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UPPER BOUNDS FOR CERTAIN TRIGONOMETRIC SUMS
INVOLVING COSINE POWERS

BY

ANASTASIOS D. SIMALARIDES (Kifissia)

Abstract. We establish upper bounds for certain trigonometric sums involving cosine
powers. Part of these results extend previous ones valid for the sum

k−1∑
m=1

|sin(πrm/k)|
sin(πm/k)

.

We apply our results to estimate character sums in an explicit and elementary way.

1. Introduction and statement of the results. Let k, r, b be integers
with k ≥ 3, b ≥ 1. We define the sums

Sk(r, b) =

[k/2]∑
m=1

sin2(πrm/k)

sin(πm/k)
cosb

πm

k
,

S
(1)
k (r, b) =

[k/2]∑
m=1

|sin(πrm/k)|
sin(πm/k)

cosb
πm

k
.

In [17] we established elementary character sum estimates by estimating

sums of the type S
(1)
k (r, b). More specifically, we estimated the sum

S
(1)
k (2r, 2t+ 1)

for t = [
√
k], with the following two results:

(1.1)

S
(1)
k (2r, 2t+ 1) ≤ 3

4π
k log k + g1(k),

S
(1)
k (2r, 2t+ 1) ≤

√
3

2
√

2π
k log k + g2(k),
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where g1(k), g2(k) are explicit secondary terms. The sum S
(1)
k (r, b) is a

weighted analog of
[k/2]∑
m=1

|sin(πrm/k)|
sin(πm/k)

.

Several authors have investigated this sum in its analogous form

k−1∑
m=1

|sin(πrm/k)|
sin(πm/k)

= 2

[k/2]∑
m=1

|sin(πrm/k)|
sin(πm/k)

− λ,

where λ = 1 if k is even and r is odd, and λ = 0 otherwise. Upper bounds
for this sum were obtained first by Vinogradov [18] and later by Nieder-
reiter [10]. The first result with the main term best possible is due to
Cochrane [2], who proved that

k−1∑
m=1

|sin(πrm/k)|
sin(πm/k)

<
4

π2
k log k + g(k, r),(1.2)

where g(k, r) is an explicit secondary term. Subsequent results with sharper
remainders g(k, r) (not always explicit) were presented by Peral [11], Yu [19],
Cochrane and Peral [3], and Alzer and Koumandos [1].

In the present work we estimate the sum Sk(r, b) by proving the following
theorem.

Theorem 1.1. Let k ≥ 3, b ≥ 1 be integers. Then

Sk(r, b) ≤
[k/2]∑
m=1
m odd

cosb(πm/k)

sin(πm/k)
+ κ,(1.3)

where κ = 0 if k is even, and κ = 1/(2
√
b) if k is odd.

The proof of Theorem 1.1 will be given in Section 2. Estimating from
above the bound in (1.3) we obtain the following more explicit bounds.

Corollary 1.2. Let k ≥ 3 and b ≥ 2 be integers and set t = [b/2].
Then

Sk(r, b) <
k

2π

(
log k − 1

2
log t

)
+

(
1

2
− log 2

2π
− γ

4π

)
k +

πt

4k
+ κ,(1.4)

Sk(r, b) <
1

8π

k3

b+ 1
cosb+1 π

k
+
k

2
cosb

π

k
+ κ,(1.5)

where γ = 0.577 . . . is Euler’s constant, and κ is as in Theorem 1.1.

Corollary 1.2 will be proved in Section 3. For t ≥ k2 estimate (1.4)
becomes rather weak; estimate (1.5) then begins to take over.
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Denote by B any upper bound for Sk(r, b) depending only on k and b.
The use of the Fourier expansion

|sinx| = 8

π

∞∑
n=1

sin2(nx)

4n2 − 1
(1.6)

yields immediately the bound

S
(1)
k (r, b) ≤ 4

π
B.(1.7)

In particular, (1.4) gives

(1.8) S
(1)
k (r, b) <

2k

π2

(
log k − 1

2
log t

)
+

4

π

(
1

2
− log 2

2π
− γ

4π

)
k +

t

k
+

4

π
κ,

which generalizes and sharpens our previous results (1.1). It also extends

previous results of the type (1.2) to the case of the weighted sums S
(1)
k (r, b)

where b ≥ 2. It is important to note that (1.1) is elementary, while (1.7)
and (1.8) are not, because their derivation depends on the Fourier expan-
sion (1.6). Their sources, that is, estimates (1.3), (1.4) and (1.5), are all
elementary however.

We now apply some of our results to establish upper bounds for character
sums. Let χ be a non-trivial primitive Dirichlet character of modulus k. This
implies that k ≥ 3. The character χ is called even or odd if χ(−1) = 1 or
χ(−1) = −1 respectively. Set

s = s(χ) = max
r

∣∣∣ r∑
n=1

χ(n)
∣∣∣ and S = S(χ) = max

a,r

∣∣∣ r∑
n=a

χ(n)
∣∣∣.

Obviously, s ≤ S ≤ 2s and it is well known that S = 2s whenever χ is even.
Thus, any upper bound for s yields, in an obvious way, an upper bound for
S and vice versa.

The majority of the results concerning the Pólya–Vinogradov inequality
appear in the form

s√
k log k

≤ c1 + f1(k) or
S√
k log k

≤ c2 + f2(k),(1.9)

where c1, c2 are explicit constants and the remainders f1(k), f2(k) are func-
tions such that f1(k) = o(1) and f2(k) = o(1), as k → ∞. Any such result
is called explicit or non-explicit according as the function fi(k), i = 1, 2,
is explicit or not. The size of the constant ci, i = 1, 2, measures how sharp
each individual result is. Explicit results are usually weaker than non-explicit
ones. Also, elementary results (obtained by elementary methods) are usually
weaker than non-elementary ones. Sharper versions of (1.9) where instead
of
√
k log k appear functions of smaller order have been proved either in

special cases of characters χ, or under unproved conditions: cf. Montgomery
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and Vaughan [9], Granville and Soundararajan [8], and Goldmakher [7]. De-
note the constant ci, i = 1, 2, by c+i or c−i if χ is even or odd respectively,
in case there is reason to distinguish between even and odd characters.

We apply (1.4) with b = 2t+1, t =
[√
k
]

to establish an explicit estimate

of the type (1.9) with c−1 = 3/(4π).

Theorem 1.3. Let χ be a non-trivial odd primitive Dirichlet character
of modulus k. Then

s <
3

4π

√
k log k +

(
2− log 2

π
− γ

2π

)√
k + 1.(1.10)

Theorem 1.3 will be proved in Section 4. Estimate (1.10) is partially
sharper than any previous elementary estimate in the sense that each of
these results yields for the constant c−1 a value > 3/(4π) = 0.238 . . . . Also,
although elementary, it is partially sharper than the non-elementary results
by Pólya [12] and Qiu [14]; indeed Pólya’s result yields c−1 = 1/π, while
Qiu’s result yields c−1 = 4/π2. It may therefore be possible to get sharp
values for the constant c−1 in an elementary way. For a thorough comparison
we mention the recent records for the constant c−1 : The sharpest elementary
result prior to our current work is due to Frolenkov [5] (2011); his result
yields

c−1 = 1/(4 log(1 +
√

2)) + ε = 0.283 . . .+ ε for every ε > 0

(here the constant ε does not vitiate the explicit nature of the result).
In the category of non-elementary and explicit results, sharpest ones ap-
pear in Pomerance [13] (2011), Frolenkov [4] (2011), and Frolenkov and
Soundararajan [6] (2013); each of these yields c−1 = 1/(2π) = 0.159 . . . .
The sharpest non-elementary and non-explicit result is due to Granville and
Soundararajan [8] (2007), with c−1 = 1/(4π) = 0.079 . . . if k is cubefree, and
c−1 = 1/(3π) = 0.106 . . . otherwise.

2. Estimation of the sum Sk(r, b). Set k0 = [k/2] for simplicity. As
an arithmetic function of r, Sk(r, b) is periodic with period k and satisfies
Sk(k − r, b) = Sk(r, b), and thus attains all its values for r = 0, 1, . . . , k0.
Obviously, Sk(0, b) = 0. We shall prove that Sk(r, b) attains its maximum
at r = k0. This is evident for k = 3. For k ≥ 4 we shall prove the assertion
by proving that Sk(r, b) increases with r in the range r = 0, 1, . . . , k0. More
precisely, we shall prove that Sk(r + 1, b) ≥ Sk(r, b) for r = 0, 1, . . . , k0 − 1.
For this purpose, we set

Dr,b = Sk(r + 1, b)− Sk(r, b)

and prove the following preliminary lemma.
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Lemma 2.1. Let k ≥ 4 and b ≥ 1 be integers.

(i) We have

(2.1) Dr,b =

k0∑
m=1

sin
π(2r + 1)m

k
cosb

πm

k
.

(ii) For b ≥ 3 the difference Dr,b satisfies the recurrence formula

(2.2) Dr,b = 1
4Dr−1,b−2 + 1

2Dr,b−2 + 1
4Dr+1,b−2,

while for b = 2 we have

Dr,2 =
1

4

k0∑
m=1

sin
π(2r−1)m

k
+

1

2

k0∑
m=1

sin
π(2r+1)m

k
(2.3)

+
1

4

k0∑
m=1

sin
π(2r+3)m

k
.

(iii) ¡ Dr,1 ≥ 0 for r = 0, 1, . . . , k0 − 1.

(iv) Dr,2 > 0 for r = 0, 1, . . . , k0 − 1.

Proof. (i) We have

Dr,b =

k0∑
m=1

[
sin2 π(r + 1)m

k
− sin2 πrm

k

]
cosb(πm/k)

sin(πm/k)

=

k0∑
m=1

sin
πm

k
sin

π(2r + 1)m

k

cosb(πm/k)

sin(πm/k)

=

k0∑
m=1

sin
π(2r + 1)m

k
cosb

πm

k
.

(ii) For b ≥ 3 we have

Dr,b =

k0∑
m=1

sin
π(2r + 1)m

k
cos2

πm

k
cosb−2

πm

k

=

k0∑
m=1

sin
π(2r + 1)m

k

(
1

2
+

1

2
cos

2πm

k

)
cosb−2

πm

k

=
1

2

k0∑
m=1

sin
π(2r + 1)m

k
cosb−2

πm

k

+
1

2

k0∑
m=1

sin
π(2r + 1)m

k
cos

2πm

k
cosb−2

πm

k
.
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Since

sin
π(2r + 1)m

k
cos

2πm

k
=

1

2
sin

π(2r − 1)m

k
+

1

2
sin

π(2r + 3)m

k
,

we obtain (2.2), and (2.3) follows in the same way.

(iii) By (i) we have

Dr,1=

k0∑
m=1

sin
π(2r + 1)m

k
cos

πm

k
=

1

2

k0∑
m=1

sin
2π(r + 1)m

k
+

1

2

k0∑
m=1

sin
2πrm

k
.

In case k is even the evaluation of the sums in the right member yields

Dr,1 =


1

2
cot

π(r + 1)

k
, r even,

1

2
cot

πr

k
, r odd.

It follows that Dr,1 ≥ 0 for r = 0, 1, . . . , k0 − 1. In fact Dr,1 = 0 iff k ≡ 2
(mod 4) and r = k0 − 1. In case k is odd we obtain in the same way

Dr,1 =


1

4
cot

π(r + 1)

2k
− 1

4
tan

πr

2k
, r even,

−1

4
tan

π(r + 1)

2k
+

1

4
cot

πr

2k
, r odd.

It follows that Dr,1 > 0 for r = 0, 1, . . . , k0− 1, since cotx > tan y for all
x, y such that 0 < x, y < π/4.

(iv) Evaluating the sums in (2.3) we obtain

Dr,2 =
1

8
cot(2r − 1)

π

2k
+

1

4
cot(2r + 1)

π

2k
+

1

8
cot(2r + 3)

π

2k
.

For r = 0 the sum is obviously positive, and so Dr,2 > 0 in this case. For
0 < r < k0− 1 we have 0 < (2r− 1)π/2k, (2r+ 1)π/2k, (2r+ 3)π/2k < π/2,
and so Dr,2 > 0 in this case as well. For r = k0 − 1 a calculation shows that
Dr,2 > 0.

We now prove the monotonicity of the sum Sk(r, b).

Theorem 2.2. Let k ≥ 4, b ≥ 1 be integers. Then

Sk(r + 1, b) ≥ Sk(r, b) for r = 0, 1, . . . , k0 − 1.

Proof. We use induction on b. The result is true for b = 1 and b = 2 by
Lemma 2.1(iii) & (iv). Assume that it is true for all exponents < b; we shall
prove it for b. For r = 0 the result holds trivially because Sk(0, b) = 0 and
Sk(1, b) is positive. For 1 ≤ r ≤ k0 − 2 the result holds by the induction
hypothesis and formula (2.2). It remains to examine the case r = k0 − 1. If
k is even we have Dr+1,b−2 = −Dr,b−2, and so

Dr,b = 1
4Dr−1,b−2 + 1

2Dr,b−2 − 1
4Dr,b−2 = 1

4Dr−1,b−2 + 1
4Dr,b−2 ≥ 0
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because of the induction hypothesis. For k odd we have Dr+1,b−2 = 0, and so

Dr,b = 1
4Dr−1,b−2 + 1

2Dr,b−2 ≥ 0

by the induction hypothesis.

Proof of Theorem 1.1. We have proved that max
r
Sk(r, b) = Sk(k0, b). If

k is even we have k0 = k/2 and so sin(πk0m/k) = sin(πm/2). It follows that

max
r
Sk(r, b) =

k0∑
m=1
m odd

cosb(πm/k)

sin(πm/k)
.(2.4)

For k odd we have k0 = (k − 1)/2 and so

sin2 πk0m

k
= sin2 π(k − 1)m

2k
= sin2

(
πm

2
− πm

2k

)
=

{
sin2(πm/2k), m even,

cos2(πm/2k), m odd,

and

sin2(πk0m/k)

sin(πm/k)
=


1

2
tan

πm

2k
, m even,

1

sin(πm/k)
− 1

2
tan

πm

2k
, m odd.

It follows that

max
r
Sk(r, b) =

k0∑
m=1
m odd

cosb(πm/k)

sin(πm/k)
+

1

2

k0∑
m=1
m even

tan
πm

2k
cosb

πm

k

− 1

2

k0∑
m=1
m odd

tan
πm

2k
cosb

πm

k

(in case k = 3 the second sum in the right member is zero since its range of
summation is empty). Denote the sums in the right member by Σ1, Σ2, Σ3

respectively.
Consider the function

f(x) = tan
x

2
cosb x, 0 ≤ x ≤ π/2.

There is ξ ∈ (0, π/2) such that f(x) is strictly increasing in [0, ξ], attains a
maximum at x = ξ, and is strictly decreasing in [ξ, π/2]. Obviously f(ξ) ≤ 1.
The following calculation yields the more accurate bound f(ξ) < 1/(2

√
b).

Indeed, ξ is the unique root of the derivative f ′(x) in (0, π/2) and

f ′(x) =
1

2

1

cos2(x/2)
cosb x− b tan

x

2
cosb−1 x sinx.
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It follows that b = cos ξ/sin2 ξ. Set tan(ξ/2) = ω. Then b = (1− ω4)/(4ω2).
This implies that

ω2 = −2b+
√

4b2 + 1 = −2b+ 2b

√
1 +

1

4b2
< −2b+ 2b

(
1 +

1

8b2

)
=

1

4b
,

and so f(ξ) = ω cosb ξ < ω = 1/(2
√
b). We now have

Σ2 <
k

2π

π/2�

0

f(x) dx+ f(ξ) and Σ3 >
k

2π

π/2�

0

f(x) dx− f(ξ),

and hence 1
2Σ2 − 1

2Σ3 < f(ξ) ≤ 1/(2
√
b). We have proved that

max
r
Sk(r, b) <

k0∑
m=1
m odd

cosb(πm/k)

sin(πm/k)
+

1

2
√
b

(2.5)

when k is odd. Results (2.4) and (2.5) together prove Theorem 1.1.

3. Proof of Corollary 1.2. The function f(x) = (cosb x)/sinx is
strictly decreasing in the interval 0 ≤ x ≤ π/2. Hence (1.3) yields the new
estimate

Sk(r, t) ≤
k

2π

π/2�

π/k

cosb x

sinx
dx+

cosb(π/k)

sin(π/k)
+ κ.(3.1)

Corollary 1.2 is then immediate in view of the following lemma.

Lemma 3.1. Let k ≥ 3 and b ≥ 2 be integers. Set t = [b/2] and

Ib =

π/2�

π/k

cosb x

sinx
dx.

Then

Ib < log k − 1

2
log t−

(
log 2 +

γ

2

)
+ t

π2

2k2
,(3.2)

Ib <
1

4

k2

b+ 1
cosb+1 π

k
.(3.3)

Proof. In case b = 2t we have

I2t = − log tan
π

2k
−

t∑
j=1

cos2j−1(π/k)

2j − 1
.(3.4)

It follows that

I2t < log k −
t∑

j=1

[1− π2/(2k2)]2j−1

2j − 1
≤ log k −

t∑
j=1

1− (2j − 1)π2/(2k2)

2j − 1
.
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Furthermore,

I2t < log k −
t∑

j=1

1

2j − 1
+ t

π2

2k2
< log k −

(
1

2
log t+ log 2 +

γ

2

)
+ t

π2

2k2
.

This proves inequality (3.2) in case b = 2t. Since

−log tan
x

2
=

1

2
log cot2

x

2
=

1

2
log

1 + cosx

1− cosx
,

the right member of (3.4) is equal to Rt(cos(π/k)), where Rt(x) is the re-
mainder of the Maclaurin approximation

1

2
log

1 + x

1− x
= x+

x3

3
+
x5

5
+ · · ·+ x2t−1

2t− 1
+Rt(x), 0 < x < 1.

Since Rt(x) < x2t+1/((2t+ 1)(1− x2)) we obtain

Rt(cos(π/k)) <
cos2t+1(π/k)

(2t+ 1) sin2(π/k)
<
k2

4

cos2t+1(π/k)

2t+ 1
.

This proves inequality (3.3) in case b = 2t. If b = 2t+ 1 we have

I2t+1 = −log sin
π

k
−

t∑
j=1

cos2j(π/k)

2j
.(3.5)

It follows that

I2t+1 < log
k

2
−

t∑
j=1

[1− π2/(2k2)]2j

2j
≤ log

k

2
−

t∑
j=1

1− 2jπ2/(2k2)

2j
.

Furthermore,

I2t+1 < log
k

2
− 1

2

t∑
j=1

1

j
+ t

π2

2k2
< log

k

2
− 1

2
(log t+ γ) + t

π2

2k2
.

This proves inequality (3.2) when b = 2t+ 1. Since

−log sinx = −1
2 log sin2 x = −1

2 log(1− cos2 x),

the right member of (3.5) is equal to 1
2Rt(cos2(π/k)), where Rt(x) is the

remainder of the Maclaurin approximation

−log(1− x) = x+
x2

2
+
x3

3
+ · · ·+ xt

t
+Rt(x), 0 < x < 1.

Since Rt(x) < xt+1/((t+ 1)(1− x)) we obtain

1

2
Rt(cos2(π/k)) <

1

2

cos2t+2(π/k)

(t+ 1) sin2(π/k)
<
k2

8

cos2t+2(π/k)

t+ 1
.

This proves inequality (3.3) for b = 2t+ 1.



258 A. D. SIMALARIDES

Since
cosb(π/k)

sin(π/k)
<
k

2
cosb

π

k
<
k

2
,

relations (3.1)–(3.3) together yield the proof of Corollary 1.2.

4. Proof of Theorem 1.3. Denote byG(r, χ) the Gauss sum associated
with the odd primitive character χ. To prove Theorem 1.3 we start out with
the identity

(4.1) −iG(1, χ)
r∑

n=1

χ(n) =
k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos

πm

k
+
i

2
G(r, χ),

proved and used in [16]. This identity is a variant of the standard Schur
representation [15] in the following trigonometric form:

−iG(1, χ)
r∑

n=1

χ(n) =
k−1∑
m=1

χ(m)
sin(π(r + 1)m/k) sin(πrm/k)

sin(πm)/k
, χ odd.

At this point we need a lemma which is an analogue of [17, Lemma 1].

Lemma 4.1. Let χ be a non-trivial odd primitive Dirichlet character of
modulus k and let t be a non-negative integer. Then

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos

πm

k
=

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos2t+1 πm

k
+∆t,

where ∆t is a complex number such that |∆t| ≤ t
√
k.

Proof. We argue by induction on t. The lemma is trivially true for t = 0.
Assume that it is true for t > 0. We have

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos2(t+1)+1 πm

k
=

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos2t+1 πm

k

−
k−1∑
m=1

χ(m) sin2 πrm

k
sin

πm

k
cos2t+1 πm

k
.

The induction hypothesis then implies

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos

πm

k
=

k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos2(t+1)+1 πm

k

+

[
∆t +

k−1∑
m=1

χ(m) sin2 πrm

k
sin

πm

k
cos2t+1 πm

k

]
.
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The sum
k−1∑
m=1

χ(m) sin2 πrm

k
sin

πm

k
cos2t+1 πm

k

is a linear combination of Gauss sums and it is ≤
√
k in absolute value.

The induction hypothesis implies then that the quantity in the brackets is
≤ (t+1)

√
k in absolute value. This implies that the lemma is true for t+1.

Proof of Theorem 1.3. Identity (4.1) becomes, in view of Lemma 4.1,

−iG(1, χ)
r∑

n=1

χ(n) =
k−1∑
m=1

χ(m)
sin2(πrm/k)

sin(πm/k)
cos2t+1 πm

k
+∆t +

i

2
G(r, χ),

and immediately yields the estimate

s ≤ 2√
k
Sk(r, 2t+ 1) + t+

1

2
.

Substituting (1.4) into the last result and choosing t =
[√
k
]

we obtain

s <
2√
k

{
k

2π

(
log k − 1

2
log d

)
+

(
1

2
− log 2

2π
− γ

4π

)
k +

πt

4k
+ κ

}
+ t+

1

2
,

or equivalently,

s <
3

4π

√
k log k +

(
2− log 2

π
− γ

2π

)√
k + r(k),

where

r(k) =

√
k

π

(
1

4
log k − 1

2
log t

)
+

πt

2k
√
k

+
2√
k
κ− {

√
k}+

1

2
.

It is easily seen that

r(k) < −
√
k

2π
log

(
1− 1√

k

)
+

π

2k
+

2√
2k
√
k − k

+
1

2
.(4.2)

A computation shows that r(k) < 1, for 3 ≤ k ≤ 9, while estimate (4.2)
implies that r(k) < 1 for k ≥ 10. This finishes the proof of Theorem 1.3.
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and the Pólya–Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), 357–384.
[9] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coeffi-

cients, Invent. Math. 43 (1977), 69–82.
[10] H. Niederreiter, On the cycle structure of linear recurring sequences, Math. Scand.

38 (1976), 53–77.
[11] J. C. Peral, On a sum of Vinogradov, Colloq. Math. 60/61 (1990), 225–233.
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