ON THE DIOPHANTINE EQUATION $x^{2}+x+1=y z$

BY
A. SCHINZEL (Warszawa)

Abstract. All solutions of the equation $x^{2}+x+1=y z$ in non-negative integers x, y, z are given in terms of an arithmetic continued fraction.

As announced in [2], the following theorem holds.
Theorem. All solutions of the equation

$$
\begin{equation*}
x^{2}+x+1=y z \tag{1}
\end{equation*}
$$

in non-negative integers x, y, z such that $y \leq z$ and only those are given by the formulae

$$
\begin{align*}
& x=A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}, \tag{2}\\
& y=A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2}, \tag{3}\\
& z=A_{k}^{2}+A_{k} B_{k}+B_{k}^{2}
\end{align*}
$$

where A_{k}, B_{k} are the numerator and the denominator, respectively, of the continued fraction $\left[b_{0}, b_{1}, \ldots, b_{k}\right], k \geq 0$ is even, b_{0} is an integer, and b_{i} $(i=1, \ldots, k)$ are positive integers, except if $k=0, b_{0}<0$, when one has to take $x=\left|b_{0}\right|-1$.

Lemma 1. For $k=0$ the formulae (2)-(4) give

$$
x=b_{0}, \quad y=1, \quad z=b_{0}^{2}+b_{0}+1
$$

Proof. Clear.
Lemma 2. If $k \geq 2$ is even, b_{0} is an integer, and $b_{i}(i=1, \ldots, k)$ are positive integers, then

$$
A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1} \geq 0
$$

Proof. If $k=2, b_{1}=1$, we have

$$
A_{1}=b_{0}+1, \quad B_{1}=1, \quad A_{2}=b_{2}\left(b_{0}+1\right)+b_{0}, \quad B_{2}=b_{2}+1,
$$

[^0]hence by (2),
\[

$$
\begin{aligned}
x & =\left(b_{2}+1\right) b_{0}^{2}+\left(3 b_{2}+2\right) b_{0}+3 b_{2}+1 \\
& \geq \frac{4\left(b_{2}+1\right)\left(3 b_{2}+1\right)-\left(3 b_{2}+2\right)^{2}}{4}=\frac{3 b_{2}^{2}+4 b_{2}}{4}>0 .
\end{aligned}
$$
\]

If $k \geq 2, k b_{1}>2$, then $B_{k-1} \geq 2, B_{k} \geq 3$, and taking

$$
\begin{equation*}
\xi_{0}=b_{0}+\frac{1}{\mid b_{1}}+\cdots+\frac{1}{\mid b_{k}} \tag{5}
\end{equation*}
$$

we obtain by [3, Chapter II, Theorem 10],

$$
\begin{equation*}
A_{k-1}=B_{k-1} \xi_{0}+\rho, \quad|\rho|<\frac{1}{B_{k-1}}, \quad A_{k}=B_{k} \xi_{0} \tag{6}
\end{equation*}
$$

hence by (2),

$$
x=B_{k-1} B_{k}\left(\xi_{0}^{2}+\xi_{0}+1\right)+B_{k} \rho \geq \frac{3}{2} B_{k}-\frac{B_{k}}{2}=B_{k} \geq 3
$$

Lemma 3. If $k \geq 1$ and b_{0} are integers, and $b_{i}(i=1, \ldots, k)$ are positive integers, then

$$
\begin{equation*}
A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2} \geq A_{k}^{2}+A_{k} B_{k}+B_{k}^{2} \tag{7}
\end{equation*}
$$

implies $k b_{1}=1$ and $b_{0}<0$.
Proof. If $k b_{1}=1$, we have

$$
\begin{aligned}
A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2} & =b_{0}^{2}+b_{0}+1 \\
A_{k}^{2}+A_{k} B_{k}+B_{k}^{2} & =b_{0}^{2}+3 b_{0}+3
\end{aligned}
$$

and thus (7) implies $2 b_{0}+2 \leq 0$, i.e. $b_{0}<0$.
If $k b_{1}>1$ and (5) holds, then by [3, Chapter II, Theorem 10] we have (6), hence

$$
\begin{aligned}
& A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2}=B_{k-1}^{2}\left(\xi_{0}^{2}+\xi_{0}+1\right)+B_{k-1}\left(2 \xi_{0} \rho+\rho\right)+\rho^{2} \\
& \quad<B_{k-1}^{2}\left(\xi_{0}^{2}+\xi_{0}+1\right)+2 \xi_{0}+2 \\
& A_{k}^{2}+A_{k} B_{k}+B_{k}^{2}=B_{k}^{2}\left(\xi_{0}^{2}+\xi_{0}+1\right) \\
& A_{k}^{2}+A_{k} B_{k}+B_{k}^{2}-A_{k-1}^{2}-A_{k-1} B_{k-1}-B_{k-1}^{2} \\
& \quad \geq\left(B_{k}^{2}-B_{k-1}^{2}\right)\left(\xi_{0}^{2}+\xi_{0}+1\right)-2 \xi_{0}-2 \\
& \quad \geq 3\left(\xi_{0}^{2}+\xi_{0}+1\right)-2 \xi_{0}-2 \geq 3 \xi_{0}^{2}+\xi_{0}+1 \geq 11 / 4
\end{aligned}
$$

Proof of the Theorem. Necessity. Suppose that (1) holds, where x, y, z are non-negative integers and $y \leq z$. Then by [1, Theorem 131] applied with $a=b=c=1$ we have $G=1, c=f=g=1$, and there exist integers
u, v, ξ, η such that

$$
\begin{align*}
1 & =v \xi-u \eta \tag{8}\\
\text { either } x & =\xi u+\eta v+\eta u, \text { or } x=-\xi u-\eta v-\xi v \tag{9}\\
y & =\xi^{2}+\xi \eta+\eta^{2} \tag{10}\\
z & =u^{2}+u v+v^{2} \tag{11}
\end{align*}
$$

Let $\delta=\operatorname{sgn} v, \varepsilon=\operatorname{sgn} \eta$. If $\delta=0$, from (8) we obtain $u= \pm 1, \eta= \pm 1$, ξ arbitrary, thus by (9)-11),

$$
\text { either } \begin{aligned}
x & = \pm \xi-1, \text { or } x=\mp \xi \\
y & =\xi^{2} \mp \xi+1, \quad z=1
\end{aligned}
$$

and since $x \geq 0$, either $x=|\xi|-1(|\xi| \geq 1), y=\xi^{2}-|\xi|+1, z=1$, or $x=|\xi|, y=\xi^{2}+|\xi|+1, z=1$. It follows that $y>z$ unless $\xi=0, \pm 1, x=0$, $y=z=1$. These values are obtained, by Lemma 1, from formulae (2)-(4) for $k=0, b_{0}=0$.

If $\varepsilon=0$, we deduce from (8) that $\delta= \pm 1, \xi= \pm 1, u$ is arbitrary, thus, by (9)-11),

$$
\begin{aligned}
& \text { either } x= \pm u, \quad \text { or } x=\mp u-1 \\
& y=1, \quad z=u^{2} \pm u+1
\end{aligned}
$$

and since $x \geq 0$, either $x=|u|, y=1, z=u^{2}+|u|+1$, or $x=|u|-1$ $(|u| \geq 1), y=1, z=u^{2}-|u|+1$. These values are obtained, by Lemma 1 , from formulae (2)-(4) for $k=0, b_{0}=|u|$ or $|u|-1$, respectively.

If $\varepsilon \delta \neq 0$, from (8) we obtain

$$
\begin{equation*}
|v|(\varepsilon \xi)-(\delta u)|\eta|=\varepsilon \delta= \pm 1 \tag{12}
\end{equation*}
$$

If $|v|=|\eta|$, then $|v|=|\eta|=1, v=\delta, \eta=\varepsilon$, and since $x \geq 0$ we obtain
for $\varepsilon \delta=1, \quad x=(u+\delta)^{2}, \quad y=u^{2}+3 \delta+3, \quad z=u^{2}+\delta u+1$,
for $\varepsilon \delta=-1, \quad x=u^{2}, \quad y=u^{2}-\delta u+1, \quad z=u^{2}+\delta u+1$.
Since $y \leq z$, for $\varepsilon \delta=1$ we obtain $\delta u<0$; for $\varepsilon \delta=-1, \delta u \geq 0$. These values of x, y, z are obtained from formulae (2)-(4) for $k=2, b_{0}=-1, b_{1}=|u+\delta|$ or $|u|$, respectively, $b_{2}=1$.

If $|v| \neq|\eta|$, then $|v|<|\eta|$ or $|v|>|\eta|$. In the former case by [3, Chapter II, Theorem 13] there exist integers $k \geq 1$ and b_{0} and positive integers b_{i} $(i=1, \ldots, k)$ such that $\delta u=A_{k-1},|v|=B_{k-1}, \varepsilon \xi=A_{k},|\eta|=B_{k}$, hence $u=\delta A_{k-1}, v=\delta B_{k-1}, \xi=\varepsilon A_{k}, \eta=\varepsilon B_{k}$, and by (8),

$$
\begin{equation*}
\varepsilon \delta=(-1)^{k-1} \tag{13}
\end{equation*}
$$

Thus either $x=\varepsilon \delta\left(A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}\right)$, or $x=-\varepsilon \delta\left(A_{k-1} A_{k}+\right.$ $\left.B_{k-1} B_{k}+A_{k} B_{k-1}\right)$,

$$
z=A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2}, \quad y=A_{k}^{2}+A_{k} B_{k}+B_{k}^{2}
$$

Since $y \leq z$, by Lemma 3 we have $k b_{1}=1$ and $b_{0}<0$, hence by 13 , $\varepsilon \delta=1$. It follows that $x=\left(b_{0}+1\right)^{2}, y=b_{0}^{2}+3 b_{0}+3, z=b_{0}^{2}+b_{0}+1$. These values of x, y, z are obtained from formulae (2)-(4) for $b_{0}^{\prime}=-1, b_{1}^{\prime}=\left|b_{0}+1\right|, b_{2}^{\prime}=1$.

If $|v|>|\eta|>0$, by [3, Chapter II, Theorem 13] there exist integers $k \geq 1$ and b_{0} and positive integers $b_{i}(i=1, \ldots, k)$ such that

$$
\delta u=A_{k}, \quad|v|=B_{k}, \quad \varepsilon \xi=A_{k-1}, \quad|\eta|=B_{k-1},
$$

hence

$$
u=\delta A_{k}, \quad v=\delta B_{k}, \quad \xi=\varepsilon A_{k-1}, \quad \eta=\varepsilon B_{k-1}
$$

and by (8),

$$
\varepsilon \delta=(-1)^{k}
$$

If k is even, then

$$
\begin{aligned}
& \text { either } \quad x=\varepsilon \delta\left(A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k} B_{k-1}\right) \quad \text { or } \\
& x=-\varepsilon \delta\left(A_{k-1} A_{k}+B_{k-1} B_{k}+A_{k-1} B_{k}\right) \\
& y=A_{k-1}^{2}+A_{k-1} B_{k-1}+B_{k-1}^{2}, \quad z=A_{k}^{2}+A_{k} B_{k}+B_{k}^{2},
\end{aligned}
$$

thus, by Lemma 2, we obtain formulae (2)-(4).
If k is odd, $\varepsilon \delta=-1, \xi=0$, then $k=1, b_{0}=0 ; u=\delta, v=\delta b_{1}, \eta=-\varepsilon \delta$; $x=b_{1}, y=1, z=b_{1}^{2}+b_{1}+1$. These values of x, y, z are obtained, by Lemma 1, from formulae (2)-(4) for $k^{\prime}=0, b_{0}^{\prime}=b_{1}$.

If k is odd, $\varepsilon \delta=-1, u=0$, then $k=1, b_{0}=-1, b_{1}=1 ; v=\delta, \xi=\delta$, $\eta=-\delta ; x=0, y=z=1$. These values of x, y, z are obtained, by Lemma 1 , from formulae (2)-(4) for $k^{\prime}=0, b_{0}^{\prime}=0$.

If k is odd, $\varepsilon \delta=-1,|u|=|\xi|$, then $A_{k-1}=A_{k}, b_{0}=-1, b_{1}=2$; $u=\xi=\delta, v=\eta=-\delta ; x=1, y=1, z=3$. These values of x, y, z are obtained, by Lemma 1, from formulae (2)-(4) for $k^{\prime}=0, b_{0}^{\prime}=1$.

If k is odd, $\varepsilon \delta=-1$, then $|u|<|\xi|$ is impossible since $|v|>|\eta|>0$, $v \xi-\eta u=1$; hence $|u|>|\xi|>0, \operatorname{sgn} A_{k}=\operatorname{sgn} A_{k-1}=a= \pm 1$, and we apply [3, Chapter II, Theorem 13] to the equation

$$
|u|(-\delta a \eta)-|\xi|(-a \varepsilon v)=1
$$

We infer the existence of integers $l \geq 1$ and b_{0}^{\prime} and positive integers b_{i}^{\prime} $(i=1, \ldots, l)$ such that

$$
|u|=B_{l}, \quad-\varepsilon a v=A_{l}, \quad|\xi|=B_{l-1}, \quad-\delta a \eta=A_{l-1},
$$

thus $(-1)^{l}=1, l$ even.
On the other hand,

$$
u=\delta a B_{l}, \quad v=-\varepsilon a v A_{l}, \quad \xi=\varepsilon a B_{l-1}, \quad \eta=-\delta a A_{l-1}
$$

hence using $\varepsilon \delta=-1$, we get

$$
\begin{aligned}
& x=-B_{l-1} B_{l}-A_{l-1} A_{l}-A_{l-1} B_{l} \quad \text { or } \quad x=B_{l-1} B_{l}+A_{l-1} A_{l}+B_{l-1} A_{l}, \\
& y=A_{l-1}^{2}+A_{l-1} B_{l-1}+B_{l-1}^{2}, \quad z=A_{l}^{2}+A_{l} B_{l}+B_{l}^{2} .
\end{aligned}
$$

Since $x \geq 0$ we have

$$
x=A_{l-1} A_{l}+B_{l-1} B_{l}+B_{l-1} A_{l} .
$$

Indeed, by Lemma 2 ,

$$
B_{l-1} B_{l}+A_{l-1} A_{l}+A_{l-1} B_{l}=A_{l-1} A_{l}+B_{l-1} B_{l}+A_{l} B_{l-1}+1>0 .
$$

The proof is complete.
Sufficiency. It has been proved in [2] that formulae (2)-(4) give for every even k and $b_{i}(i=0, \ldots, k)$ solutions of equation (11). The same follows from the following identity, given by the referee:

$$
\begin{array}{r}
\left(a^{2}+a b+b^{2}\right)\left(A^{2}+A B+B^{2}\right)-\left((a A+b B+b A)^{2}+(a A+b B+b A)+1\right) \\
=(a B-A b-1)(a A+a B+b B+1)
\end{array}
$$

and from the well known formula $A_{k-1} B_{k}-A_{k} B_{k-1}=(-1)^{k}$. The inequalities $x \geq 0$ and $0 \leq y \leq z$ follow from Lemmas 2 and 3 .

It is not enough to assume, as I originally conjectured, that $b_{i} \geq 0$ $(i=0, \ldots, k)$. Take the example $x=67, y=49, z=93$. If all $b_{i} \geq 0$, then all $A_{i} \geq 0$ and all $B_{i} \geq 0$, hence if (2)-(4) hold, then $A_{k-1}=3, B_{k-1}=5$, $A_{k}=4, B_{k}=7$. If all $b_{i}=0$, then

$$
A_{i}=\frac{1-(-1)^{i}}{2}, \quad B_{i}=\frac{1+(-1)^{i}}{2}
$$

which is impossible. Let j be the greatest $i \leq k$ such that $b_{i}>0$. Then for all $i \geq j-1$,

$$
A_{i}=\left\{\begin{array}{ll}
3 & \text { for } i \text { odd, } \\
4 & \text { for } i \text { even, }
\end{array} \quad B_{i}= \begin{cases}5 & \text { for } i \text { odd } \\
7 & \text { for } i \text { even }\end{cases}\right.
$$

If j is odd, then $A_{j}<A_{j-1}$, which contradicts $A_{j}=b_{j} A_{j-1}+A_{j-2}$. If j is even, then $b_{j}=1, A_{j-2}=1, B_{j-2}=3, j \geq 4$, and since $A_{-1}=1$ we have

$$
\begin{aligned}
\text { either } & b_{0}=1, \quad b_{i}=0 \quad(0<i \leq j-2) \\
\text { or } & b_{i}=0 \quad(0 \leq i<j-2), \quad b_{j-2}=1
\end{aligned}
$$

These cases give $B_{i}=\left(1+(-1)^{i}\right) / 2(0 \leq i \leq j-2)$ or $B_{i}=0(0 \leq i \leq j-2)$, respectively, which contradicts $B_{j-2}=3$.

In a similar way one may find all integral solutions of the equation $a x^{2}+$ $b x+c=y z$, where a, b, c are given integers such that $b^{2}-4 a c$ is not a perfect square. The resulting formulae for x, y, z will be in general more complicated than those given in the Theorem.

REFERENCES

[1] L. E. Dickson, Modern Elementary Theory of Numbers, Univ. of Chicago Press, Chicago, 1939.
[2] J. Florek, Equations relating factors in decomposition into factors of some family of plane triangulations, and applications (with an appendix by A. Schinzel), Colloq. Math. 138 (2015), 23-42.
[3] O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, 1927; reprint Chelsea, New York, 1950.
A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
00-656 Warszawa, Poland
E-mail: schinzel@impan.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11D09.
 Key words and phrases: inhomogeneous quadratic Diophantine equation, continued fraction.

