

x, f ′
y and the pure 2nd partial derivatives f ′′

xx, f ′′
yy. Do there

exist then almost everywhere the mixed 2nd partial derivatives f ′′
xy, f ′′

yx? Ac-
cording to a remark by Mr. Schauder, this theorem is true with the following
additional assumptions: The derivatives f ′

x, f ′
y are absolutely continuous in

the sense of Tonelli, and the derivatives f ′′
xx, f ′′

yy are square integrable. An
analogous question for n variables.

Mazur’s problem has some interest for partial differential equations. If,
for example, one considers the equation f ′′xx + f ′′yy = g, there is a natural
question of differentiability properties of its solution (see e.g. [7]). The Mazur
problem is a part of a general problem on relations between various partial
derivatives in PDE and in the theory of function spaces connected to deriva-
tion (see. e.g. [11], [16]). Some results of these theories are formulated for
classes of functions in Sobolev spaces, so it is not obvious that they remain
valid for individual functions.

From the context of Problem 66 one can suppose that Mazur knew (sus-
pected) that the mixed derivatives need not exist everywhere. It may be a
surprise, but only in 1958 did Mityagin [9] publish an example which shows
that the existence and continuity of the second pure derivatives does not
imply the existence of mixed derivatives everywhere. More exactly, he pro-
vided a function f(x, y) continuous in a disc with center at zero for which
there are continuous derivatives f ′′xx and f ′′yy, but f ′′xy(0, 0) does not exist.

Bugrov [3] improved this result by showing that in a square there exists a
harmonic function f(x, y) (i.e. f ′′xx = −f ′′yy) whose mixed partial derivatives
are unbounded. The existence of mixed partial derivatives was investigated
by means of Fourier series in Bernstein’s fundamental memoir [1]. He ob-
tained the following results.

Theorem 1.1 ([1, Th. 79]). Let f(x, y) be a function 2π-periodic in

both variables, whose partial derivatives f
(k)

xk
and f

(k)

yk
can be developed into

double trigonometric Fourier series with the sum of the absolute values of
the coefficients not greater than c. Then all mixed derivatives of f of order
k exist, and are developed into double trigonometric Fourier series with the
sums of the absolute values of the coefficients not greater than 2c.

Theorem 1.2 ([1, Th. 81]). Let f(x, y) be a function 2π-periodic in both

variables, whose partial derivatives f
(k)

xk
and f

(k)

yk
satisfy the Hölder condition

with exponent α. Then f has all mixed derivatives of order k, which satisfy
the Hölder condition with any exponent α1 < α.

Theorem 1.3 ([1, Th. 80]). Let f(x, y) be a function 2π-periodic in both
variables which has all second partial derivatives. Moreover suppose that

2π�

0

2π�

0

(f ′′xx)2 dx dy ≤ c and

2π�

0

2π�

0

(f ′′yy)
2 dx dy ≤ c.
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Then
2π�

0

2π�

0

(f ′′xy)
2 dx dy ≤ c. (1)

On the other hand, in the framework of descriptive function theory Tol-
stov [14] has proved the following statements.

Theorem 1.4. If a function f(x, y) is separately continuous on a rect-
angle and has the derivative f ′′xx everywhere, then f ′′xx is of the first Baire
class.

Theorem 1.5. Let f(x, y) be defined on a rectangle P , and suppose the
upper and lower partial derivatives of f ′x, f ′y with respect to each variable are
finite on some subset E ⊆ P of positive measure. Then the mixed derivatives
f ′′xy and f ′′yx exist and are equal a.e. on E.

Theorem 1.5 implies, in particular, that if f(x, y) has a.e. all second
partial derivatives then the mixed derivatives are equal a.e. Moreover, Tol-
stov [15] has constructed a function of two variables having jointly continu-
ous first partial derivatives and mixed second partial derivatives which are
different on a set of positive measure.

In this paper we show that Schauder’s remark is valid under significantly
weaker additional assumptions. More exactly, we prove that the Mazur prob-
lem has a positive answer if f ′x and f ′y have finite variations in the Tonelli
sense. As a byproduct, we obtain a new result on measurability of the ex-
istence set for a partial derivative (Proposition 2.1). Finally, we solve the
Mazur problem in the negative by constructing a separately twice differen-
tiable function f such that f ′x is discontinuous with respect to y at all points
of a set of positive measure.

2. Tonelli variation and mixed derivatives. Given a function f :
[a, b] × [c, d] → R and x ∈ [a, b], we denote by V1(x) the variation of the
function fx : [c, d] → R, fx(y) := f(x, y), and given y ∈ [c, d] we denote
by V2(y) the variation of fy : [a, b] → R, fy(x) := f(x, y) (these variations
may be infinite). Note that V1(x) is lower semicontinuous if f is continuous
with respect to x, and similarly for V2(y). A function f is of Tonelli bounded

variation [12, p. 169] if
	b
a V1(x) dx < ∞ and

	d
c V2(y) dy < ∞. All integrals

we consider are Lebesgue integrals.

Proposition 2.1. Let f : R2 → R be continuous with respect to y and
let E be the set of all points (x, y) ∈ R2 at which f ′x exists. Then E is an
Fσδ set.

(1) The original form of the theorem is different. However, an analysis of Bernstein’s
proof shows that, in fact, he proved Theorem 1.3.
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Proof. Given m,n ∈ N, denote by Am,n the set of all (x, y) ∈ R2 such
that for all u, v ∈ (x− 1/n, x+ 1/n),

|f(u, y)− f(v, y)| ≤ 1/m,

and by Bm,n the set of (x, y) ∈ R2 such that for all u, u′ ∈ (x, x+ 1/n) and
v, v′ ∈ (x− 1/n, x)∣∣∣∣f(u, y)− f(v, y)

u− v
− f(u′, y)− f(v′, y)

u′ − v′

∣∣∣∣ ≤ 1/m.

All the sets Am,n, Bm,n are closed, so the sets

A =
⋂
m∈N

⋃
n∈N

Am,n and B =
⋂
m∈N

⋃
n∈N

Bm,n

are Fσδ. It remains to note that A is the set of all continuity points of f
with respect to x, B is the set of all points (x, y) for which the limit

lim
(u,v)→(x+0,x−0)

f(u, y)− f(v, y)

u− v
exists and is finite, and E = A ∩B.

Note that Proposition 2.1 does not follow from the papers [13], [6] men-
tioned in the Introduction. Its statement seems to be new, even for functions
of one variable (i.e. when f is constant with respect to y). Similar results for
continuous functions of one variable can found in [5, p. 309] or [2, p. 228].

Proposition 2.2. Let P = [a, b]× [c, d], f : P → R be continuous with
respect to y and for almost all y ∈ [c, d] the function fy(x) := f(x, y) has
finite variation. Then f ′x exists a.e. on P .

Proof. By Proposition 2.1, the set E = {(x, y) ∈ P : f ′x(x, y) exists} is
measurable. Hence, F = P \ E is also measurable.

By the assumptions of Proposition 2.2, we can choose a subset A ⊆ [c, d]
with Lebesgue measure µ(A) = d − c such that each fy, y ∈ A, has finite
variation on [a, b]. It is well known (see e.g. [10, Ch. VIII, §2, Th. 4]) that
monotone functions (hence functions of finite variation) have derivative a.e.
So, µ(F ∩ ([a, b]×{y})) = 0 for each y ∈ A. Now, by the Fubini theorem (or
by [10, Ch. XI, §5, Th. 1]), µ(F ) = 0.

The next corollary shows that in Schauder’s remark the assumption of
square integrability of f ′′xx and f ′′yy is superfluous.

Corollary 2.3. Let P = [a, b] × [c, d], let f : P → R be continuously
differentiable with respect to y, and suppose that for almost all y ∈ [c, d] the
function Fy(x) := f ′y(x, y) has finite variation (e.g. let f ′y have finite Tonelli
variation). Then f ′′yx exists a.e. on P .

Proof. Use Proposition 2.2 with f ′y in place of f .
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3. Example. For a real valued function f , denote supp f = {x ∈ R :
f(x) 6= 0}.

Lemma 3.1. Let In = (an, bn) be pairwise disjoint intervals and let
ψn : R→ R be differentiable functions such that suppψn ⊂ In, n = 1, 2, . . . ,
and supR ψ

′
n(x) → 0 as n → ∞. Then the function g(x) =

∑∞
n=1 ψn(x) is

differentiable, and

g′(x) =
∞∑
n=1

ψ′n(x).

The lemma follows easily from the theorem on series differentiability.

The next theorem gives a negative answer to Mazur’s problem.

Theorem 3.2. There exists a twice separately differentiable function
f : [0, 1]2 → R and a measurable subset E ⊂ [0, 1]2 with µ(E) > 0 such
that f ′x is discontinuous with respect to y at all points ofE, in particular f ′′xy
does not exist on E.

Proof. Let B ⊂ [0, 1] be a closed set of positive measure without isolated
points whose complement [0, 1] \ B is dense in [0, 1]. Take intervals In =
(an, bn) such that [0, 1] \ B =

⊔∞
n=1 In. Let ψ : R → R+ be an arbitrary

twice continuously differentiable function with suppψ = (0, 1) and

ψn(y) := ψ

(
y − an
bn − an

)
, n = 1, 2, . . .

Take εn, δn > 0 so that

lim
n→∞

εn
(bn − an)2

= 0,(3.1)

∞∑
n=1

δn <∞.(3.2)

Choose twice differentiable functions ϕn : [0, 1]→ [0, εn] such that

(3.3) µ(An) > 1− δn, n = 1, 2, . . . ,

where An = {x ∈ [0, 1] : |ϕ′n(x)| ≥ 1}.
Let f : [0, 1]2 → R be given by

f(x, y) =
∑∞

n=1
ϕn(x)ψn(y).

It is easy to see that f ′′xx exists. Moreover, by (3.1) and Lemma 3.1, f ′′yy
exists. Set

A =

∞⋃
m=1

⋂
n≥m

An.
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Then, by (3.3) and (3.2), µ(A) = 1. We will show that f ′x is discontinuous
with respect to y at every point of E = A×B. Fix (x0, y0) ∈ E and δ > 0.
Choose m so that x0 ∈

⋂
n≥mAn. Since B has no isolated points, there

exists k > m such that |y − y0| < δ for all y ∈ Ik. Take yk ∈ Ik so that
ψk(yk) = maxR ψ(y). Now we have |yk − y0| < δ, x0 ∈ Ak and

|f ′x(x0, yk)− f ′x(x0, y0)| = |ϕ′k(x0)|ψk(yk) ≥ max
R

ψ(y).

Note that in the above example the partial derivative f ′′yy is bounded and
f ′′xx is not absolutely integrable.
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