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COXETER POLYNOMIALS OF SALEM TREES

CHARALAMPOS A. EVRIPIDOU (Nicosia)

Abstract. We compute the Coxeter polynomial of a family of Salem trees, and also
the limit of the spectral radii of their Coxeter transformations as the number of their
vertices tends to infinity. We also prove that if z is a root of multiplicities m1,...,mg
for the Coxeter polynomials of the trees 7i,..., Tk respectively, then z is a root for the
Coxeter polynomial of their join, of multiplicity at least min{m —m1,...,m —my} where
m=mi+---+mg.

1. Introduction and preliminaries. In [14], Lakatos determines the
limit of the spectral radii of the Coxeter transformations of particular infinite
sequences of starlike trees. In the present paper we generalize her result to a
wider range of trees. In addition, our idea of proof is different from the one
in [14].

We use the same terminology as in [14} 24], 27]. We denote by N C Z the
set of positive integers and the ring of integers respectively. The algebra of
n x n integer matrices is denoted by M,,(Z), where n € N. We consider only
simple graphs (i.e. graphs without multiple edges and loops) I = (I, I)
with Iy = {v1,...,v,} the set of vertices and I the set of edges, where
(vi,v;) € I if there is an edge connecting v; and v;.

Assume that I" = (I, I1) is a simple graph with the set of enumerated

vertices Iy = {v1,...,v,}. We recall that the adjacency matriz of I' is the
n X n symmetric matrix

(1.1) Adr = [aij] S Mn(Z)

with a;; = 1 if (v;,v;) € I, and a;; = 0 otherwise. The characteristic
polynomial of I' is defined to be

(1.2) xr(t) :=det(t- I, — Adr) € Z][t]

where I, = [d;;] is the identity matrix in M, (Z). It is clear that xpr(t)
does not depend on the enumeration vy, ..., v, of the vertices in I (see [4]
and [0]).
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Let R™ be the standard n-dimensional real vector space with the standard
basis eq,...,e,. Given i € {1,...,n}, the ith reflection of I" is defined to be
the R-linear automorphism o; : R* — R” given by the formula

(1.3) O‘i((:’j) = ej — (251'3' — al-j)ei.
The subgroup W of the general linear group GL(R™) = GL(n, R) generated

by the reflections o1, ...,0, of I' is called the Weyl group of I" and has the
presentation

where M = [m;;] € M, (Z) is the matrix defined by m; = 1 for all i =
1,...,n, and m;; = a;; + 2 for all ¢ # j (see [3, 11, B0]). The product
Qr =01 ... -0 € Wr is defined to be the Cozeter transformation of I’
(see [17]). Obviously, it depends on the enumeration of the vertices (see
Remarkfor details). We recall that the Coxeter transformations were first
studied by Coxeter [5] who showed that their eigenvalues have remarkable
properties (see also Bourbaki [3] and Humphreys [11]).

Throughout this paper, we assume that I" is a tree T = (7o, 71) with

enumerated vertices 7o = {v1,...,vn}, Ady = [a5] € M, (Z) is its adjacency
matrix, and

(1.5) bPr=o01-...-0p€Wr

is its Coxeter transformation with respect to the enumeration vy, ..., v,.

The Cozxeter polynomial of the tree T is defined to be the characteristic
polynomial of @7 : R™ — R", that is, the polynomial (see |11}, 17, 25])

(1.6) coxr(t) := det(t - idgn —P7) € Z][t].

Since T is a tree, the characteristic polynomial of @7 does not depend
on the enumeration of the vertices. Indeed, if ve(y),...,v¢p) is obtained
from v1,...,v, by a permutation ¢ € S, then the Coxeter transformation
D% : R" — R" corresponding to v(qy, - - -, Ve(n) is conjugate to @7 (see [25,
Proposition 2.2, [II], Proposition 3.16], |3, 17| and the following remark for
details).

REMARK 1.1. (a) The Coxeter polynomial coxa(t) is also defined and
studied in [24], 25 26] in a more general setting of loop-free edge-bipartite
multigraphs A = (Ag, A1 = A U AY), with Ay = {v1,...,v,} and a
separated bipartition A; = AT UA of the set of edges. The class of loop-free
edge-bipartite multigraphs contains all simple graphs, loop-free multigraphs,
and simple signed graphs (see [32]).

The definition of coxa(t) € Z[t] for an edge-bipartite multigraph A differs
from for simple graphs, and depends on the upper triangular Gram
matrix Gp = [dﬁ] € GL(n,Z) where d@ =1 for i = j, diAj is the number of
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edges between v; and v; with ¢ < j lying in A+ and dA is the number of
edges between v; and v; with ¢ < j lying in A7
In [24] 25| 26], with any loop-free edge—bipartite multigraph A = (Ag, A4

= AT UAYT) the Coxeter matrix Coxa := —Ga-GL"™ € M,(Z) is associated,
and its characteristic polynomial
(1.7) coxA(t) := det(t - I, — Coxa) € Z][t],

called the Cozxeter polynomial of A, is self-reciprocal in the sense that cox ()
= t"coxa(1/t) (see |23, Lemma 2.8(c3)—(c4)]). The Cozeter transformation
of A is defined to be the group automorphism

(1.8) Pp:Z" = 7", v—v-Coxa.

It is proved in [25, Proposition 2.2] that when the underlying multigraph A
of A is a tree, the Coxeter polynomial does not depend on the enumeration of
the vertices vy, ..., v,. Hence, in view of the sink-source reflection technique
applied in [T Prop051t10n VII.4.7], the Coxeter polynomial coxa(t) (1.7) of
A coincides with the Coxeter polynomial cox(t) of the tree T = A (m the
sense of ([L.6)).

The reader is also referred to the recent papers [12] [13], where the irre-
ducible and reduced root systems in the sense of Bourbaki [3] are studied in
connection with roots of positive connected edge-bipartite graphs.

(b) The Coxeter polynomial is also defined in [22} 27], for any finite poset
J=(J,2) with J ={1,...,n}, as
(1.9) cox(t) := det(t - I, — Coxy) € Z]t]
where Coxy = —Cj - C;tr € M, (Z) is the Coxeter matrix of J and C; :=
[cij] € M(Z) is its incidence matrix, with ¢;; = 1 if ¢ < j, and ¢;; = 0 if
1 A j. It is shown that if the Hasse diagram H := Hj of J is a tree, then the
Coxeter polynomial cox () of J coincides with the Coxeter polynomial
coxp (t) of the tree T = H (in the sense of ([L.6)).

By applying Remark [I.1[a) we get the following useful fact.

COROLLARY 1.2. Assume that T = (To,7T1) is a tree with enumerated
vertices vy, ..., v, and let GT [dij] € Ml,,(Z) be the upper triangular Gram
matriz of T, with di1 = -+ =dpp = 1, djj = =1 if 1 < j and there is an
edge (vi,v5) in Ti, and [dw] =0 otherwzse

(a) The Cozeter transformation &7 : R™ — R"™ (1.5) of the tree T re-
stricts to the group automorphism @7 : Z™ — Z" defined by

&7 (u) = u - Coxy

where Coxy := —Gr - G ¢ M, (Z) is the Cozeter matriz of T
viewed as an edge- bzpartzte graph, with T+ empty.
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(b) The Coxeter polynomial cox(t) of the tree T coincides with the
Cozxeter polynomial coxy(t) = det(t - I, — Coxa) of T viewed
as an edge-bipartite tree.

(¢) The Cozxeter polynomial cox7(t) of T 1is self-reciprocal and does

not depend on the enumeration of its vertices.

Proof. We view T as an edge-bipartite graph, with 71 = 7,7 UT;" where
7.t is the empty set. Then the matrix G = [d;;] € M,,(Z) coincides with the
upper triangular Gram matrix G = [aé] defined in Remark (a), and the
corollary is a consequence of the remark. m

The most important families of trees are the trees of type ADE given in
Figure [I} These are known as the simply laced Dynkin diagrams. There is a
long list of objects which admit an ADFE classification, meaning that there is
an equivalence between equivalence classes of objects of the given type and
the ADE graphs (see for example [9]). Examples of these objects include

e simply laced finite Coxeter groups,
e simply laced simple Lie algebras,
e platonic solids,
e quivers of finite representation types,
e Kleinian singularities,
e finite subgroups of SU(2).
1 2 n—2 n—1 n
An oO——o0 - © o) (n>1)
n—1
1 2 n—3 n—2
D, O—0 (n > 4)
1 2 4 5 n—1 n
E, : O O o————oO0 (n=26,7,8)

Fig. 1. Simply laced Dynkin diagrams

Note that the graphs E, are defined in general for all n > 3, where E3 =
As@® A1, and for n > 4 are defined as in Figure[I] The graphs E,, where studied
extensively in [8] where their Coxeter polynomials were completely factored
into cyclotomic and Salem polynomials. The Coxeter polynomials of the ADE
graphs are well known and have been calculated many times (see for instance
[2, 13,17, 8,25, 27, [30] ). One of the main aims of this paper is to find a universal
formula for the Coxeter polynomials of a family of trees which we denote by
SI(,ZI),M,pk. For specific values of 4, k, p1, ..., pr € N we obtain the ADE graphs.
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To define the trees Sﬁ?,,,,,pk, we recall that the join of simple graphs
Iy,..., I}, with a fixed vertex v; in each of the graphs I3, is the graph
obtained by adding a new vertex and joining it to v; for all i = 1,...,k
(see [30]).

For k, p1,...,pr € Nand i € {0,1,...,k}, we define the tree S]E,?,,,,,pk to
be the join of the Dynkin diagrams D, ,...,D,, and A ,Ap, , in their
vertices numbered 1, as shown in Figure [3]

The tree S,g??_.,pk is the star Tp, —1,.._ p,—1 defined in [20], which is the join
of the Dynkin diagrams Ay, _1,..., A, _1. It is called a wild star in [14].

To the best of our knowledge the graphs Sz(v?,.--,pk for i > 1 are defined here

for the first time. For particular values of ¢ and p;, we get some well-known
trees. For example, for kK = 2, i = 0, p; = 1, po = n — 2 we obtain the
Dynkin diagrams A,,; for kK = 3,4 =0, p1 = 1, po =1, p3 = n — 3 we
obtain D,; for k = 3,71 =0, p1 = 1, po = 2, p3 = n — 4 we obtain E,;
and for Kk = 3,71 =1, p1 = n— 2, po = p3 = 1 we obtain the Euclidean

Dig1r

Dynkin diagrams D, (see Figure . Note that 55?2)76 = Ej¢ and coxg,,(t) =
t10 49 — 7 — 6 — 5 —t* — 3 + ¢t 4+ 1 is the well-known Lehmer polynomial
which is conjectured to have the smallest Mahler measure among the monic
integer non-cyclotomic polynomials (see [29]).

1 n
~ 3 4 n—2 n—1
D, (n>4)
2 n+1
1 2 3 4 5
O O
Ee :
6
o7
1 2 3 4 5 6 7
©; O O
E7Z
[OF]

Fig. 2. The Euclidean diagrams ]ﬁ)n, E¢ and E;

Let p(t) be a monic polynomial with integer coefficients. We denote the
set {z € C: p(z) = 0} of its roots by Z(p(t)), and the maximum of {|z| :
z € Z(p)} by p(p(t)). For example, p(coxy, (t)) = p(coxp, (t)) = 1, while
p(coxg, (t)) > 1 for n > 10 (see [§] and [15]).

If the polynomial p(¢) is irreducible and all of its roots lie on the unit circle
(or equivalently p(p(t)) = 1), then p(t) is called a cyclotomic polynomial.
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Assume now that the polynomial p(¢) is irreducible, non-cyclotomic with
only one root outside the unit circle. If p(t) has at least one root on the unit
circle, it is called a Salem polynomial, while if it has no roots on the unit
circle, it is called a Pisot polynomial (see [15]).

It is not difficult to see that cyclotomic and Salem polynomials are self-
reciprocal. This follows from the following facts. A polynomial p(t) of degree
n is irreducible if and only if the polynomial p*(t) := t"p(1/t), which we call
the reciprocal of p(t), is irreducible. If « lies on the unit circle then « is a
root of p(t) if and only if 1/a is also a root of p(t).

We recall from [15] the following definition.

DEFINITION 1.3.

(a) A tree T issaid to be cyclotomic if all roots of the Coxeter polynomial
coxt(t) are on the unit disk, or equivalently cox7(t) is a product of
cyclotomic polynomials.

(b) A tree T is called a Salem tree if the Coxeter polynomial coxr(t)
has only one root outside the unit circle, or equivalently coxy(t) is a
product of a Salem polynomial and some cyclotomic polynomials.

2. Main results. In this paper we are mainly concerned with the case
k = 3 (i.e. with the trees S},%fr) and prove four theorems about the Coxeter
polynomials cox (t). In Theorem we present a recursive relation
for these polynomlals and we use it in Theorem to find the Coxeter poly-
nomials of SI(,% rforalli=0,1,2,3. In Theorem
limy, 00 p(COXS}, ) T( ), limgseo p(coxsz()zw (t)) and lim,_, p(COXS,(,fL,T (t)) are

Pisot numbers. We also show that

lim p(COXS(z) (t))=2 foralli=0,1,2,3.

p,q,7—>00

we show that the limits

It was shown by Lakatos [14] that
lim p(coxs(o> (t))=k—-1 forkeN

Pl,--sPl—>00 Plyeees Pk
In Theorem [2.4] we generalize that result by showing that

lim  p(cox (t))=k—1 forallie{0,1,...,k}.

P1lye-sPE—0Q S(Z> ,,,,, Pk

We mention here that the multiple limits lim,, . ,, oo @, are the iterated
limits limp, o0 (. . . (limp, o0 o).

THEOREM 2.1. Let k,p1,...,px € N and p1 > 2. Then

COXg(0 (t)=(t+1) COX 4(0). (t) — tcox g (t).

,,,,, Pk p1—1,...,pg P1—2,...,Pf



COXETER POLYNOMIALS OF SALEM TREES

215

v V1,1 s
Vipj—1  Vipj—2 Vi,pj
V2,1
Hj forj=1,..., 7
.. )
QO
Vk,1
H>
. O
. O——O0—=O
’ Vipj—2  Vipj-—1 Vi,pj
OVk,pp,—3
Hjforj=i+1,..., k

,,,,,

If k> 2 and py > 3 then

COX
vvvv k P2s---sPk P11 P2s---sPkP1—3

forallie {1,...,k}.

THEOREM 2.2.

(a) Fori <2,

coxggy ()= CEL e — (),
where
E9(t) = 779 — coxy,_, (t) coxa,_, (1),
E{) () = #7792t — 1) — (P72 + 1) coxa, , (8),
ER ) =74t — 1) — ("2 + 1)t % + 1).
(b) Fori=3,

coxg () = (¢+ 1[I ES) (8) + (F3) (1),

p,q,r
where Féfl) (t) = Fg?,} (t).
THEOREM 2.3.
. . _ (i) L
Tll>ngo p(coxsz()g,T (t) = p(F,5(@)  fori=0,1,2, and

p(FIng (t)) is a Pisot number,

(t) = (t + 1)[cox ,(i-1) (t) — tcox g1 (t)]
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() lim pleoxge (1) = p(Fyi (1)) fori=1,2,3,
(3) p};iinoo (COXS,(,%,T(t)) =p(t™? =2 1) fori=0,1,2,
(4) q}igloo (COXS,(;Z;Z-,,T(t)) = p(tP —2tP71 — 1) fori=1,2,3,
(5) pqlggoo p(coxs(z’w(t)) =2 fori=0,1,2,3.

THEOREM 2.4. For k,pi,...,pr € N and alli € {0,1,...,k} we have

lim p(coxs(l)
P1,-sPE—00 Pl P

REMARK 2.5. (a) Note that for i = 0 or i = 3 the trees SI(,?” and Sﬁf&p
are the same, and therefore the case i = 0 in (2) is given in (1). Similarly the
limit limy, oo p(coxs<o> (t)) can be found using the result of (1). The same
holds for (3) and (4 p)q the double limit limy 00 p(coxs(g) T(t)) is obtained

from (4), and limg ;o0 p(cox g (¢)) from (3).
p,q,T

(b) In [15] it was shown by James McKee and Chris Smyth that if a
non-cyclotomic tree is the join of cyclotomic trees then it is a Salem tree.
The cyclotomic trees were classified in [28]; they are the subgraphs of the
Euclidean diagram Es = Eg and of the Euclidean diagrams of Figure
(see also [I5], [19]). In [15] the Salem trees were classified and they include
the joins of cyclotomic trees which are not cyclotomic. It follows from this
classification that the cyclotomic cases of the trees Sz(nll),...,pk are those for

=i=2o0rk=3,1=0,pp=pr=p3s=2o0ork=3,1=0,p =1,
pr=p3=3ork=3,i=0,p; =1, po =2, p3 =5 and subgraphs of these.
For all the other cases, S,S’l),,,.,pk are Salem trees.

(c) We recall that the Mahler measure of a monic integer polynomial f(t)

is

=[I{lz1: 2 € 27 1), 121 = 1}

(see [29]). We can easily see that if f is cyclotomic, Salem or Pisot then
M(f) = p(f(t)). Lehmer’s problem asks if we can find f with Mahler measure

arbitrarily close to 1. Since COXS() (t) has at most one root outside the
p

.....

k
unit circle, its Mahler measure is p(cox s (t)). Theorem 2 in connection
,,,,, Pk

with Lemma can be used to verlfy Lehmer s conjecture for the family
of the polynomlalb COX (i) (t), asserting that the smallest Mahler measure,
p,q,T

larger than 1, is the Mahler measure of cox o) (t) = coxg,,(t) (see also [15]
1,2,6

and the recent papers |16, 18]).
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EXAMPLE 2.6. For the Dynkin diagrams D,,, Theorem [2.2] gives
(t)

M-+ =) ="t

coxp, (t) = cox

1

-1

For the Euclidean diagrams D,,, Theorem gives

coxg, (1) =coxgmy  (¢)

S§,1),n—3

n—2,1,1
t+1 ,
:ZiTW@”Q—ﬂ*—¢”4—m+¢”2+ﬁ+t—u

=" =)=+ 1)
and for the diagrams E,, it gives
1
coxg, (t) = cox o (1) = —=[t"2(t> —t — 1) + 2+ — 1].
" S12m-a t—1

All these agree with the known formulas (see [7, 8] and [25], Proposition 2.3|).
We also prove the following theorem concerning joins of trees.

THEOREM 2.7. Let T be the join of trees TM, ..., T® k> 2. Suppose
that z is a root of coxrw)(t) with multiplicity m;. Then z is also a root of
coxr (t) with multiplicity at least

min{m —m; :i=1,...,k}
where m =mq + -+ -+ my.

REMARK 2.8. (a) According to [3I] if z # +1 is a common root z of the
polynomials coxr; (t), ..., coxr, (t) then its multiplicity m; is 1. Therefore in
that case Theorem shows that z is a root of coxy(t) with multiplicity at
least k — 1. This result was proved in [8, Theorem 3.1|. For z = 1 however,
z can be a root of coxy(t) with multiplicity less than k — 1. For example,
consider the join 7 of the Euclidean diagrams 15)4 as shown in Figure Then
cox7(t) and coxg () both have 1 as a root with multiplicity 2.

(b) Now suppose that 7 is a join of trees 71,72 and z is a common
root of coxr; (t) and coxy,(t). Then Theorem [2.7] generalizes a theorem due
to Kolmykov [30] (see also [8, Theorem 1.5]) asserting that z is a root of
coxr(t).

Fig. 4. The join of two Dy diagrams
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For the convenience of the reader we include all theorems that will be
used, in several cases with proofs, thus making this paper self-contained.
This is done in Section [3] In Section [4] we prove Theorems and

3. Generalities on Coxeter polynomials. The following proposition
is due to Subbotin and Sumin; the proof below is taken from [30].

PROPOSITION 3.1. Assume that T = (To,T1) ts a tree and let e =
(v1,v2) € T1 be a splitting edge of T that splits it into the trees R = (Ro, R1)
and § = (8o, S1). Assume that v1 € Ry and vy € Sy. Then

cox(t) = coxr (t) coxs(t) — t coxz(t) coxg(t)

where R = £7~€0,7~€1) and S = (50,31) are the subgraphs of R and S with
vertex sets Ro = Ro \ {v1} and Sp = Sp \ {v2}.

Proof. We enumerate the vertices of R and § as Ry = {u1,...,ux}
and Sy = {ugt1,-..,Uktm}, where vy = wug and vo = wugqq. Let € =
{e1,...,extm} be the standard basis of R¥*™ and let Vi be the vector
subspace of R¥+™ with basis e; = {e1,...,ex} and Vo the subspace of RFt™
with basis €3 = {€g11, ..., €ktm}- Also let o; be the ith reflection of 7. Then
PR = 01 ...0% is the Coxeter transformation of R, @5 = 0x11 ... Ok is the
Coxeter transformation of S, and @7 = drPs is the Coxeter transformation
of 7. If R, S are the matrices corresponding to @r,®g with respect to the
bases €1, €3, then with respect to the basis € the Coxeter transformation @7
corresponds to the matrix

( R Ek1> _ <Ik 0km>
Ok Im /) \Ew S/
where F;; is the matrix with all entries zero except the 7, j entry which is 1,
and 0;; is the ¢ X j zero matrix. The Coxeter polynomial of 7T is then given by

tl, —R—FE —Ei 1S
coxr(t) = det(tlpqm — P7) = det< k - kk . k,15>.
—FE1k m—

Subtracting the (k + 1)th row from the kth row we obtain

tly — R —tE
coxr(t) = det( g Rl >
By tly,—S
Expanding the determinant with respect to the kth row we deduce that
cox (t) = coxg (t) coxs(t) — t coxp(t) coxg(t). m

The following well-known lemma says that the eigenvalues of a bipartite
graph are symmetric around 0 (see |4} [6]).
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LEMMA 3.2. Let I' be a bipartite graph. If X is an eigenvalue of the
adjacency matriz Adp, then so is —A\.

Proof. Enumerate the vertices of I' in such a way that its adjacency

matrix has the form
0 B
)

Suppose that (z) is an eigenvector of Adp with eigenvalue A. Then (_y’”) is
an eigenvector of Adp with eigenvalue —\. =»

The next lemma is due to Hoffman and Smith [10].

LEMMA 3.3. If k,p1,...,pr € N, 0 < i < k and p; < p; for some
1 <5<k, then

(1) pcox g () < p(cox g ) ifj>i
Plses Pjreee P PLoeees p;. 7777 D

(2) p(cox (1)) > plcoxgnm () ifj<i.
Plseees ;Dj ..... Pk Ploeees p;. 77777 Dl

Moreover, equalities hold if and only if the tree 5@ is cyclotomic.

PLyeosPsesDh
We will also need the following lemma.
LEMMA 3.4. Suppose that f,,(t) = t"g(t)+h(t) is a sequence of functions

such that g, h are continuous, fn(zn) =0 for alln € N and that lim, o 2, =
20. If |z0| > 1 then g(z0) = 0, while if |z9| < 1 then h(zp) = 0.

Proof. Suppose that |zp| > 1. The function A is continuous and |g(z,)| =
|h(2n)|/|2]. Therefore lim,_ o |g(2n)| = 0. Since |g(20)| — |g(zn)| < |g(z0) —
g(zn)| = 0 as n — oo, we conclude that g(zp) = 0. The proof for |zp| < 1 is
similar. m

4. Proof of main theorems

Proof of Theorem For p; > 2 we split the tree S;()??...,pk by removing
the edge (v1p,—1,v1,,) and we apply Proposition to get

coxgo)  (t) = coxg, (t) coxgo (t) — tcox (t)
P1se-es Pk p1—1,..., Pk P1—2,..., Pk
= (t+1) coxgo (t) — t cox g0 (t).
p1—1,...,pE P1—2,--,Pk

We have used the fact that coxa,(t) = ¢t + 1, which can be easily verified
from the definition of the Coxeter polynomial.

For £k > 2, ;1 > 3 and 1 < i < k, if we split the tree S,S??_,,m by
removing the edge (v1,p,—2,v1,p,) we end up with A; and the join of ¢ — 1
Dynkin diagrams of types D,,, ... ,ID,, and k—i+1 Dynkin diagrams of types
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Apiirseo Ay Ay 1. We apply Proposition to the edge (v1p,—2,V1,p;)
to get

Proof of Theorem [2.3 For simplicity of notation, we write uj, v, w; in-
stead of v1 j, v ;,v3,j respectively.

(a) Applying Proposition to the splitting edge (v, uq) of SI(,?%T we get
COXg(0) (t) = coxa, (t) coxa,,, () — tcoxy, ,(t)coxp,(t) coxa, ().

The polynomial coxy,, (t) can be easily calculated using Proposition . It
satisfies the recurrence

coxp, (t) = coxp, _,(t) + t(coxa, ,(t) — coxp, ,(t))
and is given by the formula coxy, (t) = t" + "1 + ... + ¢ + 1. Therefore
(t— 1)3 COX (o) (t) = tpratrtd _ouptatrdd | yptrd2 a2 yrd2
p,q,T
qptat2 g2 4at2 4 op g
= T2 — 1) — "2 (49 — 1) coxa,_, (1)

+£2(t1 — 1) coxa, , (£) —t + 1,

and hence

(t— 1) coxgo (£) = 2847 — coxy, _, (t) coxa,_, (1))

p,q,T
+ 12 coxp,_, (t)coxa,_,(t) —1
— 12RO 1) — (FO)(¢).
For i = 1,2 we use the recurrence relation of Theorem For i =1, we get
COXgt) (t)=(t+ 1)[COXS(0) q’r(t) tcoxS(o) (t)]

— ¢+ )R, 0) - £, (1)
— (t+ 1>[<F,§0)1,q>*<t> < F2 )" (1)
= (t+ DIPED, (0 — % (1)
— (EFDEY, 0 - B, ()"
The last equality holds because of the following fact. For m; > mo € N and
two polynomials f, g with deg f = deg(g)+m; the reciprocal of f(t)+t™2g(t)

is (f(t) +t™m2g(t))* = f*(t) + t"™~™2g*(t). Therefore to finish the proof for
1 =1 it is enough to show that

FO @) =FY () —tFY, (#).
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This is an easy verification:

(0)
prl,q

0
(t) — tF (1)
=t —1 tr=3 —1
ﬁ COXAq_l (t) + tﬁ

= tPH2 (1) — (P72 4 1) coxp, (1)
For i = 2, by Theorem [2.1] we get

— tp+q*2(t -1)— coqu_l(t)

coxo2) (t) = (t+1)[cox ) (t) —tcox o ()]
SP#I"" S q,p—1,r S —3,7r
_ r+2 (1) (1)
1 *
— (- DE 1< ) - thp 3< ),
and to finish the proof it is enough to verify that
1
F0) = )y (6) = tF,)5(0).
(b) We apply Proposition to the edge (w,—g,w;,) of S](,?’q),r to obtain
COXg(3) (t)y=(t+1) coxge) (t) —t(t+1)coxgzy (1)

p,q,7—3
Therefore
t—1 t—1 t—1
= —— 6 —t——— t
G s 0 = G s, O~ e eosse, ()
=t E@ () — (B2 (1) — " F2)(t) + t(F2)*(¢),
and hence

coxg (1) = (t+1P["FR (8) + (FZ) (1) =

p,q,T

REMARK 4.1. (a) For i = 1 we could have applied Proposition to the

splitting edge (up—2,u,) and use SI(,?q) r = Sgr (0) rp to obtain

coxgay (t) = (t+ DIFEQ () + (F) (1))
Similarly by noting that the graphs S,S}},q,s},}g,r are the same, as also are
S’;,?%T, S(S?,,r, Proposition applied to the splitting edge (v4—2,v4) gives
coxgen (t) = (t+ DPEL () + (FL)) (1)

(b) The polynomials FZSQ (t) are explicitly given by

(T2 — gt 4 1) 417 — 1
- (t—1) ’
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PRt 2t 1) — g1 41

1
(P =2t — 1) 42— ]
B t—1 ’
F(t) = tp—z(tq — 207t 1) — 972 1,

Proof of Theorem- ) From Theoremﬂand Lemmalt is enough
to show that the sequence (aT)TeN defined by «, = p(COXS() (t)) is con-

vergent. By Lemma [3.3] m for ¢ = 0,1,2 the sequence (Oér)reN is increasing.
Since COX g3 (t) = t"P2F(t) + G(t) where F(t), G(t) are monic polynomi-
P,q,7

als, (ay)ren is also bounded, for if M is so large that F(t),G(t) > 0 for
all ¢t > M, then z < M for all z € Z (coxsm (t)). Therefore the sequence
(o )ren is indeed convergent.

We now prove that p(FISZg) is a Pisot number (cf. [I5, Lemma 4.3]). Let
€ > 0 be small enough and r be large enough such that p(coxs(l) (t)) > 1+e€
and ]tr+2qu( )| > |( ) (t)| for every [t| = 1+ €. From Rouché’s theorem

(see |21]) it follows that Fé? (t) has only one root, say zp, outside the unit

circle. If zgp were a Salem number then we would have F*(zp) = 0 and

therefore cox 50 (z0) = 0 for all large r, contrary to Lemma . Therefore
P,q,7

20 = p(F( )( t)), and p(Fp B )( t)) is a Pisot number.
(2) As in (1) we define g, = p(coxs(z) T( )). From Lemma for i =

1,2, 3, the sequence (8p)pen is decreasing. Remark-lmpheb that fors = 1,2
we have

(4.1) coxg (t) = (t+ 1) Fg V() + (B ) (1)

From Theorem and COX ¢(3) (t) = COX o(3) (t) it follows that 1) also
P,q,7r q,T,p

holds for i = 3. Therefore the sequence (8p)pen is bounded, and from Lemma

it converges to p(F(Z 1)(75)).

(3) For ¢, € N and ¢ € {0, 1,2} we define E((f;z« = limy, oo p(coxsu) (t)).
By Lemma [3.3] £, is monotonic with respect to ¢. By (1) and (2) and the
form of the polynomials F, (2«) (1), Fé},«) (t), the sequence (Eé?«)qu is bounded,

and hence convergent (note that &(]Z;?n equals p(Fq(ga) (t)) or p(Fq(,lr) (t))). From

Remark Lemma and the fact that £,, > 1 we deduce the formula
of (3).

(4) The proof for this case is similar to (3). For p,q € Nand i € {1,2,3}

i)

we define EZ(, ¢ = lim, o0 p(cox (t)). By Lemma ¢y 4 is monotonic in q.

Spra.r
By (1), (2) and the form of FZE,) t), Fﬁ} (t) (see Remark , the sequence
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(fgiz})qu is bounded, and hence convergent (ZI(,Z;)q is equal to p(FIS,lq) (t)) or
p(FIS )( t))). From Lemma [3.4) and ¢, , > 1 we deduce the formula of (4).

(5) The case i = 0 was proved by Lakatos [14], and so we only consider
the cases ¢ = 1,2,3. Let 51(9) = limg ;00 p(coxséizﬂ( )). From (4), El(f) =
p(H(t)) where H(t) := tP — 2tP~1 — 1. Hence lin’l,;,q,r%oo p(COXSI(f;zLT () =
limp o0 p(H(t)) =2. m

Proof of Theorem[2.4, For i € {0,1,...,k — 1} we have

_PRTLR(E) — FX(2)
Sitmn t—1

COX
where

F(t) = cOXgl (t) — coxp,, (1)(t) - .. coxp,, (t) coxa,,, (t)...coxa, ().
Since the Coxeter polynomials of S,g?,“,m and Dy, A, are self-reciprocal
(see Corollary [L.2|(c)), we have

F*(t) = COXS;I) YYYY . 1(t) —t COXp, () (t)... COXDPi(t) coxApiH(t) .. COXApk,l(t)'

Proposition applied to the splitting edge (v, vy 1) yields

coXg (t) = CoXg(n () coxa,, (t)

AAAAAAAAAAAAA

— teoxp, (1)(t) ... coxp,, (t) coxa,,, (t)...coxa,  (t)coxa, ()

e+l _ 1
— COXS;t(?il) 77777 i (t) 7?5 _ 1
r 1
—tcoxp, (1(t)...coxp,, (t) COXA,, ., (t)...coxa, (1) P
which is exactly the polynomial w
Therefore limy, — o0 p(COXS(l) """ o (t)) = p(F). Similar formulas hold for

1 = k and inductively we show that

lm pleoxgy (1) = p(G)

P2, sP—>0 D155 Pk
where )
tPr —(kE—-—1)tPr~ —k+2 ifi#£0
G(t) = { 1 (k—1)t +2 i #0,
thtl — (k- 1)t + k-2 ifi=0.

Hence the assertion follows. =
Proof of Theorem L Let 7O = (7, i),T(i)) where 7" 1s the set of

vertices of 70 We denote by 71 the join of the graphs T LT at
the vertices v; € 76 . The graph 7@ looks like the one in Flgure
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7

7@

0,0 T

n

Fig. 5. The join of the graphs 7O, ..., 7®

Let ¢ € {2,...,k}. Applying Proposition to the edge (v, v;) we get

coxXri) () = coxgpi-1) (t) cox) () — t coxr) (1) ... coxre-1)(t) COX 5 (1),

where we denote by T the induced subgraph of 7() with the set of vertices
T = T3\ {ui}.
Set Py(t) = coxp)(t) ... COX 75 (t)...coxyau(t). Then
coxrw (t) = coxgp—1)(t) coxpwm) (t) — tPy(t)

)

= COX{k—2) (t) COX7(k—1) (t) COXg (k) (t)
(
)

t)...cox -2 (t) COX_—) (t) coxr (t) — tP(t)

= coXpir-2) (1) COX(k-1) (t) COXpih) (1) — L(Pr—1()+Px(t))

= coxX o) (t) coxy (t) ... coxpu) () — t(Pr(t) + - - + Py(t))
= (t + 1) coxra)(t) ... coxpm(t) = t(Pr(t) + - + Pr(t)).

Since z is a root of P;(t) of multiplicity m — m;, the theorem follows. =
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