VOL. 141

2015

NO. 2

ON THE DIOPHANTINE EQUATION $x^2 + x + 1 = yz$

BҮ

A. SCHINZEL (Warszawa)

Abstract. All solutions of the equation $x^2 + x + 1 = yz$ in non-negative integers x, y, z are given in terms of an arithmetic continued fraction.

As announced in [2], the following theorem holds.

THEOREM. All solutions of the equation

$$(1) x^2 + x + 1 = yz$$

in non-negative integers x, y, z such that $y \leq z$ and only those are given by the formulae

(2)
$$x = A_{k-1}A_k + B_{k-1}B_k + A_k B_{k-1},$$

(3)
$$y = A_{k-1}^2 + A_{k-1}B_{k-1} + B_{k-1}^2,$$

(4)
$$z = A_k^2 + A_k B_k + B_k^2,$$

where A_k, B_k are the numerator and the denominator, respectively, of the continued fraction $[b_0, b_1, \ldots, b_k]$, $k \ge 0$ is even, b_0 is an integer, and b_i $(i = 1, \ldots, k)$ are positive integers, except if k = 0, $b_0 < 0$, when one has to take $x = |b_0| - 1$.

LEMMA 1. For k = 0 the formulae (2)–(4) give

$$x = b_0, \quad y = 1, \quad z = b_0^2 + b_0 + 1.$$

Proof. Clear. ∎

LEMMA 2. If $k \geq 2$ is even, b_0 is an integer, and b_i (i = 1, ..., k) are positive integers, then

$$A_{k-1}A_k + B_{k-1}B_k + A_kB_{k-1} \ge 0.$$

Proof. If $k = 2, b_1 = 1$, we have

$$A_1 = b_0 + 1, \quad B_1 = 1, \quad A_2 = b_2(b_0 + 1) + b_0, \quad B_2 = b_2 + 1,$$

2010 Mathematics Subject Classification: Primary 11D09.

 $Key\ words\ and\ phrases:$ inhomogeneous quadratic Diophantine equation, continued fraction.

hence by (2),

$$x = (b_2 + 1)b_0^2 + (3b_2 + 2)b_0 + 3b_2 + 1$$

$$\geq \frac{4(b_2 + 1)(3b_2 + 1) - (3b_2 + 2)^2}{4} = \frac{3b_2^2 + 4b_2}{4} > 0.$$

If $k \ge 2$, $kb_1 > 2$, then $B_{k-1} \ge 2$, $B_k \ge 3$, and taking

(5)
$$\xi_0 = b_0 + \frac{1}{\left\lfloor b_1 \right\rfloor} + \dots + \frac{1}{\left\lfloor b_k \right\rfloor},$$

we obtain by [3, Chapter II, Theorem 10],

(6)
$$A_{k-1} = B_{k-1}\xi_0 + \rho, \quad |\rho| < \frac{1}{B_{k-1}}, \quad A_k = B_k\xi_0$$

hence by (2),

$$x = B_{k-1}B_k(\xi_0^2 + \xi_0 + 1) + B_k\rho \ge \frac{3}{2}B_k - \frac{B_k}{2} = B_k \ge 3. \quad \bullet$$

LEMMA 3. If $k \ge 1$ and b_0 are integers, and b_i (i = 1, ..., k) are positive integers, then

(7)
$$A_{k-1}^2 + A_{k-1}B_{k-1} + B_{k-1}^2 \ge A_k^2 + A_k B_k + B_k^2$$

implies $kb_1 = 1$ and $b_0 < 0$.

Proof. If $kb_1 = 1$, we have

$$A_{k-1}^{2} + A_{k-1}B_{k-1} + B_{k-1}^{2} = b_{0}^{2} + b_{0} + 1,$$

$$A_{k}^{2} + A_{k}B_{k} + B_{k}^{2} = b_{0}^{2} + 3b_{0} + 3,$$

and thus (7) implies $2b_0 + 2 \le 0$, i.e. $b_0 < 0$.

If $kb_1 > 1$ and (5) holds, then by [3, Chapter II, Theorem 10] we have (6), hence

$$\begin{split} A_{k-1}^2 + A_{k-1}B_{k-1} + B_{k-1}^2 &= B_{k-1}^2(\xi_0^2 + \xi_0 + 1) + B_{k-1}(2\xi_0\rho + \rho) + \rho^2 \\ &< B_{k-1}^2(\xi_0^2 + \xi_0 + 1) + 2\xi_0 + 2, \\ A_k^2 + A_k B_k + B_k^2 &= B_k^2(\xi_0^2 + \xi_0 + 1), \\ A_k^2 + A_k B_k + B_k^2 - A_{k-1}^2 - A_{k-1}B_{k-1} - B_{k-1}^2 \\ &\geq (B_k^2 - B_{k-1}^2)(\xi_0^2 + \xi_0 + 1) - 2\xi_0 - 2 \\ &\geq 3(\xi_0^2 + \xi_0 + 1) - 2\xi_0 - 2 \geq 3\xi_0^2 + \xi_0 + 1 \geq 11/4. \blacksquare$$

Proof of the Theorem. Necessity. Suppose that (1) holds, where x, y, z are non-negative integers and $y \leq z$. Then by [1, Theorem 131] applied with a = b = c = 1 we have G = 1, c = f = g = 1, and there exist integers

 u, v, ξ, η such that

- (8) $1 = v\xi u\eta,$
- (9) either $x = \xi u + \eta v + \eta u$, or $x = -\xi u \eta v \xi v$,
- (10) $y = \xi^2 + \xi \eta + \eta^2,$
- (11) $z = u^2 + uv + v^2.$

Let $\delta = \operatorname{sgn} v$, $\varepsilon = \operatorname{sgn} \eta$. If $\delta = 0$, from (8) we obtain $u = \pm 1$, $\eta = \pm 1$, ξ arbitrary, thus by (9)–(11),

either
$$x = \pm \xi - 1$$
, or $x = \mp \xi$;
 $y = \xi^2 \mp \xi + 1$, $z = 1$,

and since $x \ge 0$, either $x = |\xi| - 1$ ($|\xi| \ge 1$), $y = \xi^2 - |\xi| + 1$, z = 1, or $x = |\xi|, y = \xi^2 + |\xi| + 1$, z = 1. It follows that y > z unless $\xi = 0, \pm 1, x = 0$, y = z = 1. These values are obtained, by Lemma 1, from formulae (2)–(4) for $k = 0, b_0 = 0$.

If $\varepsilon = 0$, we deduce from (8) that $\delta = \pm 1$, $\xi = \pm 1$, u is arbitrary, thus, by (9)–(11),

either
$$x = \pm u$$
, or $x = \mp u - 1$;
 $y = 1$, $z = u^2 \pm u + 1$,

and since $x \ge 0$, either x = |u|, y = 1, $z = u^2 + |u| + 1$, or x = |u| - 1 $(|u| \ge 1)$, y = 1, $z = u^2 - |u| + 1$. These values are obtained, by Lemma 1, from formulae (2)–(4) for k = 0, $b_0 = |u|$ or |u| - 1, respectively.

If $\varepsilon \delta \neq 0$, from (8) we obtain

(12)
$$|v|(\varepsilon\xi) - (\delta u)|\eta| = \varepsilon\delta = \pm 1.$$

If
$$|v| = |\eta|$$
, then $|v| = |\eta| = 1$, $v = \delta$, $\eta = \varepsilon$, and since $x \ge 0$ we obtain
for $\varepsilon \delta = 1$, $x = (u + \delta)^2$, $y = u^2 + 3\delta + 3$, $z = u^2 + \delta u + 1$,
for $\varepsilon \delta = -1$, $x = u^2$, $y = u^2 - \delta u + 1$, $z = u^2 + \delta u + 1$.

Since $y \leq z$, for $\varepsilon \delta = 1$ we obtain $\delta u < 0$; for $\varepsilon \delta = -1$, $\delta u \geq 0$. These values of x, y, z are obtained from formulae (2)–(4) for k = 2, $b_0 = -1$, $b_1 = |u + \delta|$ or |u|, respectively, $b_2 = 1$.

If $|v| \neq |\eta|$, then $|v| < |\eta|$ or $|v| > |\eta|$. In the former case by [3, Chapter II, Theorem 13] there exist integers $k \ge 1$ and b_0 and positive integers b_i (i = 1, ..., k) such that $\delta u = A_{k-1}$, $|v| = B_{k-1}$, $\varepsilon \xi = A_k$, $|\eta| = B_k$, hence $u = \delta A_{k-1}$, $v = \delta B_{k-1}$, $\xi = \varepsilon A_k$, $\eta = \varepsilon B_k$, and by (8),

(13)
$$\varepsilon \delta = (-1)^{k-1}$$

Thus either $x = \varepsilon \delta(A_{k-1}A_k + B_{k-1}B_k + A_kB_{k-1})$, or $x = -\varepsilon \delta(A_{k-1}A_k + B_{k-1}B_k + A_kB_{k-1})$,

$$z = A_{k-1}^2 + A_{k-1}B_{k-1} + B_{k-1}^2, \quad y = A_k^2 + A_kB_k + B_k^2.$$

Since $y \le z$, by Lemma 3 we have $kb_1 = 1$ and $b_0 < 0$, hence by (13), $\varepsilon \delta = 1$. It follows that $x = (b_0 + 1)^2$, $y = b_0^2 + 3b_0 + 3$, $z = b_0^2 + b_0 + 1$. These values of x, y, z are obtained from formulae (2)–(4) for $b'_0 = -1$, $b'_1 = |b_0 + 1|$, $b'_2 = 1$.

If $|v| > |\eta| > 0$, by [3, Chapter II, Theorem 13] there exist integers $k \ge 1$ and b_0 and positive integers b_i (i = 1, ..., k) such that

$$\delta u = A_k, \quad |v| = B_k, \quad \varepsilon \xi = A_{k-1}, \quad |\eta| = B_{k-1},$$

hence

$$u = \delta A_k, \quad v = \delta B_k, \quad \xi = \varepsilon A_{k-1}, \quad \eta = \varepsilon B_{k-1},$$

and by (8),

$$\varepsilon\delta = (-1)^k.$$

If k is even, then

either
$$x = \varepsilon \delta(A_{k-1}A_k + B_{k-1}B_k + A_kB_{k-1})$$
 or
 $x = -\varepsilon \delta(A_{k-1}A_k + B_{k-1}B_k + A_{k-1}B_k),$
 $y = A_{k-1}^2 + A_{k-1}B_{k-1} + B_{k-1}^2, \quad z = A_k^2 + A_kB_k + B_k^2.$

thus, by Lemma 2, we obtain formulae (2)-(4).

If k is odd, $\varepsilon \delta = -1$, $\xi = 0$, then k = 1, $b_0 = 0$; $u = \delta$, $v = \delta b_1$, $\eta = -\varepsilon \delta$; $x = b_1$, y = 1, $z = b_1^2 + b_1 + 1$. These values of x, y, z are obtained, by Lemma 1, from formulae (2)–(4) for k' = 0, $b'_0 = b_1$.

If k is odd, $\varepsilon \delta = -1$, u = 0, then k = 1, $b_0 = -1$, $b_1 = 1$; $v = \delta$, $\xi = \delta$, $\eta = -\delta$; x = 0, y = z = 1. These values of x, y, z are obtained, by Lemma 1, from formulae (2)–(4) for k' = 0, $b'_0 = 0$.

If k is odd, $\varepsilon \delta = -1$, $|u| = |\xi|$, then $A_{k-1} = A_k$, $b_0 = -1$, $b_1 = 2$; $u = \xi = \delta$, $v = \eta = -\delta$; x = 1, y = 1, z = 3. These values of x, y, z are obtained, by Lemma 1, from formulae (2)–(4) for k' = 0, $b'_0 = 1$.

If k is odd, $\varepsilon \delta = -1$, then $|u| < |\xi|$ is impossible since $|v| > |\eta| > 0$, $v\xi - \eta u = 1$; hence $|u| > |\xi| > 0$, $\operatorname{sgn} A_k = \operatorname{sgn} A_{k-1} = a = \pm 1$, and we apply [3, Chapter II, Theorem 13] to the equation

$$|u|(-\delta a\eta) - |\xi|(-a\varepsilon v) = 1.$$

We infer the existence of integers $l \ge 1$ and b'_0 and positive integers b'_i (i = 1, ..., l) such that

$$|u| = B_l, \quad -\varepsilon av = A_l, \quad |\xi| = B_{l-1}, \quad -\delta a\eta = A_{l-1},$$

thus $(-1)^{l} = 1, l$ even.

On the other hand,

$$u = \delta a B_l, \quad v = -\varepsilon a v A_l, \quad \xi = \varepsilon a B_{l-1}, \quad \eta = -\delta a A_{l-1},$$

hence using $\varepsilon \delta = -1$, we get

$$x = -B_{l-1}B_l - A_{l-1}A_l - A_{l-1}B_l \quad \text{or} \quad x = B_{l-1}B_l + A_{l-1}A_l + B_{l-1}A_l,$$

$$y = A_{l-1}^2 + A_{l-1}B_{l-1} + B_{l-1}^2, \quad z = A_l^2 + A_lB_l + B_l^2.$$

Since $x \ge 0$ we have

$$x = A_{l-1}A_l + B_{l-1}B_l + B_{l-1}A_l.$$

Indeed, by Lemma 2,

 $B_{l-1}B_l + A_{l-1}A_l + A_{l-1}B_l = A_{l-1}A_l + B_{l-1}B_l + A_lB_{l-1} + 1 > 0.$

The proof is complete.

Sufficiency. It has been proved in [2] that formulae (2)-(4) give for every even k and b_i (i = 0, ..., k) solutions of equation (1). The same follows from the following identity, given by the referee:

$$(a^{2} + ab + b^{2})(A^{2} + AB + B^{2}) - ((aA + bB + bA)^{2} + (aA + bB + bA) + 1) = (aB - Ab - 1)(aA + aB + bB + 1)$$

and from the well known formula $A_{k-1}B_k - A_kB_{k-1} = (-1)^k$. The inequalities $x \ge 0$ and $0 \le y \le z$ follow from Lemmas 2 and 3.

It is not enough to assume, as I originally conjectured, that $b_i \ge 0$ (i = 0, ..., k). Take the example x = 67, y = 49, z = 93. If all $b_i \ge 0$, then all $A_i \ge 0$ and all $B_i \ge 0$, hence if (2)–(4) hold, then $A_{k-1} = 3$, $B_{k-1} = 5$, $A_k = 4$, $B_k = 7$. If all $b_i = 0$, then

$$A_i = \frac{1 - (-1)^i}{2}, \quad B_i = \frac{1 + (-1)^i}{2}$$

which is impossible. Let j be the greatest $i \leq k$ such that $b_i > 0$. Then for all $i \geq j - 1$,

$$A_i = \begin{cases} 3 & \text{for } i \text{ odd,} \\ 4 & \text{for } i \text{ even,} \end{cases} \quad B_i = \begin{cases} 5 & \text{for } i \text{ odd,} \\ 7 & \text{for } i \text{ even.} \end{cases}$$

If j is odd, then $A_j < A_{j-1}$, which contradicts $A_j = b_j A_{j-1} + A_{j-2}$. If j is even, then $b_j = 1$, $A_{j-2} = 1$, $B_{j-2} = 3$, $j \ge 4$, and since $A_{-1} = 1$ we have

either
$$b_0 = 1$$
, $b_i = 0$ $(0 < i \le j - 2)$,
or $b_i = 0$ $(0 \le i < j - 2)$, $b_{j-2} = 1$

These cases give $B_i = (1 + (-1)^i)/2$ $(0 \le i \le j-2)$ or $B_i = 0$ $(0 \le i \le j-2)$, respectively, which contradicts $B_{j-2} = 3$.

In a similar way one may find all integral solutions of the equation $ax^2 + bx + c = yz$, where a, b, c are given integers such that $b^2 - 4ac$ is not a perfect square. The resulting formulae for x, y, z will be in general more complicated than those given in the Theorem.

REFERENCES

- L. E. Dickson, Modern Elementary Theory of Numbers, Univ. of Chicago Press, Chicago, 1939.
- [2] J. Florek, Equations relating factors in decomposition into factors of some family of plane triangulations, and applications (with an appendix by A. Schinzel), Colloq. Math. 138 (2015), 23–42.
- [3] O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, 1927; reprint Chelsea, New York, 1950.

A. Schinzel Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland E-mail: schinzel@impan.pl

> Received January 2015; revised 15 April 2015

(6503)