
COLLOQU IUM MATHEMAT ICUM
VOL. 141 2015 NO. 2

ON THE EXTENT OF SEPARABLE,

LOCALLY COMPACT, SELECTIVELY (a)-SPACES

BY

SAMUEL G. DA SILVA (Salvador)

Dedicated to Prof. Richard G. Wilson
on the occasion of his 70th birthday

Abstract. The author has recently shown (2014) that separable, selectively (a)-spaces
cannot include closed discrete subsets of size c. It follows that, assuming CH, separable
selectively (a)-spaces necessarily have countable extent. However, in the same paper it is
shown that the weaker hypothesis “2ℵ0 < 2ℵ1” is not enough to ensure the countability
of all closed discrete subsets of such spaces. In this paper we show that if one adds
the hypothesis of local compactness, a specific effective (i.e., Borel) parametrized weak
diamond principle implies countable extent in this context.

1. Introduction. Throughout this paper, all spaces are supposed to
be T1 topological spaces. The extent of a topological space is the supremum
of the cardinalities of all closed discrete subsets of the space, provided this is
an infinite cardinal, and ℵ0 otherwise. The dominating number, denoted by d,
is the cofinality of the pre-order of functions from ω into ω with eventual
domination (also known as the mod finite order 〈ωω,6∗〉, where f 6∗ g
means that {n < ω : g(n) < f(n)} is a finite set). It is well-known that d
is also the cofinality of the stricter order 〈ωω,<〉 defined pointwise—see [3],
where the reader will also find the definition of other small cardinals, for
instance the almost disjointness number, denoted by a.

In what follows, we investigate a star selection principle—i.e., the se-
lective version of a star covering property. For background information on
star covering properties we refer to [4] and [9]; for selection principles and
topology we refer to [16] and [7].

Property (a) was introduced by Matveev [8], and its selective version by
Caserta, Di Maio and Kočinac [2].
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Definition 1.1 ([8]). A topological space X satisfies property (a) (or is
said to be an (a)-space) if for every open cover U of X and every dense set
D ⊆ X there is a set F ⊆ D which is closed and discrete in X and such
that St(F,U) = X (where St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}).

Definition 1.2 ([2]). A topological space X is said to be a selectively
(a)-space if for every sequence 〈Un : n < ω〉 of open covers and every dense
set D ⊆ X there is a sequence 〈An : n < ω〉 of subsets of D which are closed
and discrete in X and such that {St(An,Un) : n < ω} covers X.

Notice that (a) implies selectively (a).

In [18] and [13], Morgan and the present author established a number
of results on the extent of spaces within a certain class of separable, locally
compact, selectively (a)-spaces: namely, Mrówka–Isbell spaces from almost
disjoint families which are selectively (a). We assume the reader is familiar
with the definition of these spaces; nevertheless, both of the above mentioned
papers include detailed descriptions of such constructions. In what follows,
A will always denote an almost disjoint family of infinite sets of ω, and Ψ(A)
denotes the corresponding Ψ -space. For a given topological property P, we
will say that “A is P” if Ψ(A) satisfies P. It is well-known that Ψ(A) = A∪ω
is always locally compact, and includes ω as a dense set of isolated points
and A as a closed discrete subset, so any statement on the cardinality of A
is a statement on the extent of the separable space Ψ(A).

Typical results of [18] and [13] include the following:

• Separable, selectively (a) spaces cannot include a closed discrete set
of size c—and therefore, if Ψ(A) is selectively (a) then |A| < c [18].
• It follows that under the Continuum Hypothesis, selectively (a) almost

disjoint families are necessarily countable.
• If |A| < d, then Ψ(A) is selectively (a) [18].
• Suppose A is maximal. Then Ψ(A) is selectively (a) if, and only if,
|A| < d [18].
• Considering the relative consistency with ZFC of

“ℵ1 = a < d = c” + “2ℵ0 < 2ℵ1”

(details in [18]), we conclude that, in comparison/contrast with the
Continuum Hypothesis, the consistently weaker hypothesis given by
“2ℵ0 < 2ℵ1” is not enough to ensure countability of the almost disjoint
families which are selectively (a).
• However, an effective (here meaning Borel) parametrized weak dia-

mond principle is enough to ensure countability of the almost disjoint
families in this context [13].



EXTENT OF (a)-SPACES 201

In this paper, we generalize the main result of [13] by showing that
the very same Borel parametrized weak diamond principle used in that
paper—namely, ♦(ωω,<)—implies countable extent for all separable, lo-
cally compact, selectively (a)-spaces. As a corollary (using a number of
results—already noted in [13]—on the deductive strength of such principles)
we establish that the statement “All separable, locally compact, selectively
(a)-spaces have countable extent” is consistent with the negation of the
Continuum Hypothesis.

Our set-theoretical terminology and notation are standard; let us de-
scribe them. Throughout this paper, ω = ℵ0 denotes the set of all natural
numbers, which is also the least limit ordinal and the least infinite cardinal.
The first uncountable cardinal is denoted by ω1 = ℵ1. For a given set X, |X|
denotes the cardinality of X. CH denotes the Continuum Hypothesis, which
is the statement “c = ℵ1”, where c is the cardinality of the continuum, i.e.,
c = |R| = 2ℵ0 . The Generalized Continuum Hypothesis (denoted by GCH)
is the statement “ℵα+1 = 2ℵα for every ordinal α”. A stationary subset of ω1

is a subset of ω1 which intersects all club (closed unbounded) subsets of ω1

(where “closed” means “closed in the order topology”). Jensen’s diamond,
denoted by ♦, is the combinatorial guessing principle asserting the existence
of a ♦-sequence, which is a sequence 〈Aα : α < ω1〉 such that (i) Aα ⊆ α for
every α < ω1; and (ii) for any given set A ⊆ ω1, the ♦-sequence “guesses” A
stationarily many times, meaning that {α < ω1 : A∩α = Aα} is stationary.
It is easy to see that ♦ → CH→ 2ℵ0 < 2ℵ1 .

2. Effective, parametrized weak diamond principles. The combi-
natorial principle used in the proof of our main theorem is one of the so-called
parametrized weak diamond principles introduced by Moore, Hrušák and
Džamonja [10]. More precisely, we use an effective—here meaning Borel—
principle from this collection. The family of parameters for the weak dia-
mond principles of [10] is given by the category PV. This category (named
after de Paiva [14] and Vojtáš [20], its introducers) is a small subcategory of
the dual of the simplest example of a Dialectica category, Dial2(Sets) [15].
The objects of PV are triples o = (A,B,E) consisting of sets A and B, both
of size not larger than c, and a relation E ⊆ A×B such that

∀a ∈ A ∃b ∈ B aE b and ∀b ∈ B ∃a ∈ A ¬aE b.

(φ, ψ) is a morphism from o2 = (A2, B2, E2) to o1 = (A1, B1, E1) if
φ : A1 → A2, ψ : B2 → B1 and

∀a ∈ A1 ∀b ∈ B2 φ(a)E2 b → aE1 ψ(b).

If (A,B,E) is an object of PV, one can associate to it a parametrized
weak diamond principle Φ(A,B,E), the following combinatorial statement:
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“For every function F with values in A, defined on the complete
binary tree of height ω1, there is a function g : ω1 → B such
that g “guesses” every branch of the tree, meaning that for all
f ∈ ω12 the set {α < ω1 : F (f�α)E g(α)} is stationary.”

The function g is sometimes called an oracle for F , given by the principle
Φ(A,B,E). In the case of A = B, Φ(A,B,E) is usually written as Φ(A,E).
For every object o ∈ PV the following implications hold (see [10]):

♦ → Φ(o) → 2ℵ0 < 2ℵ1 .

The first implication justifes the term “weak diamond” for these guessing
principles. The second justifies why the cardinal inequality 2ℵ0 < 2ℵ1 is often
understood as being the weakest diamond of all.

Effective parametrized weak diamond principles are obtained by restrict-
ing the usual definitions to Borel subsets (and functions) in the context of
Polish spaces (i.e., separable and completely metrizable topological spaces).
A subset of a Polish space is Borel if it belongs to the smallest σ-algebra
containing all open subsets of the space.

Definition 2.1.

(i) An object o = (A,B,E) in PV is Borel if A, B and E are Borel
subsets of some Polish space.

(ii) A map f : X → Y from a Borel subset of a Polish space to a Borel
subset of another is itself Borel if for every Borel Z ⊆ Y the set
f−1[Z] ⊆ X is Borel.

(iii) A map F : <ω12 → A is Borel if it is level-by-level Borel, i.e., for
each α < ω1 the map F �α2 : α2→ A is Borel.

(iv) If o is Borel we define the principle ♦(o) as in [10]:

∀ Borel F : <ω12→ A ∃g ∈ ω1B ∀f ∈ ω12

{α < ω1 : F (f�α)E g(α)} is stationary in ω1.

Next, we define the Borel object from PV which will be used in our main
theorem.

Definition 2.2. The object (ωω, ωω ,<) is defined in the following way:
for every f, g ∈ ωω, f < g if and only if f(n) < g(n) for every n < ω.

In [13], we used the Borel principle♦(ωω ,<)—in fact, we used a principle
equivalent to it—to ensure countability of all almost disjoint families which
are selectively (a); in this paper, we will apply ♦(ωω ,<) directly to show
that any separable, locally compact, selectively (a)-space necessarily has
countable extent under that principle.

Let us briefly discuss the deductive strength of ♦(ωω ,<); a more de-
tailed discussion may be found in [13]. Previous results due to Morgan and
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the author [11], [13] show that ♦(ωω,<) is independent of CH. It is a little
harder to show that the same happens the other way round, i.e., CH is inde-
pendent of ♦(ωω,<); however, it is possible to exhibit models of both of the

following conjunctions: “♦(ωω,<) + ¬CH + 2ℵ0 < 2ℵ1” and “♦(ωω,<)
+ ¬CH + 2ℵ0 = 2ℵ1”. For the former, it suffices (similarly to the analogous
result in [11]) to add ℵω1 Cohen reals to a model of GCH. For the latter,
a very powerful result of [10, Theorem 6.6] is needed, and one concludes
that in the countable support iteration of length ω2 of Sacks forcings one
has 2ℵ0 = 2ℵ1 = ℵ2 and ♦(ωω,<) holds.

For future reference, we write down the outcome of our discussion:

Fact 2.3 ([13]). ♦(ωω,<) is consistent with ¬CH. Moreover, the state-
ments

“♦(ωω,<) + ¬CH + 2ℵ0 < 2ℵ1” and

“♦(ωω,<) + ¬CH + 2ℵ0 = 2ℵ1”

are both consistent.

3. The main theorem. The main result of this paper is:

Main Theorem 3.1. Separable, locally compact, selectively (a)-spaces
have countable extent under ♦(ωω,<).

In fact, we are able to prove a more general result, stated in terms of
relative topological properties (see [1], [21]). Let X be a topological space
and Y ⊆ X. The subset Y is said to be locally compact in X (or relatively
locally compact in X) if every y ∈ Y has a neighbourhood Vy such that Vy
is a compact subset of X [12].

It is easy to see that the main theorem above is an immediate corollary
of the following proposition.

Proposition 3.2. Assume ♦(ωω,<) and suppose X is a separable space
with an uncountable closed discrete subset H which is locally compact in X.
Then X is not a selectively (a)-space.

Proof. Let D be a countable dense subset of X, and H an uncountable
closed discrete subset of X, as in the statement. We may suppose, without
loss of generality, that H and D are disjoint, and moreover we assume D = ω
and H = ω1\ω. For every β ∈ ω1\ω, fix an open neighbourhood of β, say Oβ,
satisfying Oβ ∩ (ω1 \ ω) = {β}. As ω1 \ ω is relatively locally compact in X,
we may take for every β ∈ ω1 \ω a compact set Kβ with non-empty interior
and an open neighbourhood Uβ of β with Uβ ⊆ Oβ and Uβ ⊆ Kβ. Let
Aβ = Uβ ∩ ω for every β ∈ ω1 \ ω.

As ω(P(ω)) is topologically the same as ω(ω2), and the latter is homeo-
morphic to the Cantor set ω2, we are allowed to consider an enumeration
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{Xf : f ∈ ω2} of all sequences of subsets of ω such that the bijection
f 7→ Xf is Borel (in fact, a homeomorphism). For every such sequence Xf

we write Xf = 〈Xf,n : n < ω〉.
For every h ∈ <ω12 with infinite domain and n < ω, let Yh,n be the

subset of ω given by Yh,n = Adom(h) ∩Xh�ω,n.

Let F : <ω12→ ωω be such that, for every n < ω,

F (h)(n) =

{
sup(Yh,n) + 1 if |h| = ℵ0 and Yh,n is finite,

0 otherwise.

It is easy to check that F is Borel (1). Let g : ω1 → ωω be the oracle
for F , given by ♦(ωω,<). Let 〈Un : n < ω〉 be the sequence of open covers
of X defined in the following way: for every n < ω, let Un be given by

Un = {X \ (ω1 \ ω)} ∪
{
Uβ \ g(β)(n) : β ∈ ω1 \ ω

}
.

As we are assuming that X is a T1 space, indeed Uβ \ g(β)(n) is an open
neighbourhood of β ∈ ω1\ω, and, by construction, the open set Uβ \g(β)(n)
is the only element of Un which contains β.

We claim that this sequence of open covers witnesses that X is not
selectively (a). To see this, let P = 〈Pn : n < ω〉 be an arbitrary sequence
of subsets of ω which are closed and discrete in X. Fix any f : ω1 → 2 such
that Xf�ω = P . Applying ♦(ωω,<) for this f , we find that the subset of ω1

given by S = {β < ω1 : F (f�β) < g(β)} is stationary, and the same holds
for

S′ = S ∩ [ω, ω1) = S \ ω = {β ∈ ω1 \ ω : F (f�β) < g(β)}.

Notice that, for every β ∈ ω1 \ω and n < ω, Aβ ∩Pn is a finite set, since
it is contained in Pn ⊆ Kβ ∩ Pn and the latter is a closed discrete subset of
the compact set Kβ. It follows that for every β ∈ S′ and n < ω,

g(β)(n) > F (f�β)(n) > sup(Aβ ∩ Pn),

and therefore (Uβ\g(β)(n))∩Pn= (Aβ∩Pn)\g(β)(n) = ∅, thus β /∈ St(Un, Pn)
for all n < ω. It follows that S′∩

⋃
{St(An,Un) : n < ω} = ∅. As the sequence

P was arbitrary, X is not a selectively (a)-space, as desired.

And now it is immediate from the main theorem and Fact 2.3 that one
has the following:

Corollary 3.3. The statement “All separable, locally compact, selec-
tively (a)-spaces have countable extent” is consistent with ¬CH—regardless
of the validity of the weak diamond 2ℵ0 < 2ℵ1.

(1) For readers without previous interest in descriptive set theory, we point out that
we included in [13] a number of examples of how to check that a given function (or a given
object in PV) is Borel.
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Notice that, by inspecting the proof of Proposition 3.2, one can conclude
that for every sequence of closed and discrete subsets of the countable dense
set we are allowed to exhibit a somehow (and at least) “medium sized” set
of counterexample points—i.e., points of the uncountable closed discrete set
that are not covered by the (clear within the context) countable union of
stars. Our claim is justified by the fact that such a set will be indexed by a
stationary subset of ω1.

4. Notes and questions. The main result of this paper generalizes
previous results on spaces from almost disjoint families. Indeed, it is quite
natural to look at such spaces when investigating issues related to the extent
of separable, locally compact spaces. It turns out that if we want to pose
questions on the extent of spaces in this class, we should start by consider-
ing these questions for Ψ -spaces. So we take this opportunity to give some
publicity to a number of related questions previously posed in the literature,
as well as present some new questions and problems.

There are several cardinal invariants related to the size of Ψ -spaces sat-
isfying (or not) certain specific topological properties. These cardinals are
well-defined because they are related to topological properties which cannot
be satisfied by Ψ(A) whenever A has the size of the continuum. For any
given P of this kind, one can define the non-P number as the minimum
size of an almost disjoint family A such that Ψ(A) does not satisfy P, and
the never-P number as the least cardinal κ such that there are no almost
disjoint families A of size κ such that Ψ(A) satisfies P.

The properties for which these cardinals have been defined are, as far
as our knowledge goes, the following: normality; countable paracompact-
ness; property (a) and its selective version (2). The “non-(a) number” (nsa)
was introduzed by Szeptycki [19]; the “non-countably-paracompact num-
ber” (ncp) was introduced by the author [17], but proved to be ℵ1 in [5];
the “never-(a) number” and the “never-countably-paracompact number”
(resp. vsa and vcp) were introduced by Morgan and the author [11]; the
“non-selectively-(a) number” and the “never-selectively-(a) number” (resp.
nssa and vssa) were introduced by the Morgan and the author [13]. The
“non-normal number” is ℵ1, because of Luzin gaps (indeed, Luzin gaps were
also used in [5] to prove that ncp = ℵ1).

The following inequalities hold in ZFC (references and details are in [13];
the definitions of p and b may be found in [3]):

(2) It is not known whether normal Ψ -spaces have to be (a) or selectively (a) (resp.
[19] and [18]), and the same questions were posed for countably paracompact Ψ -spaces
(resp. [17] and [18]).
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(i) p 6 nsa 6 b 6 a;
(ii) b 6 d 6 nssa 6 vssa;

(iii) vsa 6 vssa;
(iv) vn 6 vcp.

The cardinal inequality 2ℵ0 < 2ℵ1 has huge influence on vn: under the
weakest diamond, one necessarily has the equality vn = ℵ1, because of the
well-known Jones Lemma [6]. In [11] we asked if similar results hold for vsa
and vcp.

Question 4.1 ([11]). Does 2ℵ0 < 2ℵ1 alone imply vsa = ℵ1 or vcp = ℵ1?

In [11] it is proved that ♦(ω,<) (a Borel diamond principle weaker than
the one used in the present paper) implies vsa = vcp = ℵ1. As already com-
mented, in [18] it was established that the statement “There is an uncount-
able selectively (a) Ψ -space” is consistent with “2ℵ0 < 2ℵ1” and “ℵ1 < d”—
and therefore 2ℵ0 < 2ℵ1 alone does not imply vssa = ℵ1. However, ♦(ωω,<)
does imply vssa = ℵ1: this is the main result of [13], generalized in the
present paper to all separable, locally compact, selectively (a)-spaces.

It is remarkable that

Con(ZFC + “2ℵ0 < 2ℵ1” + “2ℵ0 is regular” + “ℵ1 < max{vsa, vcp}”)

implies the existence of inner models with measurable cardinals (because of
small dominating families—see comments and references in [11]).

While on one hand all almost disjoint families of size less than d are
selectively (a) [18], on the other hand it is not known if it is even consistent
that there is an a.d. family A of size d such that Ψ(A) is (a) or selectively (a)
([17], [18]). A related question is the following:

Question 4.2 (R. Dias, reported in [13]). Is there a ZFC example of
an a.d. family of size d such that Ψ(A) is not a selectively (a)-space?

If the answer to the preceding question is yes, then nssa = d. We can
“double the bet” and ask:

Question 4.3. Does ZFC prove vssa = d?

The author conjectures that the preceding question has a negative an-
swer.

We finish this paper by presenting the following problem:

Problem 4.4. It is known that 2ℵ0 < 2ℵ1 alone does not imply vssa = ℵ1.
Can one find reasonable (and consistent) combinatorial/topological hypothe-
ses which on their own do not imply vssa = ℵ1 either, but which do so when
taken together with 2ℵ0 < 2ℵ1?
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Notice that such a reasonable hypothesis has to be consistent with both
“2ℵ0 < 2ℵ1” and “d = ℵ1” (more specifically, it has to imply “d = ℵ1” under
“2ℵ0 < 2ℵ1”).

A similar problem—regarding the cardinal function extent—could be
posed for selectively (a), separable spaces in general (and adding or not
the hypothesis of local compactness): to find a non-trivial condition (e.g.,
other than normality) which, when taken together with 2ℵ0 < 2ℵ1 , implies
countable extent for spaces in the relevant class. Notice again that, precisely
because of the author’s already mentioned results on spaces from almost
disjoint families, the existence of separable, locally compact, selectively (a)-
spaces with uncountable extent is consistent with the conjunction of the
statements “2ℵ0 < 2ℵ1” and “ℵ1 < d”—so, again, any consistent hypothesis
solving the “locally compact extent version” of the previous problem should
also imply “d = ℵ1” under “2ℵ0 < 2ℵ1”.
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