UPPER ESTIMATES ON SELF-PERIMETERS OF UNIT CIRCLES FOR GAUGES

BY
HORST MARTINI (Chemnitz) and ANATOLIY SHCHERBA (Cherkasy)

Abstract

Let M^{2} denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure B which, as a unit circle of M^{2}, is not necessarily centered at the origin. Hence the self-perimeter of B has two values depending on the orientation of measuring it. We prove that this self-perimeter of B is bounded from above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.

1. Basic notions and main results. Let A^{2} be an affine plane. In what follows, we identify the points of A^{2} with their position vectors. Denote by $R^{2}:=\left(A^{2},|\cdot|\right)$ the adjoint Euclidean plane with the Euclidean norm $|\cdot|$ which we use as an auxiliary metric. Let B be a compact convex figure on A^{2} containing the origin O as an interior point. By ∂B and $\operatorname{int}(B)$ we denote the boundary and the interior of B, respectively. Each pair $(B ; O)$ uniquely defines a convex distance function or gauge $g_{B}(x)$. Namely, if $x \in A^{2}, x \neq O$, and $\widehat{x} \in \partial B$ is on the ray $\overrightarrow{O x}$, then

$$
\begin{equation*}
g_{B}(x)=|x| /|\widehat{x}|>0 . \tag{1}
\end{equation*}
$$

The distance function $g_{B}(x)$ defines the distance between $x, y \in A^{2}$ by

$$
\begin{equation*}
\rho_{B}(x ; y)=g_{B}(y-x) \tag{2}
\end{equation*}
$$

Definition 1.1. An affine plane A^{2} with metric ρ_{B} given by (2) and (1) is called a Minkowski plane M^{2}. The point O is called the origin of M^{2}. The figure B is called the normalizing figure or unit circle (or gauge) of M^{2}.

We note that the notion of "Minkowski plane" is frequently used also for the case of normed planes, where B has to be centered at O (see [18], [13], and [12]). However, it is to be noted for historical correctness that H. Minkowski, giving the axiomatic foundations of the relevant theory, also considered the general (non-symmetric) case.

[^0]In the following, we write $a b, \overrightarrow{a b}$, and $(a b)$ for the segment, ray, and line determined by two distinct points $a, b \in A^{2}$ (with a as starting point in the second case), and we denote by $\angle a b c$ the (oriented) angle with apex b. For triangles we write $\triangle a b c$, for quadrangles abcd, and a polygonal arc is denoted by $\widehat{a b c}$, with vertices a, b, c. The symbols \sim and \approx are used for similarity and homothety, respectively, and \| stands for parallelity.

For a given segment $a b$ in M^{2}, the distance $\rho_{B}(a ; b)$ is called the length of this segment.

Definition 1.2. For a given segment $a b(a \neq b)$ the position vector of the point $\widehat{b-a} \in \partial B$ defined by

$$
\begin{equation*}
\widehat{b-a}=(b-a) / \rho_{B}(a ; b) \tag{3}
\end{equation*}
$$

is called the normalizing vector of the segment.
Let K be a compact, convex figure in M^{2}. Denote by $L_{B}^{+}(K)$ the length of ∂K measured counter-clockwise, and by $L_{B}^{-}(K)$ the length of ∂K measured clockwise. Clearly, affine transformations of the plane preserve the collinearity of vectors (see [6, pp. 75-76]). Thus, from (1) and (2) it follows that the length of $\rho_{B}(a ; b)$ and $L_{B}^{ \pm}(K)$ are affine invariants of the plane M^{2} (see also [13, p. 5]).

It is known that if M is a convex figure inside K, then (see [7, p. 110] and [18, p. 112]) then

$$
\begin{equation*}
L_{B}^{\mp}(M) \leq L_{B}^{\mp}(K) \tag{4}
\end{equation*}
$$

In what follows, we call $L^{-}(B)=L_{B}^{-}(B)$ the first self-perimeter of the unit circle B, and $L^{+}(B)=L_{B}^{+}(B)$ denotes its second self-perimeter. Gołąb [2] proved that if B is symmetric with respect to the origin O (i.e., M^{2} is a normed plane), then $L^{-}(B)=L^{+}(B)=: L(B)$, with the sharp estimates

$$
\begin{equation*}
6 \leq L(B) \leq 8 \tag{5}
\end{equation*}
$$

If B is not centred at O, then still $L^{\mp}(B) \geq 6$. The equality $L^{-}(B)=6$ or $L^{+}(B)=6$ holds if and only if B is an affinely regular hexagon (see [3], [16], [17], and [11]). Simple examples show that there is no absolute constant that bounds the self-perimeters $L^{\mp}(B)$ for non-symmetric normalizing figures from above. Grünbaum [4] proved that it is possible to choose the origin O inside B in such a way that the self-perimeters satisfy

$$
\begin{equation*}
L^{\mp}(B) \leq 9 \tag{6}
\end{equation*}
$$

The estimate (6) cannot be improved if B is a triangle \triangle, i.e., in fact $\min _{O \in \operatorname{int}(\Delta)} L^{\mp}(\triangle)=9$. Further results in this direction were derived in [3], 16], 17], [9], and [10].

Definition 1.3. The value

$$
\begin{equation*}
D(B)=\max _{x, y \in B} \rho(x ; y) \tag{7}
\end{equation*}
$$

is called the self-diameter of the normalizing figure B of M^{2}.
In the present paper we give upper estimates on the self-perimeters $L^{\mp}(B)$ in terms of the self-diameter $D=D(B)$ of the unit circle B of a Minkowski plane M^{2}. Our main results are summarized in the following theorems.

Theorem 1.1. If B is a unit circle of self-diameter $D=D(B)$, then

$$
\begin{equation*}
L^{\mp}(B) \leq 4 D(B) . \tag{8}
\end{equation*}
$$

We note that Theorem 1.1 is an almost immediate extension of the result of Gołąb [2], and it is sharp for centrally symmetric figures. On the other hand, our next theorem generalizes all three results: of Gołąb [2], of Grünbaum [4], and our Theorem 1.1.

Theorem 1.2. If P_{4} is a normalizing quadrangle of diameter $D=D\left(P_{4}\right)$, then

$$
\begin{equation*}
L^{\mp}\left(P_{4}\right) \leq 2\left(D\left(P_{4}\right)\right)^{2} /\left(D\left(P_{4}\right)-1\right) . \tag{9}
\end{equation*}
$$

This estimate is sharp.
It should be noticed that (9) implies (8), (6), and the right-hand inequality of (5) for all polygons with at most four vertices.

The proof of Theorem 1.2, via special constructions, can be reduced to the case when the quadrangle is a trapezium. These constructions are interesting in their own right, and we collect the related results in the following theorem.

Theorem 1.3. For a normalizing quadrangle P_{4} there is a trapezium T such that
(i) $O \in \operatorname{int}(T)$;
(ii) the self-diameters of P_{4} and T satisfy

$$
\begin{equation*}
D(T) \leq D\left(P_{4}\right) \tag{10}
\end{equation*}
$$

(iii) the self-perimeters of P_{4} and T satisfy

$$
\begin{equation*}
L^{-}(T) \geq L^{-}\left(P_{4}\right) \tag{11}
\end{equation*}
$$

2. Proofs and further results. To prove these theorems, we need some additional properties of self-diameters of normalizing figures. Without loss of generality, we consider the normalizing figure B as lying in the adjoint Euclidean plane R^{2}. We intend to prove that the diameter $D(B)$ uniquely defines the factor of symmetry $k=k(B)$ of the figure B with respect to the origin $O \in \operatorname{int}(B)$. The factor of symmetry (cf. Definition 2.2 below) was introduced by H. Minkowski and B. Neumann (see [14, [15], and [5, §6]).

Definition 2.1. A chord $n m$ of the unit circle B is called central if it passes through the origin $O \in \operatorname{int}(B)$.

Set

$$
g(n m)=\min \{|O m| /|O n| ;|O n| /|O m|\} \leq 1,
$$

where $n, m \in \partial B$ and $O \in n m$. Geometrically, $g(n m)$ is the ratio in which O divides the central chord $n m$ of the figure B.

Definition 2.2. We define the factor of symmetry of the unit circle B by

$$
\begin{equation*}
k=\min _{n m} g(n m) . \tag{12}
\end{equation*}
$$

The support function $h_{k}(u),|u|=1$, of a compact convex figure $K \subset R^{2}$ is defined by

$$
h_{K}(u)=\max \{\langle x, u\rangle: x \in K\},
$$

where $\langle\cdot, \cdot\rangle$ means the scalar product of the Euclidean plane R^{2} (see [1] and (7).
B. Grünbaum [5, §6] remarks that the factor of symmetry $k(B)$ can, equivalently to 12), be defined as follows:

$$
\begin{equation*}
\bar{k}=\min _{|u|=1}\left\{h_{B}(u) / h_{B}(-u) ; h_{B}(-u) / h_{B}(u)\right\} . \tag{13}
\end{equation*}
$$

Proposition 2.1. The diameter $D=D(B)$ and the factor of symmetry $k=k(B)$ of the unit circle B satisfy

$$
\begin{equation*}
D(B)=1+1 / k . \tag{14}
\end{equation*}
$$

Proof. Let $n m$ be a central chord of B that provides the minimum in (12), and set $k=|O m| /|O n|$. By (7) we have

$$
D=\max _{x, y \in B} \rho(x ; y) \geq \rho_{B}(n ; m)=(|n O|+|O m|) /|O m|=1+1 / k .
$$

To prove (14) it is sufficient to show that $D \leq 1+1 / k$. Denote by $p q$ the chord of B that provides the maximum in (7), i.e., $D=\rho_{B}(p ; q)=|p q| /|O n|$, where $n=\widehat{q-p}$ (see (3)). Set $\{m\}=(p O) \cap \partial B$. Since B is convex, there exists $\{l\}=O n \cap q m$. The homothety $\triangle m O l \approx \triangle m p q$ implies

$$
\begin{equation*}
D=|p q| /|O n| \leq|p q| /|O l|=|p m| /|O m|=\rho_{B}(p ; m) \leq D . \tag{15}
\end{equation*}
$$

For the central chord $p m$ it follows from (15) and (12) that

$$
D=(|p O|+|O m|) /|O m|=1+\overline{1 / k}
$$

Corollary 2.1. If $n m$ denotes a central chord of the unit circle B, then $\max \rho_{B}(n ; m)=D(B)$.

Corollary 2.2. If pq is a chord of the unit circle B such that $\rho_{B}(p ; q)=D(B)$, then the central chord pm has length $\rho_{B}(p ; m)=D(B)$, and $q m \subset \partial B$.

Indeed, 14) and (15) imply

$$
1+1 / k=D(B)=\rho_{B}(p ; q)=|p q| /|O n|=|p m| /|O m|=|p q| /|O l| .
$$

In this case $l=n=\widehat{q-p} \in q m$, and the convexity of B implies $q m \subset \partial B$.
Proposition 2.2. Let nm be a central chord of the unit circle B that provides the equality $\rho_{B}(n ; m)=D(B)$. If $H(m)$ is a supporting line of B at $m \in \partial B$, then the line $H(n)$ that passes through $n \in \partial B$ in such a way that $H(n) \| H(m)$ is also a supporting line for B.

Proof. By (14) we have $|O m| /|O n|=k$, where $k=k(B)$ is the factor of symmetry. Assume that $H(n) \| H(m)$ is not a supporting line for B. Then there is a point $a \in \partial B$ such that $a \neq n$ and $a O \cap l(n)=b \neq a$. Write $\{c\}=H(m) \cap(a O)$ and $\{e\}=O c \cap \partial B$. The homothety $\triangle O n b \approx \triangle O m c$ and the inequality $|O b|<|O a|$ imply $k=|O m| /|O n|=|O c| /|O b|>|O e| /|O a|$. Since $a e$ is a central chord, we get a contradiction to 12 .

Corollary 2.3. Suppose that the polygon B with vertices a_{1}, \ldots, a_{l} (in this order) is taken as a unit circle and $a_{i} b_{i}$ are central chords of it $(1 \leq i \leq l)$. Then the factor of symmetry $k(B)$ is equal to

$$
\begin{equation*}
k=\min \left\{\left|O b_{i}\right| /\left|O a_{i}\right|: 1 \leq i \leq l\right\} \tag{16}
\end{equation*}
$$

where the lengths of segments are given with respect to the auxiliary Euclidean metric.

Proof. Denote by $n m$ a central chord of length $\rho_{B}(n ; m)=D$, hence yielding $|O m| /|O n|=k$. The existence of such a chord is guaranteed by Corollary 2.1. Consider first the case when m is one of the vertices of B, say $m=a_{2}$. Then the lines $\left(a_{1} a_{2}\right)$ and $\left(a_{2} a_{3}\right)$ are supporting ones for B at m. By Proposition 2.2, there are two different supporting lines $H_{1,2}(n)$ at $n \in \partial B$ such that $H_{1}(n) \|\left(a_{1} a_{2}\right)$ and $H_{2}(n) \|\left(a_{2} a_{3}\right)$. Therefore, n is also a vertex of B and 16 is fulfilled.

Now it is sufficient to consider the case when m and n do not coincide with a vertex of B. Suppose, for definiteness, that n is an interior point of $a_{1} a_{2}$. By Proposition 2.2, the supporting line $H(m)$ is parallel to $a_{1} a_{2}$. The line $H(m)$ contains one of the sides of B. Write $\left\{c_{i}\right\}=H(m) \cap\left(a_{i} O\right)$ and $\left\{b_{i}\right\}=\partial B \cap\left(a_{i} O\right)(i=1,2)$. The homothety $\triangle O n a_{i} \approx \triangle O m c_{i}$ implies

$$
k=|O m| /|O n|=\left|O c_{i}\right| /\left|O a_{i}\right| \geq\left|O b_{i}\right| /\left|O a_{i}\right|
$$

Since $a_{i} b_{i}$ are central chords of $B,(12)$ implies $\left|O b_{i}\right| /\left|O a_{i}\right|=\left|O c_{i}\right| /\left|O a_{i}\right|=k$ and $c_{i}=b_{i}$. Moreover, the segment $b_{1} b_{2}$ is contained in ∂B.

Proposition 2.3. Suppose that $O \in \operatorname{int}\left(B_{1} \cap B_{2}\right)$, where B_{1} and B_{2} are compact, convex figures on R^{2} with factors of symmetry $k\left(B_{i}\right)=k_{i}(i=1,2)$. Then the factor of symmetry of the compact convex figure $B=B_{1} \cap B_{2}$
satisfies

$$
\begin{equation*}
k(B) \geq k_{0}=\min \left\{k_{1} ; k_{2}\right\} \tag{17}
\end{equation*}
$$

Proof. Denote by $h_{i}(u)(|u|=1)$ the support functions for $B_{i}(i=1,2)$. Then the support function for B is $h_{B}(u)=\min \left\{h_{1}(u) ; h_{2}(u)\right\}(|u|=1)$. If

$$
\left\{\begin{array} { l }
{ h _ { B } (u) = h _ { 1 } (u) , } \\
{ h _ { B } (- u) = h _ { 1 } (- u) , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
h_{B}(u)=h_{2}(u) \\
h_{B}(-u)=h_{2}(-u)
\end{array}\right.\right.
$$

for some fixed unit vector u, then by 13 we have

$$
k_{0} \leq h_{B}(u) / h_{B}(-u) \leq 1 / k_{0} .
$$

Suppose, for definiteness, that $h_{B}(u)=h_{1}(u)$ and $h_{B}(-u)=h_{2}(-u)$. Then, again by (13), we have

$$
\begin{aligned}
k_{0} & \leq h_{1}(u) / h_{1}(-u) \leq h_{1}(u) / h_{2}(-u)=h_{B}(u) / h_{B}(-u) \\
& \leq h_{2}(u) / h_{2}(-u) \leq 1 / k_{0}
\end{aligned}
$$

and 17 follows.
Corollary 2.4. Suppose that $O \in M^{2}$ is an interior point of the segment $n m$. Denote by $H(n ; m)$ the strip between two parallel lines $H(n) \| H(m)$ through n and m, respectively. If $k(B)=k$ and

$$
\begin{equation*}
k_{1} \leq|O m| /|O n| \leq 1 / k_{1} \tag{18}
\end{equation*}
$$

with respect to an auxiliary Euclidean metric, then the factor of symmetry of the convex figure $\widetilde{B}=B \cap H(n ; m)$ satisfies

$$
\begin{equation*}
k(\widetilde{B}) \geq \min \left\{k ; k_{1}\right\} \tag{19}
\end{equation*}
$$

Proposition 2.4. If the unit circle of M^{2} is the triangle $B=\triangle a_{1} a_{2} a_{3}$, then the factor of symmetry $k(B)=k$ satisfies $0<k \leq 1 / 2$, and the oriented self-perimeters satisfy the following sharp estimates:

$$
\begin{equation*}
5+4 k+1 / k \leq L^{\mp}(B) \leq 3+2(1 / k+k /(1-k)) \tag{20}
\end{equation*}
$$

Proof. The factor of symmetry k and the self-perimeter of $B \subset M^{2}$ are invariant with respect to the choice of an auxiliary Cartesian metric in the adjoint plane R^{2}. Therefore, we may assume that $\triangle a_{1} a_{2} a_{3}$ is a right triangle. Denote by N the barycenter of $\triangle a_{1} a_{2} a_{3}$. Then we have $\triangle a_{1} a_{2} a_{3}=$ $\triangle a_{1} a_{2} N \cup \triangle a_{2} a_{3} N \cup \triangle a_{3} a_{1} N$. Write
$\left\{b_{1}\right\}=a_{2} a_{3} \cap\left(a_{1} O\right), \quad\left\{b_{2}\right\}=a_{3} a_{1} \cap\left(a_{2} O\right), \quad\left\{b_{3}\right\}=a_{1} a_{2} \cap\left(a_{3} O\right)$.
Let us prove that if $O \in \triangle a_{3} N a_{2}$, then $k=\left|O b_{1}\right| /\left|O a_{1}\right|$. By Corollary 2.3 , it is sufficient to show that

$$
\left|O b_{1}\right| /\left|O a_{1}\right| \leq\left|O b_{2,3}\right| /\left|O a_{2,3}\right|
$$

We present the proof for the first of them. Write $\{M\}=a_{1} b_{1} \cap\left(a_{3} N\right)$ and $\{c\}=a_{1} a_{3} \cap\left(a_{2} M\right)$. Since $\triangle a_{1} a_{2} a_{3}$ is a right triangle, we have $\triangle a_{2} M a_{1} \approx$
$\triangle c M b_{1}$ and $\left|M b_{1}\right| /\left|M a_{1}\right|=|c M| /\left|M a_{2}\right|$. Take $g \in a_{3} b_{1}$ such that $c g \| a_{1} b_{1}$ and $\{e\}=c g \cap a_{2} b_{2}$. The homothety $\triangle a_{2} O M \approx \triangle a_{2} e c$ implies

$$
\left|O b_{1}\right| /\left|O a_{1}\right| \leq\left|M b_{1}\right| /\left|M a_{1}\right|=|c M| /\left|M a_{2}\right|=|e O| /\left|a_{2} O\right| \leq\left|b_{2} O\right| /\left|a_{2} O\right| .
$$

Let $\{P\}=a_{2} a_{3} \cap\left(a_{1} N\right), Q \in N P$, and $O Q \| a_{2} a_{3}$. Then $\triangle a_{1} b_{1} P \approx \triangle a_{1} O Q$, and therefore

$$
k=\left|O b_{1}\right| /\left|O a_{1}\right|=|P Q| /\left|a_{1} Q\right| \leq|P N| /\left|a_{1} N\right|=1 / 2
$$

Observe that, by duality, it is sufficient to prove 20 for $L^{-}(B)$ only. Mark the vertices of $\triangle a_{1} a_{2} a_{3}$ clockwise. Write $\{S\}=N a_{3} \cap(O Q)$ and $\{T\}=$ $N a_{2} \cap(O Q)$. For every $V \in S T$, set $\{W\}=a_{2} a_{3} \cap\left(a_{1} V\right)$. Evidently, $|V W| /\left|V a_{1}\right|=\left|O b_{1}\right| /\left|O a_{1}\right|=k$. Denote by $L_{V}^{-}(B)$ the first self-perimeter of $\triangle a_{1} a_{2} a_{3}$ in case when the origin $O \in M^{2}$ is located at V. The function $f(V)=L_{V}^{-}(B)$ is strictly convex downwards for $V \in S T$. This is a special case of a more general statement from [8]: the self-perimeter $L_{V}^{ \pm}(B)$ is a strictly convex function of its center V, for any normalizing figure B of the plane M^{2}.

Since $f(V)$ is convex and symmetric with respect to $Q \in S T$, we have

$$
\min _{V \in S T} L_{V}^{-}(B)=L_{Q}^{-}(B), \quad \max _{V \in S T} L_{V}^{-}(B)=L_{S}^{-}(B)=L_{T}^{-}(B)
$$

We calculate $L_{S}^{-}(B)$ in the adjoint plane R^{2} with the Cartesian coordinate system such that the vertices of the relevant triangle get the coordinates

$$
a_{3}(0 ; 0), a_{1}(0 ; 1+k), a_{2}(1+k ; 0) .
$$

Then the points S, T, and Q get the coordinates $S(k ; k), T(1-k ; k)$, and $Q(1 / 2 ; k)$, respectively. It is easy to see that

$$
\rho_{S}\left(a_{3} ; a_{1}\right)=(1+k) /(1-k), \quad \rho_{S}\left(a_{1} ; a_{2}\right)=\rho_{S}\left(a_{2} ; a_{3}\right)=(1+k) / k
$$

Therefore, $L^{-}(B) \leq L_{S}^{-}(B)=3+2(1 / k+k /(1-k))$. For $L_{Q}^{-}(B)$ we have $\rho_{Q}\left(a_{1} ; a_{2}\right)=(1+k) / k$ and $\rho_{Q}\left(a_{2} ; a_{3}\right)=\rho_{Q}\left(a_{3} ; a_{1}\right)=2(1+k)$. Hence $L^{-}(B)$ $\geq L_{Q}^{-}(B)=5+1 / k+4 k$. Evidently, the estimates in 20) are sharp, i.e., they can be achieved.

Corollary 2.5. If the normalizing quadrangle P_{4} degenerates to a triangle, then the estimate (9) is still valid.

Evidently, for $0<k \leq 1 / 2$ we have $2 k /(1-k) \leq 2 k+1$. This inequality together with 20 and (14) implies $L^{\mp}(\triangle) \leq 4+2(1 / k+k)=2 D^{2} /(D-1)$.

The following example shows the sharpness of (9). The unit circle in this example is a quadrangle with given factor of symmetry.

Example 2.1. Endow a plane R^{2} with a Cartesian coordinate system, origin $O(0 ; 0)$, and a trapezium $a_{1} a_{2} a_{3} a_{4}$ with vertices

$$
a_{1}(-k ;-1), a_{2}(-k ; k), a_{3}(t ; k), a_{4}(1 ;-1), \quad k \in(0 ; 1], t \in\left[k^{2} ; 1\right]
$$

as a normalizing figure B.

To find the factor of symmetry $k\left(a_{1} a_{2} a_{3} a_{4}\right)$, mark the points $b_{1}\left(k^{2} ; k\right) \in$ $a_{2} a_{3}$ and $b_{3}\left(-k ;-k^{2} / t\right) \in a_{1} a_{2}$. Since $\left|O a_{2}\right| /\left|O a_{4}\right|=k,\left|O b_{1}\right| /\left|O a_{1}\right|=k$, and $\left|O b_{3}\right| /\left|O a_{3}\right|=k / t(\in[k ; 1 / k])$, by (16) we have $k\left(a_{1} a_{2} a_{3} a_{4}\right)=k$. To find the self-perimeter $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$, evaluate the lengths of the sides of the trapezium using (1) and (3). Evidently, we have $\left(\widehat{a_{1}-a_{4}}\right)(-k ; 0)$ and $\left(\widehat{a_{2}-a_{1}}\right)(0 ; k)$, and hence $\rho\left(a_{4} ; a_{1}\right)=\rho\left(a_{1} ; a_{2}\right)=(1+k) / k$. Mark the points

$$
c_{1}(t ; 0), c_{2}(1 ; 0), c_{3}(0 ;-1), \widehat{a_{3}-a_{2}}=c_{4} \in a_{3} a_{4}, \widehat{a_{4}-a_{3}}=c_{5} \in a_{4} a_{1}
$$

Via the similarities $\triangle O c_{3} c_{5} \sim \triangle a_{3} c_{1} c_{4} \sim \triangle a_{4} c_{2} c_{4}$, we find the points $c_{4}((k+t) /(k+1) ; 0)$ and $c_{5}((1-t) /(k+1) ;-1)$. Then $\rho\left(a_{2} ; a_{3}\right)=\rho\left(a_{3} ; a_{4}\right)=$ $1+k$ and $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=4+2(k+1 / k)$. In accordance with 14 we have $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=2 D^{2} /(D-1)$.

Denote by $d\left(K_{1} ; K_{2}\right)$ the Hausdorff distance between compact, convex sets K_{1} and K_{2} in R^{2} (see, for instance, [5, §2]),

$$
d\left(K_{1} ; K_{2}\right)=\min \left\{\lambda \geq 0: K_{1} \subset K_{2}+\lambda E, K_{2} \subset K_{1}+\lambda E\right\}
$$

where E is the unit circle of R^{2}. A sequence of figures B_{1}, B_{2}, \ldots converges to the figure B if $d\left(B_{\nu} ; B\right) \rightarrow 0$ as $\nu \rightarrow \infty$.

Proof of Theorem 1.1. For a compact, convex figure B with interior points, we apply a classical theorem on the approximation of B by polygons (see [1, §27]). There is a sequence B_{1}, B_{2}, \ldots of convex polygons which contain B and converge to it. By continuity for self-perimeters in M^{2}, we have

$$
\lim _{v \rightarrow \infty} L^{\mp}\left(B_{v}\right)=L^{\mp}(B), \quad \lim _{v \rightarrow \infty} D\left(B_{v}\right)=D(B)
$$

Thus (8) is enough to prove our statement for a polygon B. Consider the centrally symmetric figure $\Delta B=\frac{1}{2} B+\frac{1}{2}(-B)$ (called the central symmetral of B), where $(-B)=(-1) B$. We can assume that B is a polygon with non-parallel sides. Then any side of ΔB is parallel either to a side of B or to a side of $-B$, and its length is half the length of the corresponding side of B or $-B$. Thus, for a normalizing figure C centered at O we have

$$
\begin{equation*}
L_{C}^{\mp}(\Delta B)=L_{C}^{\mp}(B) \tag{21}
\end{equation*}
$$

According to Definition 2.2, for the symmetry coefficient k the inclusion $-B \subseteq \frac{1}{k} B$ holds. From this and from (14) we obtain

$$
\Delta B=\frac{1}{2}(B-B) \subseteq \frac{1}{2}\left(1+\frac{1}{k}\right) B=\frac{1}{2} D B
$$

i.e., $D B$ contains $B+(-B)$ (the difference body of B). Therefore, the distance functions g_{B} and $g_{\Delta B}$ satisfy

$$
g_{B}(x)=\frac{D}{2} g_{D B / 2}(x) \leq \frac{D}{2} g_{\Delta B}(x)
$$

(note that $g_{\Delta B}$ is an even function). Choosing in 21) the figure $C=\Delta B$, we obtain

$$
L^{\mp}(B)=L_{B}^{\mp}(B) \leq \frac{D}{2} L_{\Delta B}^{\mp}(\Delta B)
$$

Applying (5) to the centrally symmetric figure ΔB, we come to (8), and Theorem 1.1 is proved.

To prove Theorem 1.3 we need some auxiliary statements.
Proposition 2.5 (see [13] for details). The equality in the triangle inequality $\rho_{B}(a ; c) \leq \rho_{B}(a ; b)+\rho_{B}(b ; c)$ for a Minkowski plane is only possible if the segment $x y$, where $x=\widehat{b-a}$ and $y=\widehat{c-b}$, lies on the boundary of the unit circle B.

If the normalizing figure in M^{2} is a polygon P_{n}, then we mark its vertices clockwise: $P_{n}=a_{1} \ldots a_{n}$. For completeness, we formulate here the analogues of Proposition 2 and Definitions 2 and 3 from [9] (see also [10, §3]).

Proposition 2.6. Suppose the normalizing figure $P_{4}=a_{1} a_{2} a_{3} a_{4}$ is not a trapezium. Then one can always choose an auxiliary metric and the order of the vertices in M^{2} in such a way that the coordinates of the vertices become

$$
a_{1}(-(1+y) x / y ; 1), a_{2}(1 ; 1), a_{3}(1 ; 0), a_{4}(0 ;-y)
$$

where x and y are some positive numbers.
Definition 2.3. A normalizing quadrangle $a_{1} a_{2} a_{3} a_{4} \subset M^{2}$ is called canonically given if it meets the requirements of Proposition 2.6.

REMARK 2.1. In the notation of the canonically given quadrangle the first vertex is uniquely determined, i.e., if $a_{1} a_{2} a_{3} a_{4}$ is canonically given, then $a_{2} a_{3} a_{4} a_{1}$ is not.

DEFINITION 2.4. If $a_{1} a_{2} a_{3} a_{4}$ is a canonically given quadrangle, then the point of intersection of the two lines through a_{4} and a_{3} which are parallel to $a_{3} a_{2}$ and $a_{2} a_{1}$, respectively, is called the center of the quadrangle.

REmARK 2.2. In the auxiliary metric used for proving Proposition 2.6, the center g of the canonically given quadrangle $P_{4}=a_{1} a_{2} a_{3} a_{4}$ coincides with the origin of the Cartesian coordinate system, i.e., $g=(0,0)$. We note that we will use also other auxiliary metrics on \mathbb{R}^{2}, with $g \neq(0,0)$; see, for example, the proof of Lemma 2.4.

Let $\{m\}=a_{1} a_{3} \cap a_{2} a_{4}$. The diagonals $a_{1} a_{3}$ and $a_{2} a_{4}$ split the quadrangle $a_{1} a_{2} a_{3} a_{4}$ into four triangles, $\triangle a_{1} m a_{4}, \triangle a_{2} m a_{1}, \triangle a_{3} m a_{2}, \triangle a_{4} m a_{3}$.

Proposition 2.7. Let $a_{1} a_{2} a_{3} a_{4}$ be a canonically given normalizing quadrangle. Let $a_{i} b_{i}$ be its central chords $(0 \leq i \leq 4)$. With respect to our auxiliary metric, the factor of symmetry $k=k\left(a_{1} a_{2} a_{3} a_{4}\right)$ can be evaluated as follows:
(a) if the origin O is in $\triangle a_{1} a_{2} a_{4}$, then

$$
\begin{equation*}
k=\min \left\{\left|O b_{i}\right| /\left|O a_{i}\right|: i \neq 3\right\} ; \tag{22}
\end{equation*}
$$

(b) if $O \in \triangle a_{2} a_{3} a_{4}$, then

$$
\begin{equation*}
k=\left|O b_{1}\right| /\left|O a_{1}\right| . \tag{23}
\end{equation*}
$$

Proof. If $O \in \triangle a_{1} m a_{4}$, then $b_{1} \in a_{3} a_{4}, b_{2,3} \in a_{4} a_{1}$, and $b_{4} \in a_{1} a_{2}$. Find points $e_{1} \in\left(a_{1} O\right)$ with $a_{4} e_{1} \| a_{1} a_{2}$ and $e_{2} \in\left(a_{3} O\right)$ with $b_{2} e_{2} \| a_{3} a_{2}$. Since $a_{1} a_{2} a_{3} a_{4}$ is canonically given, we have $b_{1} \in O e_{1}$ and $e_{2} \in O b_{3}$. The homothety $\triangle O a_{2} a_{3} \approx \triangle O b_{2} e_{2}$ implies

$$
\begin{equation*}
\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O e_{2}\right| /\left|O a_{3}\right| \leq\left|O b_{3}\right| /\left|O a_{3}\right| . \tag{24}
\end{equation*}
$$

If $O \in \triangle a_{2} m a_{1}$, then $b_{1} \in a_{2} a_{3}, b_{2} \in a_{4} a_{1}$, and $b_{3,4} \in a_{1} a_{2}$. Find e_{3} in $\left(O a_{3}\right)$ with $a_{4} e_{3} \| a_{1} a_{2}$. Since $a_{1} a_{2} a_{3} a_{4}$ is canonically given and $\triangle O b_{4} b_{3} \approx$ $\triangle O a_{4} e_{3}$, we have $\left|O b_{4}\right| /\left|O a_{4}\right|=\left|O b_{3}\right| /\left|O e_{3}\right| \leq\left|O b_{3}\right| /\left|O a_{3}\right|$. From this, together with (24) and (16), we obtain (22).

If $O \in \triangle a_{3} m a_{2}$, then $b_{1,4} \in a_{2} a_{3}, b_{2} \in a_{3} a_{4}$, and $b_{3} \in a_{1} a_{2}$. Find points e_{i} that satisfy $e_{4}=\left(a_{1} a_{2}\right) \cap\left(a_{4} b_{4}\right) ; e_{1} \in\left(a_{1} b_{1}\right), b_{2} e_{1} \| a_{1} a_{2} ; e_{3} \in\left(a_{4} b_{4}\right)$, $a_{3} e_{3}\left\|a_{1} a_{2} ; e_{2} \in\left(a_{1} b_{1}\right), a_{4} e_{2}\right\| a_{3} a_{2}$. The canonicity of $a_{1} a_{2} a_{3} a_{4}$ implies $b_{4} \in O e_{4}, b_{1} \in O e_{1}, e_{3} \in O a_{4}$, and $e_{2} \in O a_{1}$. The homotheties $\triangle O b_{1} b_{4} \approx$ $\triangle O e_{2} a_{4}, \triangle O e_{4} b_{3} \approx \triangle O e_{3} a_{3}$, and $\triangle O e_{1} b_{2} \approx \triangle O a_{1} a_{2}$ yield

$$
\begin{aligned}
\left|O b_{1}\right| /\left|O a_{1}\right| & \leq\left|O b_{1}\right| /\left|O e_{2}\right|=\left|O b_{4}\right| /\left|O a_{4}\right| \leq\left|O e_{4}\right| /\left|O a_{4}\right| \\
& \leq\left|O e_{4}\right| /\left|O e_{3}\right|=\left|O b_{3}\right| /\left|O a_{3}\right|
\end{aligned}
$$

and $\left|O b_{1}\right| /\left|O a_{1}\right| \leq\left|O e_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|$. Combining this with (16), we get (23).

If $O \in \triangle a_{4} m a_{3}$, then $b_{1,2} \in a_{3} a_{4}, b_{3} \in a_{4} a_{1}$, and $b_{4} \in a_{2} a_{3}$. Find points e_{i} that satisfy $e_{1} \in\left(a_{2} b_{2}\right), b_{1} e_{1}\left\|a_{1} a_{2} ; e_{2} \in\left(a_{4} b_{4}\right), b_{2} e_{2}\right\| a_{1} a_{2}$; $e_{3} \in\left(a_{3} b_{3}\right), b_{2} e_{3}\left\|a_{2} a_{3} ; e_{4} \in\left(a_{4} b_{4}\right), b_{1} e_{4}\right\| a_{4} a_{1}$. The canonicity of $a_{1} a_{2} a_{3} a_{4}$ implies $e_{1} \in O b_{2}, e_{2} \in O a_{4}, e_{3} \in O b_{3}$, and $e_{4} \in O b_{4}$. The homotheties $\triangle O b_{1} e_{1} \approx \triangle O a_{1} a_{2}, \triangle O b_{2} e_{3} \approx \triangle O a_{2} a_{3}$, and $\triangle O b_{1} e_{4} \approx \triangle O a_{1} a_{4}$ yield

$$
\begin{aligned}
& \left|O b_{1}\right| /\left|O a_{1}\right|=\left|O e_{1}\right| /\left|O a_{2}\right| \leq\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O e_{3}\right| /\left|O a_{3}\right| \leq\left|O b_{3}\right| /\left|O a_{3}\right| ; \\
& \left|O b_{1}\right| /\left|O a_{1}\right|=\left|O e_{4}\right| /\left|O a_{4}\right| \leq\left|O b_{4}\right| /\left|O a_{4}\right| .
\end{aligned}
$$

In combination with (16), we get (23).
Our treatments essentially depend on the possible location of the origin O inside a canonically given quadrangle $a_{1} a_{2} a_{3} a_{4}$. Denote by g the centre of the quadrangle $a_{1} a_{2} a_{3} a_{4}$ and draw the lines $\left(a_{3} g\right)$ and $\left(a_{4} g\right)$. Set $\{u\}=$ $a_{4} a_{1} \cap\left(a_{3} g\right)$ and $\{w\}=a_{1} a_{2} \cap\left(a_{4} g\right)$.

Definition 2.5. We use the following notation for normalizing vectors of the sides of a canonically given quadrangle $P_{4}=a_{1} a_{2} a_{3} a_{4}$:

$$
c_{1}=\widehat{a_{1}-a_{4}}, \quad c_{2}=\widehat{a_{2}-a_{1}}, \quad c_{3}=\widehat{a_{3}-a_{2}}, \quad c_{4}=\widehat{a_{4}-a_{3}} .
$$

Observe that Definition 2.5 implies $c_{1} \in a_{1} a_{2}$ and $c_{4} \in a_{4} a_{1}$.
Set $\{v\}=a_{1} a_{3} \cap a_{4} w$ and $\{n\}=a_{2} a_{4} \cap a_{3} u$. Remember that we have already defined the points $\{g\}=a_{3} u \cap a_{4} w$ and $\{m\}=a_{1} a_{3} \cap a_{2} a_{4}$. The chords $a_{3} u, a_{4} w$ and the diagonals $a_{1} a_{3}, a_{2} a_{4}$ split the canonically given quadrangle $a_{1} a_{2} a_{3} a_{4}$ into nine parts: six triangles $\triangle a_{1} w v, \triangle a_{3} m a_{2}, \triangle u g a_{4}$, $\triangle a_{4} g n, \triangle a_{4} n a_{3}, \triangle n m a_{3}$ and three quadrangles $a_{1} v g u$, $w a_{2} m v, v m n g$. In view of Proposition 2.7 and Definition 2.5, the location of the origin O inside one of these parts uniquely defines the locations of c_{i} on the sides of $a_{1} a_{2} a_{3} a_{4}$ and implies either (22) or (23) for the factor of symmetry $k\left(a_{1} a_{2} a_{3} a_{4}\right)$.

Definition 2.6. We say that a normalizing quadrangle P_{4} is majorized by a trapezium T if the trapezium meets all the requirements of Theorem 1.3 , i.e., $O \in \operatorname{int}(T)$ and the inequalities 10 and (11) are satisfied.

Remark 2.3. In accordance with (14), it is possible to replace the inequality (10) in Definition 2.6 by the condition $k\left(P_{4}\right) \leq k(T)$ on the respective factors of symmetry.

Remark 2.4. Let l_{0} be a line through the origin $O \in \operatorname{int}(B)$. Let B^{\prime} be a figure axially symmetric with respect to l_{0}. Then $L^{\mp}(B)=L^{ \pm}\left(B^{\prime}\right)$. In what follows, we refer to this fact as duality. Due to duality, it is sufficient to prove Theorem 1.3 for the first self-perimeter $L^{-}\left(P_{4}\right)$ of the quadrangle P_{4}.

Remark 2.5. In what follows, we mark the lengths and self-perimeters with respect to an old and new normalizing figure B with subscript "old" or "new", respectively. Namely, if P is an old normalizing polygon and P^{\prime} is the new one, then we write $L^{-}(P)=L_{\text {old }}^{-}(P)$ in case $B=P$, and $L^{-}\left(P^{\prime}\right)=$ $L_{\text {new }}^{-}\left(P^{\prime}\right)$ in case $B=P^{\prime}$.

The following two corollaries are consequences of our main theorems.
Lemma 2.1. If $O \in \triangle a_{1} w a_{4} \cup \triangle a_{4} g a_{3}$, then the canonically given quadrangle $a_{1} a_{2} a_{3} a_{4}$ can be majorized by some trapezium T.

Proof. Observe that $\triangle a_{1} w a_{4}=\triangle a_{1} v a_{4} \cup \triangle a_{1} w v$.

1. If $O \in \triangle a_{1} v a_{4}$, then the normalizing vectors c_{i} and the endpoints b_{i} of the central chords $a_{i} b_{i}$ are located as follows: $c_{3} \in a_{4} a_{1}, c_{2}$ is on the polygonal arc $\widehat{a_{2} a_{3} a_{4}}, b_{1} \in a_{3} a_{4}, b_{2,3} \in a_{4} a_{1}, b_{4} \in a_{1} a_{2}$ (see Definition 2.5 and (22)). Find points a_{5} and b_{5} that satisfy $a_{5} \in\left(a_{2} b_{1}\right), a_{4} a_{5} \| a_{1} a_{2}$, and $\left\{b_{5}\right\}=a_{1} a_{2} \cap\left(a_{5} O\right)$. Taking the trapezium $a_{1} a_{2} a_{5} a_{4}$ as a new normalizing figure of M^{2}, we see that $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=\left(\widehat{a_{1}-a_{4}}\right)_{\text {old }}=c_{1},\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=$ $c_{2}^{\prime} \in a_{2} b_{1} \subset a_{2} a_{5}$ and $\left|O c_{2}^{\prime}\right| \leq\left|O c_{2}\right|$, where $a_{2} b_{1}$ subtends the arc $\widehat{a_{2} a_{3} b_{1}}$. Then

$$
\rho_{\text {old }}\left(a_{4} ; a_{1}\right)=\rho_{\text {new }}\left(a_{4} ; a_{1}\right), \quad \rho_{\text {old }}\left(a_{1} ; a_{2}\right) \leq \rho_{\text {new }}\left(a_{1} ; a_{2}\right) .
$$

Let $c_{4}^{\prime}=\widehat{a_{4}-a_{5}}$ and $c_{5}^{\prime}=\widehat{a_{5}-a_{2}}=\widehat{b_{1}-a_{2}}$. Since $c_{3,4}, c_{4,5}^{\prime} \in a_{4} a_{1}$, by

Proposition 2.5 we have $\rho_{\text {old }}\left(a_{2} ; a_{3}\right)+\rho_{\text {old }}\left(a_{3} ; a_{4}\right)=\rho_{\text {old }}\left(a_{2} ; a_{4}\right)=\rho_{\text {new }}\left(a_{2} ; a_{4}\right)$ $=\rho_{\text {new }}\left(a_{2} ; a_{5}\right)+\rho_{\text {new }}\left(a_{5} ; a_{4}\right)$.

The homothety $\triangle O a_{5} a_{4} \approx \triangle O b_{5} b_{4}$ implies $\left|O b_{5}\right| /\left|O a_{5}\right|=\left|O b_{4}\right| /\left|O a_{4}\right|$. The segments $a_{i} b_{i}(i=1,2,4)$ are central chords of $a_{1} a_{2} a_{3} a_{4}$ and $a_{1} a_{2} a_{5} a_{4}$. By (22), we have $k\left(a_{1} a_{2} a_{5} a_{4}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)=k$. Therefore, the trapezium $T=a_{1} a_{2} a_{3} a_{4}$ majorizes $a_{1} a_{2} a_{3} a_{4}$.
2. If $O \in \triangle a_{1} w v$, then the points c_{i} and b_{i} are located as follows: $c_{3} \in a_{4} a_{1}, b_{1} \in a_{2} a_{3}, b_{2} \in a_{4} a_{1}, b_{3,4} \in a_{1} a_{2}, c_{2} \in a_{2} b_{1} \subset a_{2} a_{3}$. By Proposition 2.5, $\rho\left(b_{1} ; a_{4}\right)=\rho\left(b_{1} ; a_{3}\right)+\rho\left(a_{3} ; a_{4}\right)$ and $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=L^{-}\left(a_{1} a_{2} b_{1} a_{4}\right)$. The segments $a_{i} b_{i}(i=1,2,4)$ are central chords of $a_{1} a_{2} a_{3} a_{4}$ and $a_{1} a_{2} b_{1} a_{4}$. Therefore, $k\left(a_{1} a_{2} b_{1} a_{4}\right)=k$.

The quadrangle $a_{1} a_{2} b_{1} a_{4}$ is evidently a canonical one. Denote by g_{1} its center and set $\left\{v_{1}\right\}=a_{4} w \cap a_{1} b_{1}$. By construction, $O \in \triangle a_{1} v_{1} a_{4} \subset a_{1} a_{2} b_{1} a_{4}$, which corresponds to the first case considered above.
3. If $O \in \triangle a_{4} g a_{3}$, then the points c_{i}, b_{i} are located as follows: $c_{2,3} \in a_{3} a_{4}$, $b_{3} \in a_{4} a_{1}, b_{1} \in a_{3} a_{4}$, and b_{4} is on the polygonal arc $\widehat{a_{1} a_{2} a_{3}}$. Canonicity of $a_{1} a_{2} a_{3} a_{4}$ implies the existence of $a_{5} \in a_{1} a_{2}$ such that $a_{3} a_{5} \| a_{4} a_{1}$. The trapezium $a_{1} a_{5} a_{3} a_{4}$ can be taken as a new normalizing figure of M^{2}, and then $\widehat{a_{5}-a_{1}}=c_{2}, \widehat{a_{1}-a_{4}}=c_{1} \in a_{1} a_{5} \subset a_{1} a_{2}, \widehat{a_{3}-a_{5}}=c_{3}^{\prime} \in c_{2} c_{3} \subset a_{3} a_{4}$. By Proposition 2.5 we have

$$
\begin{aligned}
\rho_{\text {old }}\left(a_{1} ; a_{2}\right)+\rho_{\text {old }}\left(a_{2} ; a_{3}\right) & =\rho_{\text {old }}\left(a_{1} ; a_{3}\right) \\
& =\rho_{\text {new }}\left(a_{1} ; a_{3}\right)=\rho_{\text {new }}\left(a_{1} ; a_{5}\right)+\rho_{\text {new }}\left(a_{5} ; a_{3}\right)
\end{aligned}
$$

and $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=L^{-}\left(a_{1} a_{5} a_{3} a_{4}\right)$.
To estimate the factor of symmetry $k\left(a_{1} a_{5} a_{3} a_{4}\right)$, we use Corollary 2.4 We have $\left(a_{1} a_{4}\right) \|\left(a_{5} a_{3}\right)$. Choosing in 18$)$

$$
k_{1}=\min \left\{\left|O b_{3}\right| /\left|O a_{3}\right| ;\left|O a_{3}\right| /\left|O b_{3}\right|\right\}, \quad k_{1} \geq k
$$

we infer from 19 that $k\left(a_{1} a_{5} a_{3} a_{4}\right) \geq k$. Therefore, the trapezium $T=$ $a_{1} a_{5} a_{3} a_{4}$ majorizes $a_{1} a_{2} a_{3} a_{4}$. Lemma 2.1 is proved.

Lemma 2.2. If $O \in w a_{2} a_{3} v$, then the canonically given normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ can be majorized by some trapezium T.

Proof. Observe that the trapezium $w a_{2} a_{3} v$ equals $w a_{2} m v \cup \triangle a_{2} a_{3} m$.

1. If $O \in w a_{2} m v$, then the normalizing vectors c_{i} and the ends b_{i} of the central chords $a_{i} b_{i}$ are located as follows: $c_{2} \in a_{2} a_{3}, c_{3} \in a_{3} a_{4}, b_{1} \in a_{2} a_{3}$, $b_{2} \in a_{4} a_{1}, b_{3,4} \in a_{1} a_{2}$. Remember that in this case formula 22 is satisfied. Find a point a_{5} such that $a_{4} a_{5} \| a_{2} a_{1}$ and $a_{5} a_{1} \| a_{3} a_{2}$. For the polygonal arc $\widehat{a_{3} a_{5} a_{1}}$, we consider $\left\{b_{6}\right\}=\left(a_{2} O\right) \cap \widehat{a_{3} a_{5} a_{1}}$. Then either $b_{6} \in a_{5} a_{1}$ or $b_{6} \in a_{3} a_{5}$. If $b_{6} \in a_{5} a_{1}$, then the end b_{5} of the central chord $a_{5} b_{5}$ in the trapezium $a_{1} a_{2} a_{3} a_{5}$ is in $a_{1} a_{2}$. The homotheties $\triangle O a_{4} a_{5} \approx \triangle O b_{4} b_{5}$ and $\triangle O a_{2} b_{1} \approx \triangle O b_{6} a_{1}$ imply $\left|O b_{5}\right| /\left|O a_{5}\right|=\left|O b_{4}\right| /\left|O a_{4}\right|$ and $\left|O b_{6}\right| /\left|O a_{2}\right|=$
$\left|O a_{1}\right| /\left|O b_{1}\right|$. The segment $a_{3} b_{3}$ is a central chord in $a_{1} a_{2} a_{3} a_{5}$. Then formula (16) implies $k\left(a_{1} a_{2} a_{3} a_{5}\right)=k$. If $b_{6} \in a_{3} a_{5}$, then the central chord $a_{5} b_{5}$ is such that $b_{5} \in a_{2} a_{3}$. Find a point e_{i} on the line $\left(a_{2} b_{6}\right)$ that satisfies $b_{5} e_{3}\left\|a_{3} e_{1}\right\|$ $a_{5} e_{2} \| a_{1} a_{2}$. The homotheties $\triangle O a_{3} e_{1} \approx \triangle O b_{3} a_{2}, \triangle O a_{4} e_{2} \approx \triangle O b_{4} a_{2}$, and $\triangle O a_{5} a_{1} \approx \triangle O b_{5} b_{1}$ imply

$$
\begin{aligned}
& \left|O a_{3}\right| /\left|O b_{3}\right|=\left|O e_{1}\right| /\left|O a_{2}\right| \leq\left|O b_{6}\right| /\left|O a_{2}\right| \leq\left|O e_{2}\right| /\left|O a_{2}\right|=\left|O a_{4}\right| /\left|O b_{4}\right| ; \\
& \left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{5}\right| /\left|O a_{5}\right| .
\end{aligned}
$$

By formula (16), we have $k\left(a_{1} a_{2} a_{3} a_{5}\right) \geq k$.
To estimate the self-perimeter of the trapezium $a_{1} a_{2} a_{3} a_{5}$, set $\widehat{a_{1-a}}=$ $c_{1}^{\prime} \in a_{1} a_{2}$. The similarity $\triangle a_{1} a_{4} a_{5} \sim \triangle O c_{1} c_{1}^{\prime}$ implies

$$
\rho_{\text {old }}\left(a_{4} ; a_{1}\right)=\left|a_{4} a_{1}\right| /\left|O c_{1}\right|=\left|a_{5} a_{1}\right| /\left|O c_{1}^{\prime}\right|=\rho_{\text {new }}\left(a_{5} ; a_{1}\right) .
$$

We have $\left(\widehat{a_{3}-a_{2}}\right)_{\text {new }}=c_{3}^{\prime} \in O c_{3},\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=c_{2} \in a_{2} a_{3}$ and hence

$$
\rho_{\text {old }}\left(a_{2} ; a_{3}\right) \leq \rho_{\text {new }}\left(a_{2} ; a_{3}\right), \quad \rho_{\text {old }}\left(a_{1} ; a_{2}\right)=\rho_{\text {new }}\left(a_{1} ; a_{2}\right) .
$$

Set $\widehat{a_{4}-a_{3}}=c_{4} \in a_{4} a_{1},\left(\widehat{a_{5}-a_{3}}\right)_{\text {new }}=c_{5} \in a_{5} a_{1}$, and $\left\{e_{4}\right\}=O c_{4} \cap a_{1} a_{3}$. Find a point e_{5} that satisfies $e_{5} \in a_{1} a_{5}$ and $c_{4} e_{5} \| a_{4} a_{5}$. The point a_{1} is the centre of the homothety $\triangle e_{4} c_{4} e_{5} \approx \triangle a_{3} a_{4} a_{5}$. Set $\left\{e_{6}\right\}=\left(c_{4} e_{5}\right) \cap\left(O c_{5}\right)$ and consider the homothety $\Delta e_{4} c_{4} e_{5} \approx \triangle O c_{4} e_{6}$. Then $c_{5} \in O e_{6}$ and

$$
\rho_{\text {old }}\left(a_{3} ; a_{4}\right)=\left|a_{3} a_{4}\right| /\left|O c_{4}\right|=\left|a_{3} a_{5}\right| /\left|O e_{6}\right| \leq\left|a_{3} a_{5}\right| /\left|O c_{5}\right|=\rho_{\text {new }}\left(a_{3} ; a_{5}\right) .
$$

Therefore, $L^{-}\left(a_{1} a_{2} a_{3} a_{5}\right) \geq L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$, and the trapezium $a_{1} a_{2} a_{3} a_{5}$ majorizes the given quadrangle $a_{1} a_{2} a_{3} a_{4}$.
2. If $O \in \triangle a_{2} a_{3} m$, then the points c_{i} and b_{i} are located as follows: $c_{2} \in a_{2} a_{3}, c_{3} \in a_{3} a_{4}, b_{1,4} \in a_{2} a_{3}, b_{2} \in a_{3} a_{4}, b_{3} \in a_{1} a_{2}$. By formula (23), the factor of symmetry is $k=\left|O b_{1}\right| /\left|O a_{1}\right|$. In complete analogy with item 1 , we construct the trapezium $a_{1} a_{2} a_{3} a_{5}\left(a_{4} a_{5} \| a_{2} a_{1}\right)$ and obtain the inequality $L^{-}\left(a_{1} a_{2} a_{3} a_{5}\right) \geq L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$. Find $\left\{b_{2}^{\prime}\right\}=a_{3} a_{5} \cap\left(a_{2} O\right)$ such that

$$
\left|O a_{3}\right| /\left|O b_{3}\right| \leq\left|O b_{2}^{\prime}\right| /\left|O a_{2}\right| \leq\left|O b_{2}\right| /\left|O a_{2}\right| .
$$

We have $\left\{b_{5}\right\}=\left(O a_{5}\right) \cap\left(a_{2} a_{3}\right), \triangle O a_{5} a_{1} \approx \triangle O b_{5} b_{1}$, and $\left|O b_{5}\right| /\left|O a_{5}\right|=k$. Thus, the quadrangle $a_{1} a_{2} a_{3} a_{4}$ is majorized by the trapezium $T=a_{1} a_{2} a_{3} a_{5}$. Lemma 2.2 is proved.

To study the case $O \in \triangle n m a_{3}$, we need the following statement.
Proposition 2.8. Let $\triangle a b c$ be a triangle in the adjoint plane R^{2}. Let the points $d \in b c, e \in c a$, and $f \in a b$ be such that $d e \| b a$, $d f \| c a$, and $O \in d f$. Set $\{h\}=(b O) \cap(d e), q \in d h \cap d e$, and $\{p\}=b q \cap d f$. Take $t=|e q|$ as a parameter. Then the function $y(t)=1 /|O p|$ is downwards convex over the interval $\left(t_{1} ; t_{2}\right)$, where $t_{2}=|e d|$ and $t_{1}=0$ if de $\subset d h$, while $t_{1}=|e h|$ if $d h \subset d e$.

Proof. Set $\{l\}=a c \cap(b q)$. The homothety $\triangle b p f \approx \triangle b l a$ implies $|p f|=|f b| \cdot|a l| /|a b|$. Since $\triangle l e q \approx \triangle l a b$ and $|e q|=t$, we have $|a b| / t=$ $|a l| /|e l|=|a e| /|e l|+1$. Therefore, $1 /|e l|=(|a b|-t) /(t \cdot|a e|)$. The similarity $\triangle b p f \sim \triangle q l e$ implies $1 /|p f|=t /(|e l| \cdot|f b|)=(|a b|-t) /(|f b| \cdot|e a|)$. Set $\alpha=|a e| \cdot|f b|, \gamma=|O f|, \beta=|a b|>|a f|=|e d| \geq t$. Then $|p f|=\alpha /(\beta-t)$. Observe that $|p f| \geq|O f|$, and hence $t \geq \beta-\alpha / \gamma$. If $O=f$, then $\gamma=0$, and the function $y(t)=1 /|O p|=1 /|p f|=(\beta-t) / \alpha$ is linear with respect to the parameter t. If $O \neq f$, then use the equality $|O p|=|p f|-\gamma$ to deduce $y(t)=1 /|O p|=-1 / \gamma+\alpha \cdot \gamma^{-2} /(t-(\beta-\alpha / \gamma))$. This means that for $t>\beta-\alpha / \gamma$ the graph of $y(t)$ is strictly downwards convex, namely the arc of a hyperbola.

Definition 2.7. Define r, z, s in such a way that $r \in a_{4} a_{1}, a_{2} r \| a_{3} a_{4}$, $\{z\}=a_{1} a_{3} \cap a_{2} r$, and $\{s\}=a_{2} r \cap \widehat{n g w}$, where $\widehat{n g w}$ is a polygonal arc (the existence of r follows from the canonicity of $a_{1} a_{2} a_{3} a_{4}$).

In what follows, we use the figure $G=a_{2} a_{3} a_{4} r \cap \triangle g v a_{3}$. Observe that

$$
G= \begin{cases}\triangle g v a_{3} & \text { if } s \in v w, \tag{25}\\ g s z a_{3} & \text { if } s \in g v, \\ \triangle s z a_{3} & \text { if } s \in g n .\end{cases}
$$

We will consider the cases when $O \in G$ or $O \notin G$.
Again, the next three corollaries follow from our main theorems.
Lemma 2.3. If $O \in G$, then the canonically given normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ is majorized by some trapezium T.

Proof. We restrict our considerations to the most general case of (25), when $G=g s z a_{3}$. Since $r \in a_{4} a_{1}$, we have $\triangle n m a_{3} \subset G$ and $G=\triangle n m a_{3} \cup$ gszmn. Observe that $\widehat{a_{4}-a_{3}}=c_{4} \in a_{4} r, \widehat{a_{2}-a_{1}}=c_{2} \in a_{2} a_{3}$. Set $\left\{a_{7}\right\}=$ $\left(O c_{2}\right) \cap\left(a_{4} a_{3}\right)$ and find points $a_{5,6}$ that satisfy $a_{5,6} \in\left(a_{4} a_{3}\right), a_{2} a_{5} \| a_{1} a_{4}$, and $a_{2} a_{6} \| O a_{4}$. Write

$$
a_{8}= \begin{cases}a_{7} & \text { if } a_{7} \in a_{4} a_{5}, \tag{26}\\ a_{5} & \text { if } a_{5} \in a_{4} a_{7} .\end{cases}
$$

Let $M \in a_{6} a_{8}$, and take $t=\left|a_{4} M\right|$ as a parameter. Then $t \in\left[t_{1} ; t_{2}\right]$, where $t_{1}=\left|a_{4} a_{6}\right|$ and $t_{2}=\left|a_{4} a_{8}\right|$. Set $t_{0}=\left|a_{4} a_{3}\right|$. If $t=t_{0}$, then $M=a_{3}$. Take a canonically given quadrangle $a_{1} a_{2} M a_{4}$ as the new normalizing figure of M^{2}. Consider the self-perimeter $L^{-}\left(a_{1} a_{2} M a_{4}\right)$ as a function $f(t)$ of t, i.e., $f(t)=L^{-}\left(a_{1} a_{2} M a_{4}\right)$ for $t \in\left[t_{1} ; t_{2}\right]$. We have $\widehat{a_{3}-a_{2}}=c_{3} \in$ $a_{3} a_{4}$, and write $\left(\widehat{a_{5}-a_{2}}\right)_{\text {new }}=c_{5}$ and $(\widehat{M-a})_{\text {new }}=c_{M}$. Since $\triangle a_{1} b_{1} a_{4}$ is non-degenerate and $O c_{5} \| a_{1} a_{4}$, by construction $c_{5} \in b_{1} a_{4} \subset a_{3} a_{4}$. Moreover, $c_{M} \in a_{4} c_{5} \subset a_{4} a_{3}$. The similarity $\triangle a_{2} M a_{3} \sim \triangle O c_{M} c_{3}$ implies $\rho_{\text {new }}\left(a_{2} ; M\right)=\left|a_{2} M\right| /\left|O c_{M}\right|=\left|a_{2} a_{3}\right| /\left|O c_{3}\right|=\rho_{\text {old }}\left(a_{2} ; a_{3}\right)$.

The function $\rho_{\text {new }}\left(M ; a_{4}\right)=\left|M a_{4}\right| /\left|O c_{4}\right|=t /\left|O c_{4}\right|$ is linear in t, where $c_{4}=\left(\widehat{a_{4}-M}\right)_{\text {new }}=\widehat{a_{4}-a_{3}} \in a_{4} a_{1}$. Evidently, $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1} \in a_{1} a_{2}$ and $\rho_{\text {new }}\left(a_{4} ; a_{1}\right)=\rho_{\text {old }}\left(a_{4} ; a_{1}\right)$. From (26) it follows that $\left(\overline{a_{2}-a_{1}}\right)_{\text {new }}=c_{2}^{\prime}$ $\in a_{2} M$. By Proposition 2.8, if we take $b=a_{2}, p=c_{2}^{\prime}, q=M$, and $e=a_{4}$, then we get the downwards convex function $y(t)=1 /\left|O c_{2}^{\prime}\right|$ and $\rho_{\text {new }}\left(a_{1} ; a_{2}\right)=\left|a_{1} a_{2}\right| /\left|O c_{2}^{\prime}\right|$. Set

$$
a_{9}= \begin{cases}b_{1} & \text { if } a_{6} \in a_{4} b_{1}, \tag{27}\\ a_{6} & \text { if } b_{1} \in a_{4} a_{6},\end{cases}
$$

and $t_{3}=\left|a_{4} a_{9}\right|$. Then $t_{1}=\left|a_{4} a_{6}\right| \leq\left|a_{4} a_{9}\right|=t_{3}<\left|a_{4} a_{3}\right| \leq\left|a_{4} a_{8}\right|=t_{2}$. Thus, the function $f(t)=L^{-}\left(a_{1} a_{2} M a_{4}\right)$ is downwards convex for $t \in\left[t_{3} ; t_{2}\right]$. Therefore,

$$
\begin{equation*}
\max _{\left[t_{3} ; t_{2}\right]} f(t)=\max \left\{f\left(t_{3}\right) ; f\left(t_{2}\right)\right\} . \tag{28}
\end{equation*}
$$

Consider the following four possible maxima of $f(t)$ on $\left[t_{3} ; t_{2}\right]$ according to the conditions (26)-28).

1. Suppose that $t=t_{3}, a_{9}=b_{1}$, and $f_{\max }=f\left(t_{3}\right)$. If $O \in g s z m n$, then all the chords $a_{i} b_{i}(i \neq 3)$ remain central chords for the new canonical $a_{1} a_{2} b_{1} a_{4}$. If $O \in \triangle n m a_{3} \subset \triangle a_{4} a_{2} a_{3}$, then $k\left(a_{1} a_{2} b_{1} a_{4}\right)=\left|O b_{1}\right| /\left|O a_{1}\right|$ by (23). Thus, by (16) we have $k\left(a_{1} a_{2} b_{1} a_{4}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)$. By construction, $c_{M} \in M a_{4}$, $c_{2}^{\prime} \in a_{2} M, O \in a_{1} b_{1}$ (a diagonal of $a_{1} a_{2} b_{1} a_{4}$), and hence $a_{1} a_{2} b_{1} a_{4}$ has all the properties of the normalizing quadrangle of Lemma 2.2 .
2. Suppose that $f_{\max }=f\left(t_{3}\right)$ and $a_{9}=a_{6}$. By construction, the new normalizing quadrangle $a_{1} a_{2} a_{6} a_{4}$ is canonically given, we have $b_{1} \in a_{6} a_{4}$ and $c_{6}^{\prime}=\left(\widehat{a_{6}-a_{2}}\right)_{\text {new }}=a_{4}$, and the central chords $a_{i} b_{i}$ in this quadrangle are central for $a_{1} a_{2} a_{3} a_{4}$. Hence (22) and $O \in \triangle a_{1} a_{2} a_{4}$ imply $k\left(a_{1} a_{2} a_{6} a_{4}\right)=$ $k\left(a_{1} a_{2} a_{3} a_{4}\right)$. Since $c_{6}^{\prime}=a_{4}$, the quadrangle $a_{1} a_{2} a_{6} a_{4}$ has all the properties of the normalizing quadrangles of Lemma 2.1.
3. Suppose that $f_{\max }=f\left(t_{2}\right)$ and $a_{8}=a_{5}$. By construction, $a_{1} a_{2} a_{5} a_{4}$ is a trapezium, the segments $a_{1} b_{1}$ and $a_{2} b_{2}$ are central chords for $a_{1} a_{2} a_{3} a_{4}$ as well, $\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=c_{2}^{\prime} \in a_{2} a_{5}$, and the central chord $a_{5} b_{5}$ is such that $b_{5} \in a_{4} a_{1}$. If $O \in \triangle n m a_{3} \subset \triangle a_{4} a_{2} a_{5}$, then by (23) we have $k\left(a_{1} a_{2} a_{5} a_{4}\right)=\left|O b_{1}\right| /\left|O a_{1}\right|=$ $k\left(a_{1} a_{2} a_{3} a_{4}\right)$. If $O \in \operatorname{gszmn} \subset \triangle a_{4} a_{1} a_{2}$, then $\triangle O a_{5} a_{2} \approx \triangle O b_{5} b_{2}$ implies $\left|O b_{5}\right| /\left|O a_{5}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|$. By (16) and (22) we have $k\left(a_{1} a_{2} a_{5} a_{4}\right)=$ $k\left(a_{1} a_{2} a_{3} a_{4}\right)$, and $T=a_{1} a_{2} a_{5} a_{4}$ is a majorizing trapezium.
4. Let $f_{\max }=f\left(t_{2}\right)$ and $a_{8}=a_{7}$. Here we use the properties of the trapezium T from case 3 , for which $k\left(a_{1} a_{2} a_{5} a_{4}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)$. The chord $a_{1} b_{1}$ remains central for the quadrangle $a_{1} a_{2} a_{7} a_{4}$. If $O \in \triangle a_{4} a_{2} a_{7}$, then by (23) we have $k\left(a_{1} a_{2} a_{7} a_{4}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)$. If $O \in g s z m n$, then the chords $a_{1} b_{1}, a_{2} b_{2}$, and $a_{4} b_{4}$ are central for $a_{1} a_{2} a_{7} a_{4} \supset a_{1} a_{2} a_{3} a_{4}$. By (22), we have
$k\left(a_{1} a_{2} a_{7} a_{4}\right)=k$. Since $a_{7}=c_{2}^{\prime}=\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}$, the new canonically given normalizing quadrangle $a_{1} a_{2} a_{7} a_{4}$ meets all the requirements of Lemma 2.1, and Lemma 2.3 is proved.

To study the case $O \notin G$ in a canonically given quadrangle $a_{1} a_{2} a_{3} a_{4}$, we introduce the following definitions (see (25)).

DEFINITION 2.8. A canonically given normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ is called a quadrangle of first special type if

1) the origin satisfies

$$
\begin{equation*}
O \in \Omega \equiv \triangle r a_{1} a_{2} \cap \triangle g v a_{3} \neq \emptyset, \tag{29}
\end{equation*}
$$

2) the factor of symmetry satisfies

$$
\begin{equation*}
k\left(a_{1} a_{2} a_{3} a_{4}\right)=\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O b_{4}\right| /\left|O a_{4}\right| . \tag{30}
\end{equation*}
$$

DEfinition 2.9. A canonically given normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ is called a quadrangle of second special type if (29) holds, but

$$
\begin{equation*}
k=k\left(a_{1} a_{2} a_{3} a_{4}\right)=\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right| . \tag{31}
\end{equation*}
$$

Lemma 2.4. If a normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ is of first special type, then it is majorized by some trapezium T.

Proof. By (29), we have $O \in \triangle a_{4} a_{1} a_{2}$, and (22) yields $k \leq\left|O b_{1}\right| /\left|O a_{1}\right|$. Moreover, $\widehat{a_{2}-a_{1}}=c_{2} \in a_{2} a_{3}, b_{1} \in a_{3} a_{4}, a_{2} r \| a_{3} a_{4}$, and $b_{2} \in r a_{1} \subset$ $a_{4} a_{1}, \widehat{a_{4}-a_{3}}=c_{4} \in r a_{1}$. Choose a Cartesian coordinate system of R^{2} in such a way that $b_{4} a_{4} \subset O x, b_{2} a_{2} \subset O y$ and $O(0 ; 0), a_{4}(1 ; 0), b_{4}(-k ; 0)$, $a_{2}(0 ; 1), b_{2}(0 ;-k)$. Here we use an auxiliary metric where the centre g of the canonically given quadrangle $a_{1} a_{2} a_{3} a_{4}$ does not in general coincide with the origin O of \mathbb{R}^{2} (see Remark 2.2). Since $\left\{a_{1}\right\}=\left(a_{1} a_{2}\right) \cap\left(a_{1} a_{4}\right)$, we have $a_{1}(-k /(1-k) ;-k /(1-k))$. Find $a_{5,6} \in R^{2}$ such that $a_{5} a_{4}\left\|a_{2} b_{2}, a_{2} a_{5}\right\| a_{1} a_{4}$, $a_{6} \in a_{5} a_{4}$, and $a_{2} a_{6} \| a_{4} b_{4}$. It is easy to see that $a_{5}(1 ; 1+k), a_{6}(1 ; 1)$. The vertex a_{3} is from $\triangle a_{2} a_{5} a_{6}$, because by (29) we have $c_{4} \in a_{4} b_{2}, c_{3} \in a_{3} a_{4}$, and $a_{1} a_{2} a_{3} a_{4}$ is canonically given.

Consider now a_{3} as one of the points $M(a ; b) \in \triangle a_{2} a_{5} a_{6}$. We also make the restriction $c_{2} \in a_{2} M$. The coordinates of $c_{2}\left(x_{2} ; y_{2}\right)$ satisfy

$$
\left\{\begin{array}{l}
y=x / k, \\
y-1=(b-1) / a \cdot x,
\end{array} \quad \frac{1}{x_{2}}=\frac{1}{k}+\frac{1-b}{a},\right.
$$

and we have

$$
\begin{aligned}
\rho\left(a_{1} ; a_{2}\right) & =-x_{1} / x_{2}=k /(1-k) \cdot(1 / k+(1-b) / a) \\
& =1 /(1-k)+k(1-b) /(a(1-k)) .
\end{aligned}
$$

The coordinates of $\widehat{M-a}=c_{M}\left(x_{3} ; y_{3}\right)$ satisfy $y=(b-1) / a \cdot x, y=$ $b /(a-1) \cdot(x-1)$ and hence $1 / x_{3}=1+(a-1) \cdot(1-b) /(a b)$ and $\rho\left(a_{2} ; M\right)=$ $a / x_{3}=a+(a-1) \cdot(1-b) / b$. The point $c_{4}\left(x_{4} ; y_{4}\right)$ is on the lines $y=$
$b /(a-1) \cdot x$ and $y+k=k x$, and hence $-1 / y_{4}=1 / k+(1-a) / b$ and $\rho\left(M ; a_{4}\right)=-b / y_{4}=b / k+1-a$. The value $\rho\left(a_{4} ; a_{1}\right)$ does not depend on the location of $M \in \triangle a_{2} a_{5} a_{6}$. Let us define a function

$$
f(a ; b)=\rho\left(a_{1} ; a_{2}\right)+\rho\left(a_{2} ; M\right)+\rho\left(M ; a_{4}\right), \quad M(a ; b) \in \triangle a_{2} a_{5} a_{6} .
$$

Thus, $f(a ; b)=2+1 /(1-k)+k(1-b) /(a(1-k))-a+(a-1) / b+b / k$, where $b \geq 1$ and $0<a \leq 1$.

We calculate the derivatives:

$$
f_{a}^{\prime}=-\frac{k}{1-k} \cdot \frac{1-b}{a^{2}}-1+\frac{1}{b}, \quad f_{b}^{\prime}=-\frac{k}{1-k} \cdot \frac{1}{a}-\frac{a-1}{b^{2}}+\frac{1}{k} .
$$

The stationary points of $f(a ; b)$ are

$$
\left\{\begin{array} { l }
{ [\begin{array} { l }
{ b = 1 , } \\
{ b = \frac { 1 - k } { k } a ^ { 2 } , } \\
{ \frac { k } { 1 - k } \cdot \frac { 1 } { a } + \frac { a - 1 } { b ^ { 2 } } = \frac { 1 } { k } , }
\end{array} }
\end{array} \quad \left[\begin{array} { l }
{ b = 1 , } \tag{32}\\
{ \frac { a } { b } + \frac { a - 1 } { b ^ { 2 } } = \frac { 1 } { k } , }
\end{array} \quad \left[\begin{array}{l}
b=1, \\
a=\frac{b^{2}+k}{k(b+1)} .
\end{array}\right.\right.\right.
$$

We calculate the second derivatives:

$$
f_{a a}^{\prime \prime}=\frac{2 k}{1-k} \cdot \frac{1-b}{a^{3}}, \quad f_{b b}^{\prime \prime}=2 \cdot \frac{a-1}{b^{3}}, \quad f_{a b}^{\prime \prime}=\frac{k}{1-k} \cdot \frac{1}{a^{2}}-\frac{1}{b^{2}} .
$$

We consider separately the case $b=(1-k) / k \cdot a^{2}$. In this case $f_{a b}^{\prime \prime}=(b-1) / b^{2}$ and

$$
\begin{aligned}
\triangle(a ; b) & =f_{a a}^{\prime \prime} \cdot f_{b b}^{\prime \prime}-\left[f_{a b}^{\prime \prime}\right]^{2}=4 \cdot \frac{k}{1-k} \cdot \frac{(b-1)(1-a)}{a^{3} \cdot b^{3}}-\frac{(b-1)^{2}}{b^{4}} \\
& =4 \cdot \frac{(b-1)(1-a)}{b^{4} \cdot a}-\frac{(b-1)^{2}}{b^{4}}
\end{aligned}
$$

Taking into account (32), we obtain

$$
\triangle(a ; b)=\frac{b-1}{b^{4}}\left[\frac{4}{a}-(3+b)\right]=\frac{b-1}{b^{4}}\left[\frac{4 k(b+1)}{b^{2}+k}-(3+b)\right] .
$$

Since $b>1 \geq k$, we have $b^{2}+k>k(b+1)$ and $3+b>4 k(b+1) /\left(b^{2}+k\right)$. The inequality $\triangle(a ; b)<0$ implies that $f(a ; b)$ achieves its maximum only at the boundary of $\triangle a_{2} a_{5} a_{6}$. Observe that if $b=1$, then $M(a ; 1) \in a_{2} a_{6}$.

We describe in detail the boundary of a polygon Σ that contains the vertex $M \in \Sigma \subset \triangle a_{2} a_{5} a_{6}$ of the canonically given quadrangle $a_{1} a_{2} M a_{4}$ of first special type. By 29 , we have $b_{1} \in M a_{4}$ and $c_{2} \in a_{2} M$. Find a point e_{0} such that $e_{0} \in\left(a_{1} O\right), O \in a_{1} e_{0}$, and $\left|O e_{0}\right| /\left|O a_{1}\right|=k$. Let e_{3} be such that $e_{3} \in a_{2} a_{5}, O e_{3} \| a_{1} a_{2}$. Set $\left\{e_{1}\right\}=\left(a_{4} e_{0}\right) \cap\left(a_{2} a_{6}\right),\left\{e_{2}\right\}=\left(O e_{3}\right) \cap\left(a_{4} e_{0}\right)$, $\left\{e_{4}\right\}=\left(a_{4} e_{0}\right) \cap\left(a_{2} a_{5}\right)$, and $\left\{e_{5}\right\}=\left(O e_{3}\right) \cap a_{2} a_{6}$. We have $\left|O b_{1}\right| /\left|O a_{1}\right| \geq k$ and hence $M \in \triangle a_{4} e_{4} a_{5}$. If $e_{1} \notin e_{5} a_{6}$, then $\Sigma=e_{5} e_{3} a_{5} a_{6}$. If $e_{4} \in e_{3} a_{5}$, then $\Sigma=e_{1} e_{4} a_{5} a_{6}$. If $e_{1} \in e_{5} a_{6}$ and $e_{4} \notin e_{3} a_{5}$, then $\Sigma=e_{2} e_{3} a_{5} a_{6} e_{1}$. Observe that, by (22), $k\left(a_{1} a_{2} M a_{4}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)=k$ for the quadrangle of first special type, namely $k\left(a_{1} a_{2} M a_{4}\right)=\min \left\{k ;\left|O b_{1}\right| /\left|O a_{1}\right|\right\}=k$. We estimate
the self-perimeter $L^{-}\left(a_{1} a_{2} M a_{4}\right)$ when $M \in \partial \Sigma$ for the most general case when Σ is a pentagon, i.e., $\partial \Sigma=e_{2} e_{3} \cup e_{3} a_{5} \cup a_{5} a_{6} \cup a_{6} e_{1} \cup e_{1} e_{2}$.

1. Suppose that $M \in e_{2} e_{3}$. Then in the canonically given quadrangle $a_{1} a_{2} M a_{4}$ we have $c_{2}=M$. Such quadrangles were described in Lemma 2.1, and hence the conclusion of Lemma 2.4 holds.
2. Suppose that $M \in e_{3} a_{5}$. Then $a_{2} M \| a_{1} a_{4}$, and the majorizing trapezium is $T=a_{1} a_{2} M a_{4}$.
3. Suppose that $M \in a_{5} a_{6}$. Then $a_{2} b_{2} \| M a_{4}$ and $r=b_{2}$. The case $O \in$ $a_{2} r \subset a_{2} M a_{4} r$ was considered in Lemmas 2.1-2.3, and hence the conclusion of Lemma 2.4 holds.
4. Suppose that $M \in a_{2} a_{6}$. Then $a_{2} M \| O a_{4}$ and $\widehat{M-a_{2}}=c_{M}=a_{4}$. Thus, $O \in a_{4} w \subset \triangle a_{4} a_{1} w$, and we can apply Lemma 2.1.
5. Suppose that $M \in e_{1} e_{2}$. Then $e_{0}=b_{1}$ and $\left|O b_{1}\right| /\left|O a_{1}\right|=k$. To study the properties of the quadrangle $a_{1} a_{2} M a_{4}$ of first special type, it is convenient to use another adjoint plane R^{2}, namely such that $a_{1}(-1 ; 0)$, $a_{4}(0 ;-1), b_{1}(k ; 0)$, and $b_{4}(0 ; k)$. Set $\left\{a_{7}\right\}=\left(a_{4} b_{1}\right) \cap\left(O c_{2}\right), c_{2} \in a_{2} M$, and $a_{2} \in\left(a_{1} b_{4}\right)$. Let $a_{2}\left(x_{2} ; y_{2}\right), a_{7}\left(x_{7} ; y_{7}\right)$, and $M(a ; b)$. Then (see (30))

$$
\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O b_{4}\right| /\left|O a_{4}\right|=k
$$

Set $t=y_{2} / x_{2}$. Then a_{2} belongs to the lines $y=t x$ and $y=k x+1$. The point $b_{2}\left(x_{3} ; y_{3}\right)$ belongs to the lines $y=t x$ and $y=-x-1$. Solving the systems, we find $x_{2}=1 /(t-k)$ and $x_{3}=-1 /(t+1)$. The ratios $\left|O b_{2}\right| /\left|O a_{2}\right|=-x_{3} / x_{2}=$ $(t-k) /(t+1)=k$ imply $t=2 k /(1-k)$ and $x_{2}=(1-k) /\left(k+k^{2}\right)$. The point a_{7} is on the lines $y=k x$ and $y=1 / k \cdot x-1$, and therefore $x_{7}=k /\left(1-k^{2}\right)$. By (29), we have $\left(\widehat{M-a_{2}}\right)=c_{M} \in M a_{4}, c_{2} \in a_{2} M$, and hence $x_{2} \leq a \leq x_{7}$. In terms of k the latter means that $(1-k) /\left(k+k^{2}\right) \leq a \leq k /\left(1-k^{2}\right)$. The solution in a exists if $(1-k)^{2} \leq k^{2}$, i.e., $k \in[1 / 2 ; 1]$. By the hypothesis, $O \in \Omega \subset \triangle r a_{1} a_{2}$, where $r a_{2} \| M a_{4}$. The case $O \in s z$ (see 25) was considered in Lemma 2.3. Suppose that $O \notin s z$. Since the slope of $a_{2} b_{2}$ is equal to $t=2 k /(1-k)$ and the slope of $a_{4} M$ is equal to $1 / k$, we have $1 / k>t$. In terms of k the latter inequality means that $2 k^{2}+k-1<0$, i.e., $k \in(0 ; 1 / 2)$. Thus $O \in s z$, and case 5 is settled.

Hence Lemma 2.4 is proved.
LEMMA 2.5. If a normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ is of second special type, then it is majorized by some trapezium T.

Proof. By 29, we have $c_{2} \in a_{2} a_{3}, c_{3} \in a_{3} a_{4}, c_{4} \in r b_{2} \subset a_{4} a_{1}$, and $a_{2} r \| a_{3} a_{4}$. By (31), $\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=k \leq\left|O b_{4}\right| /\left|O a_{4}\right|$, and hence $\triangle O b_{1} b_{2} \approx \triangle O a_{1} a_{2}$. Find points $a_{5}, b_{5}, a_{6}, e_{1}$ that satisfy $a_{4} \in a_{1} a_{5}$, $\left\{b_{5}\right\}=a_{1} a_{2} \cap\left(a_{5} O\right),\left|O b_{5}\right| /\left|O a_{5}\right|=k ; a_{6} \in\left(b_{2} b_{1}\right), a_{2} a_{6} \| a_{1} a_{4} ;$ and $\left\{e_{1}\right\}=$
$a_{2} b_{1} \cap O c_{2}$ (the chords $a_{i} b_{i}$ are central ones). Set $\left\{a_{7}\right\}=\left(a_{2} a_{6}\right) \cap\left(a_{5} b_{1}\right)$, $\left\{e_{2}\right\}=\left(O e_{1}\right) \cap\left(a_{5} b_{1}\right)$, and $\left\{e_{3}\right\}=\left(O e_{1}\right) \cap a_{2} a_{6}$. By construction, the trapezium $b_{1} e_{1} e_{3} a_{6}$ contains the point a_{3} of the initial quadrangle $a_{1} a_{2} a_{3} a_{4}$.

Define a polygon Σ depending on the location of a_{7} with respect to the segment $a_{2} e_{3}$:

$$
\Sigma= \begin{cases}b_{1} e_{2} e_{3} a_{6} & \text { if } a_{7} \in a_{2} e_{3} \tag{33}\\ b_{1} e_{1} e_{3} a_{6} & \text { if } a_{2} \in a_{7} e_{3} \\ b_{1} a_{7} a_{6} & \text { if } a_{7} \in e_{3} a_{6}\end{cases}
$$

Take a point $M \in \Sigma$ and find a point e_{4} such that $e_{4} \in\left(M b_{1}\right)$ and $O e_{4} \|$ $a_{2} M$. Set $\left\{a_{8}\right\}=\left(M b_{1}\right) \cap a_{1} a_{5}$ and $\left\{b_{8}\right\}=\left(a_{8} O\right) \cap a_{1} a_{2}$. We have $O \in a_{1} b_{1}$. The non-degeneracy of $\triangle a_{1} b_{1} a_{8}$ implies $c_{6}=\widehat{a_{6}-a_{2}} \in b_{1} a_{4}$. Consider the quadrangle $a_{1} a_{2} M a_{8}$ of second special type in the capacity of a normalizing quadrangle of M^{2}. Observe that if $M=a_{3} \in \Sigma$, then it coincides with the initial one, i.e., $a_{1} a_{2} a_{3} a_{4}$. Canonicity of $a_{1} a_{2} M a_{8}$ and the inclusions $a_{8} \in$ $a_{5} b_{2} \subset a_{5} a_{1}$ and $b_{8} \in b_{5} a_{2} \subset a_{1} a_{2}$ yield $k=\left|O b_{5}\right| /\left|O a_{5}\right| \leq\left|O b_{8}\right| /\left|O a_{8}\right| \leq$ $\left|O a_{2}\right| /\left|O b_{2}\right|=1 / k$. The latter inequality and the equalities (22) and (31) imply $k\left(a_{1} a_{2} M a_{8}\right)=k\left(a_{1} a_{2} a_{3} a_{4}\right)=k$.

To estimate the self-perimeter $L^{-}\left(a_{1} a_{2} M a_{8}\right)$, we calculate the lengths of the sides by using (1)-(3). For the normalizing vectors we have $c_{2}^{\prime}=$ $\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }} \in a_{2} M, c_{8}=\widehat{a_{8}-M} \in a_{8} a_{1} \subset a_{5} a_{1}, c_{1}=\widehat{a_{1}-a_{4}}=\widehat{a_{1}-a_{8}}$, and $\widehat{M-a_{2}}=c_{M} \in \widehat{b_{1} a_{8} a_{1}}$, where $\widehat{b_{1} a_{8} a_{1}}$ is again a polygonal arc. If c_{M} is in $b_{1} a_{8}$, then $c_{M}=e_{4}$ and $\rho\left(a_{2} ; M\right)=\left|a_{2} M\right| /\left|O e_{4}\right|$. If $c_{M} \in a_{8} a_{1}$, then $c_{M} \in O e_{4}$ and $\rho\left(a_{2} ; M\right) \geq\left|a_{2} M\right| /\left|O e_{4}\right|$. Define a function of $M \in \Sigma$ by

$$
f(M)=\rho\left(a_{1} ; a_{2}\right)+\rho\left(M ; a_{8}\right)+\rho\left(a_{8} ; a_{1}\right)+\left|a_{2} M\right| /\left|O e_{4}\right|
$$

where the distance function is meant with respect to $a_{1} a_{2} M a_{8}$. We have $a_{3} \in \Sigma$, and by 29 we get $\widehat{a_{3}-a_{2}}=c_{3} \in b_{1} a_{4}$. Hence

$$
\begin{equation*}
\max _{\Sigma} f(M) \geq L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \tag{34}
\end{equation*}
$$

Evidently,

$$
\begin{equation*}
f(M) \leq L^{-}\left(a_{1} a_{2} M a_{8}\right), \quad M \in \Sigma \tag{35}
\end{equation*}
$$

We want to prove that $f(M)$ attains its maximum at the boundary of the polygon Σ, i.e., when $M \in \partial \Sigma$. We choose a Cartesian system of coordinates in the adjoint plane R^{2} in such a way that $O(0 ; 0), a_{2}(0 ; 1), a_{1}(-1 ; 0)$, $b_{1}(k ; 0), b_{2}(0 ;-k)$, and we set $M(a ; b)$ (see Remark 2.2). Since $a_{1} a_{2} a_{6} b_{2}$ is a parallelogram, $\triangle b_{1} a_{2} a_{6}$ is in the first quadrant and $0 \leq a, b \leq 1$. The case $b=0$ means that $M=b_{1}$ and hence $O \in a_{1} M$. Also this case was considered in Lemma 2.2. If $a=0$, then $M=a_{2}$ and $a_{1} a_{2} M a_{8}=a_{1} a_{2} b_{1} a_{8}$. For the canonically given quadrangle $a_{1} a_{2} b_{1} a_{8}$ we have $O \in a_{1} b_{1}$. This case was considered in Lemma 2.2. Thus, we suppose that $a, b \in(0 ; 1]$. Taking into
account that $M \in b_{1} e_{1} e_{3} a_{6}$, we find the abscissa of $\left\{c_{2}^{\prime}\right\}=\left(O e_{1}\right) \cap a_{2} M$ by solving the system $y=x, y-1=(b-1) / a \cdot x$, i.e., $(1+(1-b) / a) \cdot x=1$. Hence $\rho\left(a_{1} ; a_{2}\right)=\left|a_{1} a_{2}\right| /\left|O c_{2}^{\prime}\right|=1+(1-b) / a$. The point $\left\{e_{4}\right\}=\left(O e_{4}\right) \cap\left(M b_{1}\right)$ is defined by $y=x \cdot(b-1) / a$ and $y=b \cdot(x-k) /(a-k)$. Thus, for $e_{4}=\left(x_{e} ; y_{e}\right)$ we have $1 / x_{e}=1 / k+(a-k)(1-b) /(k b a)$ and $\left|a_{2} M\right| /\left|O e_{4}\right|$ $=a / x_{e}=a / k+(a-k)(1-b) /(k b)$.

Set $\left\{b_{M}\right\}=a_{8} a_{1} \cap(M O)$. The similarity $\triangle M a_{8} b_{M} \sim \triangle O c_{8} b_{M}$ implies

$$
\rho\left(M ; a_{8}\right)=\left|M a_{8}\right| /\left|O c_{8}\right|=\left|M b_{M}\right| /\left|O b_{M}\right|=1+|O M| /\left|O b_{M}\right| .
$$

The point $b_{M}\left(x_{b} ; y_{b}\right)$ is on the lines $y=b \cdot x / a$ and $y+k=-k x$. Hence $-1 / x_{b}=(k+b / a) / k$ and $\rho\left(M ; a_{8}\right)=1+a+b / k$. The points $\left\{c_{1}\right\}=$ $\left(O c_{1}\right) \cap a_{1} a_{2}$ and $\left\{a_{8}\right\}=\left(M b_{1}\right) \cap\left(a_{1} b_{2}\right)$ can be found as solutions of the systems $y=x+1, y=-k x$ and $y+k=-k x, y=b(x-k) /(a-k)$, respectively. If one writes $c_{1}\left(x_{c} ; y_{c}\right)$ and $a_{8}\left(x_{8} ; y_{8}\right)$, then $-1 / x_{c}=1+k$ and $x_{8}=k \cdot(b-(a-k)) /(b+k(a-k))$. Finally,

$$
\rho\left(a_{8} ; a_{1}\right)=\left|a_{8} a_{1}\right| /\left|O c_{1}\right|=-\left(1+x_{8}\right) / x_{c}=b(1+k)^{2} /(b+k(a-k)) .
$$

We express the function $f(M)$ by means of the coordinates of $M(a ; b)$:

$$
\begin{aligned}
f(a ; b)= & 2+(1-b) / a+(a+b) / k+(a-k) \cdot(1-b) /(k b) \\
& +a+b(1+k)^{2} /(b+k(a-k)) .
\end{aligned}
$$

Evidently, $f_{a}^{\prime}=1-(1-b) \cdot a^{-2}+1 /(k b)-(1+k)^{2} \cdot b \cdot k \cdot(b+k(a-k))^{-2}$. Then

$$
\begin{equation*}
f_{a a}^{\prime \prime}=2 \cdot(1-b) \cdot a^{-3}+2(1+k)^{2} \cdot b \cdot k^{2} \cdot(b+k(a-k))^{-3} . \tag{36}
\end{equation*}
$$

Find a point c_{1}^{\prime} that satisfies $c_{1}^{\prime} \in a_{1} a_{2}$ and $b_{1} c_{1}^{\prime}\left\|a_{2} a_{6}\right\| b_{2} a_{1}$. In a parallelogram $b_{1} c_{1}^{\prime} a_{2} a_{6}$, the equation of the side $\left(b_{1} c_{1}^{\prime}\right)$ is $y=-k(x-k)$. By the hypothesis, $M(a ; b) \in \Sigma \subset \triangle b_{1} a_{2} a_{6} \subset b_{1} c_{1}^{\prime} a_{2} a_{6}$, and hence $b>-k(a-k)$. Combining $0<a, b \leq 1$ and the equality (36), we get $f_{a a}^{\prime \prime}>0$. Thus, the function $f=f(M)$, where $M \in \Sigma$, can achieve its maximal value only at $\partial \Sigma$. To estimate $f_{\max }$ from above, consider, in accordance with (33), the following five cases:

1. If $M \in a_{6} b_{1}, M \neq b_{1}$, then $a_{1} a_{2} M a_{8}=a_{1} a_{2} M b_{2}$ is a trapezium.
2. If $M \in e_{3} a_{6}$, then $a_{8} a_{1} \| a_{2} M$ and $a_{1} a_{2} M a_{8}$ is a trapezium.
3. If $M \in e_{1} e_{3}$, then $M=c_{2}^{\prime}=\widehat{a_{2}-a_{1}}$, and the canonically given quadrangle $a_{1} a_{2} M a_{8}$ meets the requirements of Lemma 2.1. By the inequalities (34) and (35) we have $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq f(M) \leq L^{-}\left(a_{1} a_{2} M a_{8}\right)$. Thus, for the quadrangle $a_{1} a_{2} a_{3} a_{4}$ there exists a majorizing trapezium T.
4. If $M \in b_{1} e_{1}$ and $M \neq b_{1}$, then the quadrangle $a_{1} a_{2} M a_{8}$ degenerates to $\triangle a_{1} a_{2} a_{8}$. By Corollary 2.5 , we have $L^{-}(\triangle) \leq 2 D^{2} /(D-1)$. A suitable choice of the adjoint plane R^{2} transforms the isosceles trapezium $T=a_{1} a_{2} b_{1} b_{2}$ into the trapezium from our Example 2.1, showing the sharpness of (9)
(for $t=k^{2}$). Thus $L^{-}(\triangle) \leq 2 D^{2} /(D-1)=L^{-}(T)$, and $a_{1} a_{2} b_{1} b_{2}$ is the majorizing trapezium.
5. If $M \in b_{1} e_{2}, M \neq b_{1}$, then $a_{8}=a_{5}$ and $a_{1} a_{2} M a_{8}=a_{1} a_{2} M a_{5}$. Here $\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O b_{5}\right| /\left|O a_{5}\right|=k, c_{2}^{\prime}=\widehat{a_{2}-a_{1}} \in a_{2} M$, and $c_{8}=\widehat{a_{5}-M}=c_{5} \in a_{5} a_{4}$. Since $a_{4} \in b_{2} a_{5}$, there is a point $r^{\prime} \in a_{5} r$ such that $a_{2} r^{\prime} \| M a_{5}$ and $O \in \triangle a_{1} a_{2} r^{\prime}$. If $\widehat{M-a_{2}}=c_{M} \in M a_{5}$, then the canonically given quadrangle $a_{1} a_{2} M a_{5}$ is of first special type as described in Lemma 2.4. If $c_{M} \in a_{5} a_{1}$, then the normalizing quadrangle meets the requirements of Lemma 2.1, and Lemma 2.5 is proved.

Proof of Theorem 1.3. If the normalizing quadrangle $P_{4}=a_{1} a_{2} a_{3} a_{4}$ is a trapezium, then the statement of the theorem is obvious. By Proposition 2.6, we may restrict our considerations to canonically given quadrangles $a_{1} a_{2} a_{3} a_{4} \subset M^{2}$. According to Definition 2.4, denote by g the center of $a_{1} a_{2} a_{3} a_{4}$. Set $\{u\}=a_{4} a_{1} \cap\left(a_{3} g\right),\{w\}=a_{1} a_{2} \cap\left(a_{4} g\right)$, and $\{v\}=a_{1} a_{3} \cap a_{4} w$. We have $a_{2} r \| a_{3} a_{4}$, where $r \in a_{4} a_{1}$. The theorem is already proved in Lemmas 2.1-2.3 for three particular locations of the origin O inside $a_{1} a_{2} a_{3} a_{4}$. Namely, if $O \in \triangle a_{1} w a_{4} \cup \triangle g a_{3} a_{4} \cup w a_{2} a_{3} v \cup r a_{2} a_{3} a_{4}$, then for the normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$ there is a majorizing trapezium T (see Definition 2.6). Keep the notation for the polygon $\Omega \equiv \triangle r a_{1} a_{2} \cap \triangle g v a_{3}$ in correspondence with 29). If $\Omega=\emptyset$, then the proof is complete. If $O \in \Omega$, then the proof is completed by Lemmas 2.4 and 2.5 for normalizing quadrangles $a_{1} a_{2} a_{3} a_{4}$ of first and second special type (see Definitions 2.8 and 2.9).

Introducing some auxiliary metric for M^{2}, i.e., the metric of the adjoint plane R^{2}, we now prove the theorem in the case of $O \in \Omega$ for an arbitrary canonically given normalizing quadrangle $a_{1} a_{2} a_{3} a_{4}$. Since $\Omega \subset \triangle a_{1} a_{2} a_{4}$, we consider two cases in accordance to (22): either $k\left(a_{1} a_{2} a_{3} a_{4}\right)=k=$ $\left|O b_{2}\right| /\left|O a_{2}\right|$, or $\min \left\{\left|O b_{1}\right| /\left|O a_{1}\right| ;\left|O b_{4}\right| /\left|O a_{4}\right|\right\}=k<\left|O b_{2}\right| /\left|O a_{2}\right|$.

1. Suppose that $k=\left|O b_{2}\right| /\left|O a_{2}\right| \leq\left|O b_{1}\right| /\left|O a_{1}\right|$ and $O \in \Omega$. Find a point e_{1} that satisfies $e_{1} \in O b_{1}$ and $b_{2} e_{1} \| a_{1} a_{2}$, i.e., $\triangle O a_{1} a_{2} \approx \triangle O e_{1} b_{2}$. Set $\left\{e_{2}\right\}=O b_{1} \cap a_{3} u$ and

$$
e_{3}=\left\{\begin{array}{ll}
e_{1} & \text { if } e_{1} \in b_{1} e_{2}, \\
e_{2} & \text { if } e_{2} \in b_{1} e_{1},
\end{array} \quad\left\{e_{4}\right\}=a_{4} a_{1} \cap\left(a_{3} e_{3}\right) .\right.
$$

If $e_{3}=e_{2}$, then $e_{4}=u$. To apply Proposition 2.8, we introduce the following notation:
$\widehat{a_{3}-a_{2}}=c_{3} \in a_{3} a_{4}, \quad\{d\}=\left(O c_{3}\right) \cap\left(a_{1} a_{4}\right), \quad b:=a_{3}, \quad h:=b_{3}, \quad e:=a_{1}$, where $h \in e d$. Find points c and a that satisfy $c \in(b d), a_{1} c \| a_{2} b ; a \in\left(a_{1} c\right)$, and $a b \| e d$. Write $\{f\}=a b \cap(d O), t_{1}=\left|a_{1} b_{3}\right|=|e h|>0$, and $t_{2}=\left|a_{1} d\right|$. Let $q \in e_{4} d \subset h d$. If one writes $t_{3}=\left|e e_{4}\right|$ and $t=|e q|$, then $t_{1} \leq t_{3} \leq t \leq t_{2}$. Set $\{p\}=O d \cap a_{3} q$. For the new canonically given quadrangle $a_{1} a_{2} a_{3} q \subset M^{2}$
we have $p=\left(\widehat{a_{3}-a_{2}}\right)_{\text {new }} \in a_{3} q$ and $\rho_{\text {new }}\left(a_{2} ; a_{3}\right)=\left|a_{2} a_{3}\right| /|O p|$. By Proposition 2.8, the function $y(t)=\left|a_{2} a_{3}\right| /|O p|$ is downwards convex for $t \in\left[t_{3} ; t_{2}\right]$. Set $c_{1}=\widehat{a_{1}-q}=\widehat{a_{1}-a_{4}} \in a_{1} a_{2}, c_{2}=\widehat{a_{2}-a_{1}} \in a_{2} a_{3}, c_{q}=\widehat{q-a_{3}} \in$ $q a_{1} \subset d a_{1}$, and $c_{4}=\widehat{a_{4}-a_{1}} \in a_{4} a_{1} \subset d a_{1}$. Since $\triangle a_{3} a_{4} q \sim \triangle O c_{4} c_{q}$, we have $\rho_{\text {new }}\left(a_{3} ; q\right)=\left|a_{3} q\right| /\left|O c_{q}\right|=\left|a_{3} a_{4}\right| /\left|O c_{4}\right|=\rho_{\text {old }}\left(a_{3} ; a_{4}\right)=$ const, $t \in\left[t_{3} ; t_{2}\right]$. The function $\rho_{\text {new }}\left(q ; a_{1}\right)=\left|q a_{1}\right| /\left|O c_{1}\right|=t /\left|O c_{1}\right|$ is linear in t, and $\rho_{\text {new }}\left(a_{1} ; a_{2}\right)=\rho_{\text {old }}\left(a_{1} ; a_{2}\right)$. Thus, the self-perimeter function $f(t) \equiv$ $L^{-}\left(a_{1} a_{2} a_{3} q\right)$ is downwards convex in $t \in\left[t_{3} ; t_{2}\right]$. Among the quadrangles $\left\{a_{1} a_{2} a_{3} q\right\}$ we consider those for which $k\left(a_{1} a_{2} a_{3} q\right) \geq k\left(a_{1} a_{2} a_{3} a_{4}\right)$. Take the points $a_{5} \in\left(a_{1} a_{4}\right)$ and $\left\{b_{5}\right\}=\left(a_{1} a_{2}\right) \cap\left(a_{5} O\right)$. If $a_{5} \in a_{4} e_{4}$, then the canonicity of $a_{1} a_{2} a_{3} a_{4}$ implies $\left|O b_{5}\right| /\left|O a_{5}\right| \geq\left|O b_{4}\right| /\left|O a_{4}\right| \geq k$. If a_{5} satisfies the conditions $a_{4} \in e_{4} a_{5}$ and $\left|a_{1} a_{5}\right| \rightarrow \infty$, then $\left|O b_{5}\right| /\left|O a_{5}\right| \rightarrow 0$. By continuity, there is a point a_{5} such that $a_{4} \in a_{1} a_{5}$ and $\left|O b_{5}\right| /\left|O a_{5}\right|=k$. Set

$$
a_{6}= \begin{cases}d & \text { if } d \in a_{4} a_{5}, \\ a_{5} & \text { if } a_{5} \in a_{4} d,\end{cases}
$$

and $t_{4}=\left|a_{1} a_{6}\right|$, where $t_{3} \leq t_{4} \leq t_{2}$. The convexity of $f(t), t \in\left[t_{3} ; t_{4}\right]$, implies

$$
\begin{equation*}
\max _{\left[t_{3} ; t_{4}\right]} f(t)=\max \left\{f\left(t_{3}\right) ; f\left(t_{4}\right)\right\} . \tag{37}
\end{equation*}
$$

Consider the following four possible maxima of $f(t)$ in (37).
(a) Let $f_{\max }=f\left(t_{3}\right)$ and $e_{3}=e_{1}$. Then in $a_{1} a_{2} a_{3} e_{4}$ the central chord $a_{1} e_{1}$ satisfies $\left|O e_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=k, c_{2} \in a_{2} a_{3}$, and $c_{3} \in a_{3} a_{4}$, and the quadrangle is of second special type. Lemma 2.5 completes the proof.
(b) Let $f_{\text {max }}=f\left(t_{3}\right)$ and $e_{3}=e_{2}$. Then $a_{1} a_{2} a_{3} e_{4}$ contains a trapezium $\left(e_{4}=u, a_{1} a_{2} \| a_{3} u\right)$.
(c) Let $f_{\max }=f\left(t_{4}\right)$ and $a_{6}=d$. Then $a_{1} a_{2} a_{3} q=a_{1} a_{2} a_{3} d, d=\widehat{a_{3}-a_{2}}$, $\left\{w_{1}\right\}=a_{1} a_{2} \cap(d O), d w_{1} \| a_{4} w$, and $O \in \triangle a_{1} w_{1} d$. This case was considered in Lemma 2.1.
(d) Let $f_{\max }=f\left(t_{4}\right)$ and $a_{6}=a_{5}$. Then $a_{1} a_{2} a_{3} q=a_{1} a_{2} a_{3} a_{5}$ and $\left|O b_{5}\right| /\left|O a_{5}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=k, c_{2} \in a_{2} a_{3}, c_{3} \in a_{3} a_{5}$, and $r \in b_{2} a_{4} \subset b_{2} a_{5}$. This means that $a_{1} a_{2} a_{3} a_{5}$ is a quadrangle of first special type. The result of Lemma 2.4 completes the proof.
2. Suppose that $\left|O b_{2}\right| /\left|O a_{2}\right|>k=k\left(a_{1} a_{2} a_{3} a_{4}\right)$. Take auxiliary points as follows: $e_{1} \in O b_{1},\left|O e_{1}\right| /\left|O a_{1}\right|=k ; e_{2} \in a_{4} a_{1}, e_{1} e_{2}\left\|a_{1} a_{2} ; e_{7} \in\left(a_{4} a_{3}\right), O e_{7}\right\|$ $a_{1} a_{2} ; a_{8} \in a_{1} a_{2}, a_{8} O \| a_{3} a_{4} ;\left\{r^{\prime}\right\}=a_{4} a_{1} \cap\left(a_{8} O\right) ;\left\{a_{5}\right\}=\left(a_{1} a_{2}\right) \cap\left(e_{2} O\right)$; $a_{6} \in\left(a_{1} a_{2}\right), a_{6} F \| O a_{4}$. Further, we use the point $\{F\}=\left(a_{1} b_{1}\right) \cap\left(a_{2} a_{3}\right)$. Since $O \in \Omega$, we have $b_{1} \in a_{1} F, a_{3} \in a_{2} F$, and $b_{2} \in e_{2} r^{\prime} \subset a_{1} r$. Set $\left\{a_{7}\right\}=\left(a_{1} a_{2}\right) \cap\left(F e_{7}\right), a_{9} \in a_{1} a_{2}$ and $F a_{9} \| a_{4} a_{1} ;\left\{e_{i}\right\}=\left(a_{4} a_{3}\right) \cap\left(F a_{i}\right)$, where $i=5,6,7,9$. Write $t_{1}=\left|a_{1} a_{9}\right|$ and $t_{2}=\min \left\{\left|a_{1} a_{i}\right|: 5 \leq i \leq 7\right\}$. Denote by a_{10} the point such that $a_{10} \in\left(a_{1} a_{2}\right)$ and $\left|a_{1} a_{10}\right|=t_{2}$. Canonicity
of $a_{1} a_{2} a_{3} a_{4}$ yields

$$
\begin{equation*}
a_{1} a_{9} \subset a_{1} a_{2} \subset a_{1} a_{10} \subset \bigcap_{5 \leq i \leq 7} a_{1} a_{i} \tag{38}
\end{equation*}
$$

Consider an arbitrary point $M \in a_{9} a_{10}$ and introduce a parameter $t=$ $\left|a_{1} M\right|$, where $t \in\left[t_{1} ; t_{2}\right]$. Set $\{N\}=M F \cap\left(a_{4} a_{3}\right)$. If $\left|a_{1} a_{2}\right|=t_{0}$, then for $t=t_{0} \in\left[t_{1} ; t_{2}\right]$ we have $M N=a_{2} a_{3}$. The canonically given quadrangle $a_{1} M N a_{4}$ plays the role of a new normalizing figure of M^{2}.

Let us show that the self-perimeter function

$$
\begin{equation*}
f(t) \equiv L^{-}\left(a_{1} M N a_{4}\right), \quad t_{1} \leq t \leq t_{2} \tag{39}
\end{equation*}
$$

is downwards convex in t. Evidently, $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1} \in a_{1} a_{9} \subset a_{1} a_{2}$ and

$$
\begin{equation*}
\rho_{\mathrm{new}}\left(a_{4} ; a_{1}\right)=\rho_{\mathrm{old}}\left(a_{4} ; a_{1}\right) \tag{40}
\end{equation*}
$$

By (38), we have $c_{M}=\left(\widehat{M-a_{1}}\right)_{\text {new }} \in M N$ and $c_{2}=\widehat{a_{2}-a_{1}} \in a_{2} a_{3}$. The factors of homothety for the triangles $\triangle a_{1} M F \approx \triangle O c_{M} F$ and $\triangle a_{1} a_{2} F \approx$ $\triangle O c_{2} F$ are the same, so 11 implies

$$
\begin{align*}
\rho_{\text {new }}\left(a_{1} ; M\right) & =\left|a_{1} M\right| /\left|O c_{M}\right|=\left|a_{1} F\right| /|O F| \tag{41}\\
& =\left|a_{1} a_{2}\right| /\left|O c_{2}\right|=\rho_{\text {old }}\left(a_{1} ; a_{2}\right), \quad M \in a_{9} a_{10}
\end{align*}
$$

Set $c_{N}=(\widehat{N-M})_{\text {new }} \in N a_{4}$ and $c_{3}=\widehat{a_{3}-a_{2}} \in a_{3} a_{4}$. Find a point τ that satisfies $\tau \in\left(O c_{3}\right)$ and $c_{N} \tau \| a_{1} a_{2}$. The similarity $\triangle F N a_{3} \sim \triangle O c_{N} c_{3}$ implies

$$
\rho_{\text {new }}(M ; N)=|M F| /\left|O c_{N}\right|-|N F| /\left|O c_{N}\right|=|M F| /\left|O c_{N}\right|-\left|a_{3} F\right| /\left|O c_{3}\right|
$$

Set $\gamma_{1}=\left|a_{3} F\right| /\left|O c_{3}\right|$. Then

$$
\begin{equation*}
\rho_{\mathrm{new}}(M ; N)=|M F| /\left|O c_{N}\right|-\gamma_{1} \tag{42}
\end{equation*}
$$

The similarity $\triangle F M a_{2} \sim \triangle O c_{N} \tau$ implies $|M F| /\left|O c_{N}\right|=\left|F a_{2}\right| /|O \tau|$. This ratio does not depend on the choice of the metric of R^{2}, and hence we may assume $\angle a_{1} a_{2} a_{3}=\pi / 2$. Let $\angle c_{3} O c_{N}=\phi$ and $\angle c_{N} c_{3} O=\alpha$. In $\triangle O c_{N} c_{3}$ we find $\left|O c_{3}\right|=|O \tau| \cdot(1+\cot \alpha \cdot \tan \phi)$. From this and the equality $\angle a_{2} F M=$ $\angle c_{3} O c_{N}=\phi$ we conclude

$$
\begin{aligned}
\left|F a_{2}\right| /|O \tau| & =\left(\left|F a_{2}\right|+\cot \alpha \cdot\left|M a_{2}\right|\right) /\left|O c_{3}\right| \\
& =\left|F a_{2}\right| /\left|O c_{3}\right|+\cot \alpha \cdot\left(\left|a_{1} a_{2}\right|-t\right) /\left|O c_{3}\right|=\gamma_{2}-\gamma_{3} \cdot t
\end{aligned}
$$

where $\gamma_{2}=\left|F a_{2}\right| /\left|O c_{3}\right|+\cot \alpha \cdot\left|a_{1} a_{2}\right| /\left|O c_{3}\right|$ and $\gamma_{3}=\cot \alpha /\left|O c_{3}\right|$ are constants. By 42, the function

$$
\begin{equation*}
\rho_{\text {new }}(M ; N)=\left(\gamma_{2}-\gamma_{1}\right)-\gamma_{3} \cdot t, \quad t \in\left[t_{1} ; t_{2}\right] \tag{43}
\end{equation*}
$$

is linear in t. By construction, $b_{1} \in a_{4} N$ and $c_{4}=\widehat{a_{4}-a_{3}}=\widehat{a_{4}-N}$. Then

$$
\begin{align*}
\rho_{\text {new }}\left(N ; a_{4}\right) & =\left|N a_{4}\right| /\left|O c_{4}\right|=\left|a_{4} b_{1}\right| /\left|O c_{4}\right|+\left|b_{1} N\right| /\left|O c_{4}\right| \tag{44}\\
& \equiv \gamma_{4}+\left|b_{1} N\right| /\left|O c_{4}\right|
\end{align*}
$$

Find the points P and P_{1} that satisfy $P \in F N, b_{1} P \| a_{1} a_{2} ; P_{1} \in b_{1} F$, $P P_{1} \| N b_{1}$. The homothety $\triangle F a_{1} M \approx \triangle F b_{1} P$ implies that $\left|b_{1} P\right|=$ $\left|a_{1} M\right| \cdot\left|b_{1} F\right| /\left|a_{1} F\right|=\gamma_{5} t$, where $\gamma_{5}=\left|b_{1} F\right| /\left|a_{1} F\right|$ is a constant. We write $\angle b_{1} c_{3} O=\omega$ and $\angle P b_{1} P_{1}=\beta$. In $\triangle b_{1} P P_{1}$ we have $\angle b_{1} P P_{1}=\pi / 2-\omega$ and $\angle P P_{1} b_{1}=\pi / 2+\omega-\beta$. The sine theorem implies $\left|b_{1} P\right| / \cos (\omega-\beta)$ $=\left|b_{1} P_{1}\right| / \cos \omega=\left|P P_{1}\right| / \sin \beta$. From this and the homothety $\triangle F P_{1} P \approx$ $\triangle F b_{1} N$ we obtain

$$
\begin{aligned}
\left|b_{1} N\right| & =\left|P P_{1}\right| \cdot \frac{\left|b_{1} F\right|}{\left|P_{1} F\right|}=\frac{\left|b_{1} P\right| \cdot \sin \beta}{\cos (\omega-\beta)} \cdot \frac{\left|b_{1} F\right|}{\left|b_{1} F\right|-\left|b_{1} P_{1}\right|} \\
& =\frac{\left|b_{1} F\right| \cdot \sin \beta}{\cos \omega} \cdot \frac{\left|b_{1} P\right| \cdot \cos \omega / \cos (\omega-\beta)}{\left|b_{1} F\right|-\cos \omega \cdot\left|b_{1} P\right| / \cos (\omega-\beta)}
\end{aligned}
$$

From (44) we get
$\rho_{\text {new }}\left(N ; a_{4}\right)=\gamma_{4}-\frac{\left|b_{1} F\right| \cdot \sin \beta}{\left|O c_{4}\right| \cdot \cos \omega}+\frac{\left|b_{1} F\right|^{2} \cdot \sin \beta \cdot \cos (\omega-\beta) / \cos ^{2} \omega}{\left|b_{1} F\right| \cdot \cos (\omega-\beta) / \cos \omega-\left|b_{1} P\right|} \cdot \frac{1}{\left|O c_{4}\right|}$.
Introducing positive constants

$$
\begin{aligned}
& \gamma_{6}=\left|b_{1} F\right| \cdot \sin \beta /\left(\cos \omega \cdot\left|O c_{4}\right|\right) \\
& \gamma_{7}=\left|b_{1} F\right|^{2} \cdot \sin \beta \cdot \cos (\omega-\beta) /\left(\cos ^{2} \omega \cdot\left|O c_{4}\right|\right) \\
& \gamma_{8}=\left|b_{1} F\right| \cdot \cos (\omega-\beta) / \cos \omega
\end{aligned}
$$

we have

$$
\begin{equation*}
\rho_{\mathrm{new}}\left(N ; a_{4}\right)=\gamma_{4}-\gamma_{6}+\gamma_{7} /\left(\gamma_{8}-\gamma_{5} \cdot t\right) \tag{45}
\end{equation*}
$$

Since $\left|b_{1} F\right|>\left|b_{1} P_{1}\right|$, we have $\gamma_{8}-\gamma_{5} \cdot t>0$ for $t \in\left[t_{1} ; t_{2}\right]$. The right-hand side of (45) is a downwards convex function of t. By (40), 41, (43), and (45), the function (39), that is, $f(t)=L^{-}\left(a_{1} M N a_{4}\right)\left(t_{1} \leq t \leq t_{2}\right)$, is downwards convex in t. Therefore, $\max f(t)=\max \left\{f\left(t_{1}\right) ; f\left(t_{2}\right)\right\}$. Consider the following four possible maxima of $f(t)$ on $\left[t_{1} ; t_{2}\right]$:
(a) Suppose that $f_{\max }=f\left(t_{1}\right)$ and $a_{1} M N a_{4}=a_{1} a_{9} e_{9} a_{4}$ is a trapezium $\left(a_{4} a_{1} \| e_{9} a_{9}\right)$. Since $b_{1} \in a_{4} e_{9}$, it follows that $\left(e_{9} O\right) \cap\left(a_{4} a_{1}\right)=\left\{b_{9}\right\}$ is in $a_{4} a_{1}$. We have $\left|O b_{9}\right| /\left|O e_{9}\right| \in[k ; 1 / k]$, and from 19 we get $k\left(a_{1} a_{9} e_{9} a_{4}\right) \geq k$. The trapezium $T=a_{1} a_{9} e_{9} a_{4}$ majorizes $a_{1} a_{2} a_{3} a_{4}$.
(b) Suppose that $f_{\max }=f\left(t_{2}\right)$ and $a_{10}=a_{7}$. Then $a_{1} M N a_{4}=a_{1} a_{7} e_{7} a_{4}$. In the canonically given quadrangle $a_{1} a_{7} e_{7} a_{4}$ the points $c_{7}=\widehat{a_{7}-a_{1}}=e_{7}$, $\widehat{e_{7}-a_{7}} \in e_{7} a_{4}$, and the origin O meet the requirements of Lemma 2.1.
(c) Suppose that $f_{\max }=f\left(t_{2}\right)$ and $a_{10}=a_{6}$. Then $a_{1} M N a_{4}=a_{1} a_{6} e_{6} a_{4}$. In the canonically given quadrangle we have $\widehat{e_{6}-a_{6}}=a_{4},\left\{w_{1}\right\}=a_{1} a_{6} \cap$ $\left(a_{4} O\right), w_{1} a_{4} \| a_{6} e_{6}$, and $O \in \triangle a_{4} a_{1} w_{1}$. This case was considered in Lemma 2.1.
(d) Suppose that $f_{\max }=f\left(t_{2}\right)$ and $a_{10}=a_{5}$. Then $a_{1} M N a_{4}=a_{1} a_{5} e_{5} a_{4}$. By construction, $\left|O e_{2}\right| /\left|O a_{5}\right|=k, \widehat{a_{5}-a_{1}}=c_{5} \in a_{5} e_{5}, \widehat{e_{5}-a_{5}} \in e_{5} a_{4}$.

Take r_{1} such that $r_{1} \in a_{4} a_{1}, a_{5} r_{1}\left\|e_{5} a_{4}\right\| a_{3} a_{4}$. Since $a_{2} \in a_{1} a_{5}$, we have $a_{1} r_{1} \supset a_{1} r$ and $O \in \triangle r_{1} a_{1} a_{5}$. Moreover, if g_{1} is a center of the canonically given $a_{1} a_{5} e_{5} a_{4},\left\{w_{1}\right\}=a_{1} a_{5} \cap\left(a_{4} g_{1}\right)$, and $\left\{v_{1}\right\}=a_{4} w_{1} \cap a_{1} e_{5}$, then the inclusion $a_{4} a_{3} \subset a_{4} e_{5}$ implies $O \in \triangle g_{1} v_{1} e_{5}$. In analogy with 29), consider $\Omega_{1}=\left(\triangle r_{1} a_{1} a_{5}\right) \cap\left(\triangle g_{1} v_{1} e_{5}\right)$ with $O \in \Omega_{1}$. Therefore, case (d) is reduced to case 1 of the proof.

Thus, Theorem 1.3 is proved.
REMARK 2.6. In what follows, we mark the vertices of the trapezium $T=a_{1} a_{2} a_{3} a_{4}$ clockwise in such a way that $a_{4} a_{1} \| a_{2} a_{3}$ and $\left|a_{4} a_{1}\right| \geq\left|a_{2} a_{3}\right|$ with respect to the metric of the adjoint plane R^{2}. In this case always $c_{1} \in$ $a_{1} a_{2}, c_{3} \in a_{3} a_{4}$, and $c_{4} \in a_{4} a_{1}$.

LEMMA 2.6. Let $a_{1} a_{2} a_{3} a_{4}$ be a normalizing parallelogram, $\{m\}=a_{1} a_{3} \cap$ $a_{2} a_{4}$, and $O \in \triangle a_{1} a_{2} m$. Then the corresponding factor of symmetry satisfies

$$
k=k\left(a_{1} a_{2} a_{3} a_{4}\right)=\left|O b_{3}\right| /\left|O a_{3}\right|=\left|O b_{4}\right| /\left|O a_{4}\right|
$$

and for the self-perimeter we get

$$
\begin{equation*}
L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq 4+2(1 / k+k)=2 D^{2} /(D-1) \tag{46}
\end{equation*}
$$

Proof. The central chords $a_{3} b_{3}$ and $a_{4} b_{4}$ form homothetic triangles $\triangle O b_{3} b_{4} \approx \triangle O a_{3} a_{4}$. Moreover $\left|O b_{3}\right| /\left|O a_{1}\right|=\left|O b_{4}\right| /\left|O a_{4}\right|$. We look for points $e_{3,4}$ that satisfy $e_{3} \in a_{2} b_{2}, b_{3} e_{3} \| a_{2} a_{3}$ and $e_{4} \in a_{1} b_{1}, b_{4} e_{4} \| a_{1} a_{4}$, respectively. Since the chords $a_{i} b_{i}$ are central ones, we have $e_{3} \in O b_{2}, e_{4} \in O b_{1}$ and $\triangle O b_{4} e_{4} \approx \triangle O a_{4} a_{1}, \triangle O b_{3} e_{3} \approx \triangle O a_{3} a_{2}$. Therefore $\left|O b_{4}\right| /\left|O a_{4}\right|=$ $\left|O e_{4}\right| /\left|O a_{1}\right| \leq\left|O b_{1}\right| /\left|O a_{1}\right|$ and $\left|O b_{3}\right| /\left|O a_{3}\right|=\left|O e_{3}\right| /\left|O a_{2}\right| \leq\left|O b_{2}\right| /\left|O a_{2}\right|$, and hence $k=\left|O b_{3,4}\right| /\left|O a_{3,4}\right|$.

Denote by $L_{V}^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$ the self-perimeter of the parallelogram $a_{1} a_{2} a_{3} a_{4}$ in case the origin $O \in M^{2}$ is at some point V. Find points e_{1}, e_{2} that satisfy $e_{1} \in a_{1} a_{3}, e_{2} \in a_{2} a_{4}, e_{1} e_{2} \| a_{1} a_{2}$, and $O \in e_{1} e_{2}$. As mentioned in the proof of Proposition 2.4, the function $f(V)=L_{V}^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$, where $V \in e_{1} e_{2}$, is strictly downwards convex. By symmetry, $\max L_{V}^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=f\left(e_{1}\right)=$ $f\left(e_{2}\right)=L_{e}^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$, where $e=e_{2}$. In case $O=e$ we have $\rho\left(a_{4} ; a_{1}\right)$ $=\rho\left(a_{1} ; a_{2}\right)$ and $\rho\left(a_{2} ; a_{3}\right)=\rho\left(a_{3} ; a_{4}\right)$. Using the homotheties $\triangle a_{2} O c_{2} \approx$ $\triangle a_{2} a_{4} a_{3}$ and $\triangle a_{4} O c_{4} \approx \triangle a_{4} a_{2} a_{1}$, where $c_{2}=\widehat{a_{2}-a_{1}} \in a_{2} a_{3}$, we calculate

$$
\begin{aligned}
& \rho\left(a_{1} ; a_{2}\right)=\left|a_{4} a_{3}\right| /\left|O c_{2}\right|=\left|a_{4} a_{2}\right| /\left|O a_{2}\right|=1+\left|O a_{4}\right| /\left|O a_{2}\right|=1+1 / k, \\
& \rho\left(a_{3} ; a_{4}\right)=\left|a_{2} a_{1}\right| /\left|O c_{4}\right|=\left|a_{4} a_{2}\right| /\left|O a_{4}\right|=1+\left|O a_{2}\right| /\left|O a_{4}\right|=1+k .
\end{aligned}
$$

The latter equalities and (14) imply (46).
LEMMA 2.7. Let the vertices of the normalizing trapezium $a_{1} a_{2} a_{3} a_{4}$ be marked as in Remark 2.6, $O \in \triangle a_{1} a_{2} a_{4}$, and $\widehat{a_{2}-a_{1}}=c_{2} \in a_{3} a_{4}$. If $M \in a_{2} a_{3}$, then the self-perimeters of the trapeziums $a_{1} a_{2} a_{3} a_{4}$ and $a_{1} a_{2} M a_{4}$
satisfy

$$
\begin{equation*}
L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}\left(a_{1} a_{2} M a_{4}\right) \tag{47}
\end{equation*}
$$

Proof. By the hypothesis, $\widehat{a_{2}-a_{1}}=c_{2} \in a_{3} a_{4}$ and $\widehat{a_{3}-a_{1}}=e_{1} \in c_{2} c_{3}$ $\subset a_{3} a_{4}$. Proposition 2.5 implies that $\rho_{\text {old }}\left(a_{1} ; a_{2}\right)+\rho_{\text {old }}\left(a_{2} ; a_{3}\right)=\rho_{\text {old }}\left(a_{1} ; a_{3}\right)$. Set $\widehat{a_{4}-M}=c_{4}^{\prime} \in a_{4} a_{1}$. Then $\triangle O c_{4}^{\prime} c_{4} \sim \triangle a_{4} M a_{3}$. If the trapezium $a_{1} a_{2} M a_{4}$ is taken as a new normalizing figure of M^{2}, then $\rho_{\text {new }}\left(a_{4} ; a_{1}\right)=$ $\rho_{\text {old }}\left(a_{4} ; a_{1}\right)$ and

$$
\begin{equation*}
\rho_{\text {new }}\left(M ; a_{4}\right)=\left|M a_{4}\right| /\left|O c_{4}^{\prime}\right|=\left|a_{3} a_{4}\right| /\left|O c_{4}\right|=\rho_{\text {old }}\left(a_{3} ; a_{4}\right) \tag{48}
\end{equation*}
$$

The endpoint b_{1} of the central chord $a_{1} b_{1}$ in the trapezium $a_{1} a_{2} a_{3} a_{4}$ belongs to $a_{3} a_{4}$, i.e., $b_{1} \in a_{3} a_{4}$. We look for a point e_{2} on the chord $M b_{1}$ and, at the same time, on the side of $\triangle M a_{3} b_{1}$ such that $e_{1} e_{2}\left\|a_{3} M\right\| a_{2} a_{3}$.

The homotheties $\triangle b_{1} e_{1} e_{2} \approx \triangle b_{1} a_{3} M, \triangle b_{1} O e_{2} \approx \triangle b_{1} a_{1} M$, and $\triangle O e_{1} e_{2}$ $\approx \triangle a_{1} a_{3} M$ imply $\left|a_{1} a_{3}\right| /\left|O e_{1}\right|=\left|a_{1} b_{1}\right| /\left|O b_{1}\right|=\left|a_{1} M\right| /\left|O e_{2}\right|$. For a new normalizing trapezium $a_{1} a_{2} M a_{4}$, we have $\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=c_{2}^{\prime} \in M a_{4}$, $\left(\widehat{M-a}_{2}\right)_{\text {new }}=c_{M} \in M a_{4}$, and $(\widehat{M-a})_{\text {new }}=e_{3} \in M a_{4},\left\{e_{3}\right\}=O e_{2} \cap M a_{4}$. By Proposition 2.5,

$$
\begin{aligned}
& \rho_{\text {new }}\left(a_{1} ; a_{2}\right)+\rho_{\text {new }}\left(a_{2} ; M\right)=\rho_{\text {new }}\left(a_{1} ; M\right) \\
& \quad=\left|a_{1} M\right| /\left|O e_{3}\right| \geq\left|a_{1} M\right| /\left|O e_{2}\right|=\left|a_{1} a_{3}\right| /\left|O e_{1}\right|=\rho_{\text {old }}\left(a_{1} ; a_{3}\right)
\end{aligned}
$$

From this and (48) we get 47).
Definition 2.10. A normalizing trapezium $T=a_{1} a_{2} a_{3} a_{4}$ is called distinctive if its vertices are marked in accordance with Remark 2.6, $\widehat{a_{2}-a_{1}}=$ $c_{2} \in a_{3} a_{4}$, and the central chords $a_{1} b_{1}$ and $a_{2} b_{2}$ are such that $\left|O b_{1}\right| /\left|O a_{1}\right|=$ $\left|O b_{2}\right| /\left|O a_{2}\right|$.

LEMMA 2.8. The self-perimeter of a distinctive trapezium $T=a_{1} a_{2} a_{3} a_{4}$ satisfies

$$
\begin{equation*}
L^{-}(T) \leq 4+2(1 / k+k) \tag{49}
\end{equation*}
$$

where $k=k(T)$ is the factor of symmetry of T.
Proof. The cases of degeneration of T into a triangle or a parallelogram were considered in Corollary 2.5 and Lemma 2.6. In what follows, we assume that $\left|a_{4} a_{1}\right|>\left|a_{2} a_{3}\right|>0$. By Definition 2.10, the central chords $a_{i} b_{i}$ satisfy $\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|=\left|O b_{3}\right| /\left|O a_{3}\right|, b_{1} \in a_{3} a_{4}, b_{2,3} \in a_{4} a_{1}, b_{4} \in a_{1} a_{2}$. We also have $\widehat{a_{3}-a_{1}}=e_{1} \in c_{2} b_{1} \subset c_{2} c_{3} \subset a_{3} a_{4}$. We first consider the following particular cases.

1. Suppose that $k=\left|O b_{i}\right| /\left|O a_{i}\right|, 0 \leq i \leq 4$ (see 16). Find a point e_{2} that satisfies $e_{2} \in a_{4} a_{1}$ and $a_{3} e_{2} \| a_{2} a_{1}$. We intend to calculate the self-perimeter $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$.

The homothety $\triangle b_{4} O c_{1} \approx \triangle b_{4} a_{4} a_{1}$ implies

$$
\begin{equation*}
\left|a_{1} a_{4}\right|=\left|O c_{1}\right| \cdot\left|b_{4} a_{4}\right| /\left|O b_{4}\right|=\left|O c_{1}\right| \cdot\left(1+\left|O a_{4}\right| /\left|O b_{4}\right|\right)=\left|O c_{1}\right| \cdot(1+1 / k) . \tag{50}
\end{equation*}
$$

Therefore, $\rho\left(a_{4} ; a_{1}\right)=1+1 / k$. Since $\triangle a_{3} c_{3} O \approx \triangle a_{3} a_{4} b_{3}$, we have

$$
\rho\left(a_{3} ; a_{4}\right)=\left|a_{3} a_{4}\right| /\left|O c_{4}\right|=\left|a_{3} b_{3}\right| /\left|O b_{3}\right|=1+\left|O a_{3}\right| /\left|O b_{3}\right|=1+1 / k .
$$

By Proposition 2.5, $\rho\left(a_{1} ; a_{3}\right)=\rho\left(a_{1} ; a_{2}\right)+\rho\left(a_{2} ; a_{3}\right)$. The homothety $\triangle b_{1} O e_{1}$ $\approx \triangle b_{1} a_{1} a_{3}$ implies $\rho\left(a_{1} ; a_{3}\right)=\left|a_{1} a_{3}\right| /\left|O e_{1}\right|=\left|a_{1} b_{1}\right| /\left|O b_{1}\right|=1+\left|O a_{1}\right| /\left|O b_{1}\right|$ $=1+1 / k$. Finally,

$$
\begin{equation*}
L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)=3(1+1 / k) . \tag{51}
\end{equation*}
$$

Let us prove (49) for case 1 . Since c_{2} is in $a_{3} a_{4}$, we have $\left|O c_{1}\right| \geq$ $\left|a_{2} a_{3}\right|=\left|a_{1} e_{2}\right|=\left|a_{1} a_{4}\right|-\left|e_{2} a_{4}\right|$. Since $\triangle a_{1} c_{1} O \approx \triangle a_{1} b_{4} b_{1}$, we get $\left|b_{4} b_{1}\right|=$ $\left|O c_{1}\right| \cdot\left|a_{1} b_{1}\right| /\left|O a_{1}\right|=\left|O c_{1}\right|(1+k)$. The figure $a_{1} b_{4} b_{1} b_{2}$ is a parallelogram, $\left|a_{1} b_{2}\right|=\left|b_{4} b_{1}\right|$, and hence $\left|b_{2} a_{4}\right|=\left|a_{1} a_{4}\right|-\left|a_{1} b_{2}\right|=\left|O c_{1}\right| \cdot(1 / k-k)$. Using subsequently the homotheties $\triangle a_{4} b_{1} b_{2} \approx \triangle a_{4} a_{3} e_{2}, \triangle a_{1} a_{3} e_{2} \approx \triangle b_{3} b_{1} b_{2}$, and $\triangle O a_{1} a_{3} \approx \triangle O b_{1} b_{3}$, we obtain $\left|e_{2} a_{4}\right|=\left|b_{2} a_{4}\right| \cdot\left|a_{3} e_{2}\right| /\left|b_{1} b_{2}\right|=$ $\left|b_{2} a_{4}\right| \cdot\left|a_{1} a_{3}\right| /\left|b_{1} b_{3}\right|=\left|b_{2} a_{4}\right| \cdot\left|O a_{3}\right| /\left|O b_{3}\right|=\left|b_{2} a_{4}\right| / k$. Then we have $\left|e_{2} a_{4}\right|$ $=\left|O c_{1}\right| \cdot\left(1-k^{2}\right) / k^{2}$, and using (50| we obtain $\left|O c_{1}\right| \geq\left|a_{1} e_{2}\right|=$ $\left|O c_{1}\right| \cdot(1+1 / k)-\left|O c_{1}\right| \cdot\left(1-k^{2}\right) / k^{2} \geq 0$. From this we obtain $1 \geq$ $\left(2 k^{2}+k-1\right) / k^{2} \geq 0$ or $1 / 2 \leq k \leq(\sqrt{5}-1) / 2$. If $k \geq 1 / 2$, then $1 / k \leq 2 k+1$, and together with (51) this gives (49).
2. Suppose that $k=\left|O b_{4}\right| /\left|O a_{4}\right| \leq\left|O b_{1}\right| /\left|O a_{1}\right|$. Write $\left\{e_{3}\right\}=a_{1} b_{1} \cap a_{2} a_{4}$, and find a point e_{4} that satisfies $e_{4} \in O b_{1}$ and $e_{4} b_{4} \| a_{1} a_{4}$.
2.1. If $e_{3} \in e_{4} b_{1}$, then

$$
\left|O b_{4}\right| /\left|O a_{4}\right|=\left|O e_{4}\right| /\left|O a_{1}\right| \leq\left|O e_{3}\right| /\left|O a_{1}\right| \leq\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right| .
$$

In view of (16), the latter means that $k\left(\triangle a_{1} a_{2} a_{4}\right)=k=k(T)$. By Lemma 2.7 and Corollary 2.5, inequality (47) implies 49.
2.2. If $e_{4} \in e_{3} b_{1}$, then take the point $\left\{a_{5}\right\}=a_{2} a_{3} \cap\left(a_{4} e_{4}\right)$. By Lemma 2.7, for the trapezium $a_{1} a_{2} a_{5} a_{4}$ we have $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}\left(a_{1} a_{2} a_{5} a_{4}\right)$. Since $\triangle O e_{4} b_{4} \approx \triangle O a_{1} a_{4}$, we have $k=\left|O e_{4}\right| /\left|O a_{1}\right|=\left|O b_{4}\right| /\left|O a_{4}\right| \leq\left|O b_{2}\right| /\left|O a_{2}\right|$ $=\left|O b_{3}\right| /\left|O a_{3}\right|$ and $k\left(a_{1} a_{2} a_{5} a_{4}\right)=k$. Set $\left\{a_{6}\right\}=\left(a_{1} a_{2}\right) \cap\left(a_{4} a_{5}\right)$. Find a point e_{5} that satisfies $e_{5} \in a_{1} a_{4}$ and $e_{4} e_{5} \| a_{1} a_{2}$. Write $\left\{a_{7}\right\}=\left(e_{5} O\right) \cap\left(a_{1} a_{2}\right)$. With respect to the new normalizing trapezium $a_{1} a_{2} a_{5} a_{4}$ we have $\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=$ $c_{2}^{\prime} \in a_{5} a_{4}, \widehat{a_{5}-a_{2}}=c_{5} \in a_{5} a_{4}, \widehat{a_{1}-a_{4}}=c_{1} \in a_{1} a_{2}$, and $\left(\widehat{a_{4}-a_{5}}\right)_{\text {new }}=$ $c_{4}^{\prime} \in a_{4} a_{1}$. If $a_{6} \in a_{2} a_{7}$, then the homothety $\triangle O e_{4} e_{5} \approx \triangle O a_{1} a_{7}$ implies $k\left(\triangle a_{1} a_{6} a_{4}\right)=k$. By construction, $a_{1} a_{2} a_{5} a_{4} \subset \triangle a_{1} a_{6} a_{4}, \widehat{a_{6}-a_{1}}=c_{2}^{\prime}$, and $\widehat{a_{4}-a_{6}}=c_{4}^{\prime}$. Therefore, (4) implies $L^{-}\left(a_{1} a_{2} a_{5} a_{4}\right) \leq L^{-}\left(\triangle a_{1} a_{6} a_{4}\right)$. The latter inequality and Corollary 2.5 imply (49). If $a_{7} \in a_{2} a_{6}$, then find a point a_{8} that satisfies $a_{8} \in\left(a_{4} a_{5}\right)$ and $a_{7} a_{8} \| a_{1} a_{4}$. Since $\triangle O a_{1} a_{7} \approx \triangle O e_{4} e_{5}$, evidently $k\left(a_{1} a_{7} a_{8} a_{4}\right)=k$. In view of (4) and the relations $\left(\widehat{a_{7}-a}\right)_{\text {new }}$
$=c_{2}^{\prime} \in a_{5} a_{4},\left(\widehat{a_{8}-a_{7}}\right)_{\text {new }}=c_{5} \in a_{5} a_{4}, a_{1} a_{7} a_{8} a_{4} \supset a_{1} a_{2} a_{5} a_{4}$, the self-perimeter of the trapezium $a_{1} a_{7} a_{8} a_{4}$ satisfies $L^{-}\left(a_{1} a_{7} a_{8} a_{4}\right) \geq L^{-}\left(a_{1} a_{2} a_{5} a_{4}\right) \geq$ $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right)$. Since $\left|O b_{i}\right| /\left|O a_{i}\right|=k, i=1,4,7,8$, by construction case 2.2 is reduced to case 1 .
3. Suppose that $k=\left|O b_{1}\right| /\left|O a_{1}\right| \leq\left|O b_{4}\right| /\left|O a_{4}\right|$. Set $\left\{e_{6}\right\}=O b_{4} \cap$ $a_{1} a_{3}$, and find a point e_{7} that satisfies $e_{7} \in O b_{4}$ and $b_{1} e_{7} \| a_{4} a_{1}$, where $\triangle O a_{4} a_{1} \approx \triangle O e_{7} b_{1}$. Observe that $c_{2,3} \in a_{3} a_{4}$. The normalizing vector for the point $M \in a_{2} a_{3}$ is $\widehat{M-a}=c_{M} \in a_{3} a_{4}$, and by Proposition 2.5 we have $\rho\left(a_{1} ; a_{3}\right)=\rho\left(a_{1} ; M\right)+\rho\left(M ; a_{3}\right)$. With respect to the new normalizing trapezium $a_{1} M a_{3} a_{4} \subset M^{2}$ we have $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1}^{\prime}$ which is $O c_{1} \cap a_{1} M,\left|O c_{1}^{\prime}\right| \leq$ $\left|O c_{1}\right|$, and $\rho_{\text {new }}\left(a_{4} ; a_{1}\right) \geq \rho_{\text {old }}\left(a_{4} ; a_{1}\right)$. Evidently, $\rho_{\text {new }}\left(a_{3} ; a_{4}\right)=\rho_{\text {old }}\left(a_{3} ; a_{4}\right)$. Thus

$$
\begin{equation*}
L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}\left(a_{1} M a_{3} a_{4}\right), \quad M \in a_{2} a_{3} . \tag{52}
\end{equation*}
$$

3.1. If $e_{6} \in b_{4} e_{7}$, then the central chords $a_{1} b_{1}, a_{3} b_{3}, a_{4} e_{6}$ of $\triangle a_{1} a_{3} a_{4}$ satisfy $k=\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{3}\right| /\left|O a_{3}\right|=\left|O e_{7}\right| /\left|O a_{4}\right| \leq\left|O e_{6}\right| /\left|O a_{4}\right|$. By (16), we have $k\left(\triangle a_{1} a_{3} a_{4}\right)=k$, and by (52) with $M=a_{3}$ we have $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq$ $L^{-}\left(\triangle a_{1} a_{3} a_{4}\right)$. With Corollary 2.5, we get 49).
3.2. If $e_{7} \in b_{4} e_{6}$, then let $\left\{a_{5}\right\}=a_{2} a_{3} \cap\left(a_{1} e_{7}\right)$ and $\left\{b_{5}\right\}=\left(a_{5} O\right) \cap a_{4} a_{1}$. The self-perimeter of the new normalizing trapezium $a_{1} a_{5} a_{3} a_{4} \subset M^{2}$ satisfies (52) with $M=a_{5}$. The central chords $a_{1} b_{1}, a_{5} b_{5}, a_{3} b_{3}$, and $a_{4} e_{7}$ satisfy $k=\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{5}\right| /\left|O a_{5}\right|=\left|O b_{3}\right| /\left|O a_{3}\right|=\left|O e_{7}\right| /\left|O a_{4}\right|$. Thus, case 3.2 is reduced to case 1 , and Lemma 2.8 is proved.

Proof of Theorem 1.2. Let $k\left(P_{4}\right)$ and $k(T)$ be the factors of symmetry for a given normalizing quadrangle P_{4} and its majorizing trapezium T, respectively. The latter exists by Theorem 1.3 . In view of $\sqrt{14}$, condition (10) is equivalent to $k\left(P_{4}\right) \leq k(T)$. If (49) holds for an arbitrary trapezium, then the estimate (9) for the first self-perimeter holds due to the inequalities

$$
\begin{align*}
L^{-}\left(P_{4}\right) & \leq L^{-}(T) \leq 4+2(1 / k(T)+k(T)) \tag{53}\\
& \leq 4+2\left(1 / k\left(P_{4}\right)+k\left(P_{4}\right)\right)=2 D^{2} /(D-1)
\end{align*}
$$

The inequality (9) for the second self-perimeter $L^{+}\left(P_{4}\right)$ follows by duality.
Denote the vertices of the trapezium T in accordance with Remark 2.6, i.e., $T=a_{1} a_{2} a_{3} a_{4}, a_{4} a_{1} \| a_{2} a_{3}$ and $\left|a_{4} a_{1}\right| \geq\left|a_{2} a_{3}\right|$ in the adjoint plane R^{2}. Find a point $u \in a_{4} a_{1}$ such that $u a_{3} \| a_{1} a_{2}$. Write $\{m\}=a_{1} a_{3} \cap a_{2} a_{4}$ and $\{n\}=u a_{3} \cap a_{2} a_{4}$. The chord $u a_{3}$ and the diagonals $a_{1} a_{3}$ and $a_{2} a_{4}$ split T into six parts: $a_{1} a_{2} a_{3} a_{4}=\triangle a_{2} a_{3} m \cup \triangle a_{1} a_{2} m \cup a_{1} m n u \cup \triangle u n a_{4} \cup \triangle n m a_{3}$ $\cup \triangle a_{4} n a_{3}$.

Our reasonings depend on the possible location of the origin $O \in M^{2}$ with respect to the above mentioned parts of T.

1. Suppose that $O \in \triangle a_{2} a_{3} m \subset \triangle a_{2} a_{3} a_{4}$. Similarly to (23) (Proposition (2.7), we have $k=\left|O b_{i}\right| /\left|O a_{i}\right|, i=1,4$, where $a_{i} b_{i}$ are central chords in T. Take a point a_{5} in such a way that $a_{1} a_{5} a_{3} a_{4}$ is a parallelogram. Select $M \in b_{4} a_{5}$. Introduce a parameter $t=\left|b_{1} M\right|$ and set $t_{1}=\left|b_{1} b_{4}\right|$ and $t_{2}=\left|b_{1} a_{5}\right|$. Observe that $t_{1} \leq t \leq t_{2}$. Consider the new normalizing trapezium $a_{1} M a_{3} a_{4} \subset M^{2}$, and define the self-perimeter function

$$
f(t)=L^{-}\left(a_{1} M a_{3} a_{4}\right), \quad t \in\left[t_{1} ; t_{2}\right] .
$$

Write $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1}^{\prime} \in a_{1} M,(\widehat{M-a} 1)_{\text {new }}=c_{M} \in b_{4} b_{1} \subset a_{2} a_{3}$, and $\widehat{a_{3}-M}=\widehat{a_{3}-a_{2}}=c_{3} \in a_{3} a_{4}$. Evidently, $\rho_{\text {new }}\left(a_{3} ; a_{4}\right)=\rho_{\text {old }}\left(a_{3} ; a_{4}\right)$. The similarity $\triangle a_{1} M a_{2} \sim \triangle O c_{M} c_{2}$ implies $\rho_{\text {new }}\left(a_{1} ; M\right)=\left|a_{1} M\right| /\left|O c_{M}\right|=$ $\left|a_{1} a_{2}\right| /\left|O c_{2}\right|=\rho_{\text {old }}\left(a_{1} ; a_{2}\right)$. The function $\rho_{\text {new }}\left(M ; a_{3}\right)=\left|M a_{3}\right| /\left|O c_{3}\right|=$ $\left(t+\left|b_{1} a_{3}\right|\right) /\left|O c_{3}\right|$ is linear in t. The homothety $\triangle a_{1} M b_{1} \approx \triangle a_{1} c_{1}^{\prime} O$ yields $\rho_{\text {new }}\left(a_{4} ; a_{1}\right)=\left|a_{1} a_{4}\right| /\left|O c_{1}^{\prime}\right|=\left|a_{1} a_{4}\right| \cdot\left|a_{1} b_{1}\right| /\left(\left|O a_{1}\right| \cdot t\right)$. Thus, the function $f(t)$ is downwards convex on $\left[t_{1} ; t_{2}\right]$, and hence $\max f(t)=\max \left\{f\left(t_{1}\right) ; f\left(t_{2}\right)\right\}$.
(a) If $f_{\text {max }}=f\left(t_{2}\right)$, then $a_{1} M a_{3} a_{4}=a_{1} a_{5} a_{3} a_{4}$ is a parallelogram. We have $O \in \triangle a_{3} m a_{2} \subset \triangle a_{3} m^{\prime} a_{5}$, where $\left\{m^{\prime}\right\}=a_{1} a_{3} \cap a_{5} a_{4}$. Since $k=$ $\left|O b_{4}\right| /\left|O a_{4}\right|$, by Lemma 2.6 we have $k\left(a_{1} a_{5} a_{3} a_{4}\right)=k$ and 46) holds. In combination with (53) we get (9).
(b) If $f_{\max }=f\left(t_{1}\right)$, then $a_{1} M a_{3} a_{4}=a_{1} b_{4} a_{3} a_{4}$. The line through a_{4} parallel to $a_{1} b_{4}$ is a supporting one for the trapezium $a_{1} b_{4} a_{3} a_{4}$. We have $\left|O b_{4}\right| /\left|O a_{4}\right|=k=k\left(a_{1} a_{2} a_{3} a_{4}\right)$ by hypothesis, and $k\left(a_{1} b_{4} a_{3} a_{4}\right)=k$ by Corollary 2.4. By construction, $\left|b_{4} a_{3}\right| \leq\left|a_{1} a_{4}\right|$ and $b_{1} \in b_{4} a_{3}$, and hence $a_{1} b_{4} a_{3} a_{4}$ is affinely equivalent to the trapezium from Example 2.1 that shows the sharpness of inequality (9).
2. Suppose that $O \in a_{1} a_{2} n u=\left(\triangle a_{1} a_{2} m\right) \cup\left(a_{1} m n u\right)$. We have $b_{4} \in a_{1} a_{2}$. Construct a parallelogram $e_{1} a_{5} a_{3} a_{4}$ such that $e_{1} \in a_{4} a_{1}, b_{4} \in e_{1} a_{5}$, and $a_{2} \in$ $a_{5} a_{3}$. Mark the points $\widehat{a_{4}-a_{3}}=c_{4} \in a_{4} e_{1} \subset a_{4} a_{1},\left(\widehat{a_{1}-a_{4}}\right)_{\text {old }}=c_{1} \in a_{1} a_{2}$, $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1}^{\prime} \in e_{1} a_{5}, \widehat{a_{2}-a_{1}}=c_{2} \in a_{2} a_{3},\left(\widehat{a_{5}-a_{1}}\right)_{\text {new }}=c_{5} \in a_{5} a_{3}$, and $\widehat{a_{3}-a_{2}}=\widehat{a_{3}-a_{5}}=c_{3} \in a_{3} a_{4}$. The homotheties $\triangle b_{4} O c_{1}^{\prime} \approx \triangle b_{4} a_{4} e_{1}$ and $\triangle b_{4} O c_{1} \approx \triangle b_{4} a_{4} a_{1}$ imply $\rho_{\text {new }}\left(a_{4} ; e_{1}\right)=\left|a_{4} e_{1}\right| /\left|O c_{1}^{\prime}\right|=\left|a_{4} b_{4}\right| /\left|O b_{4}\right|=$ $\left|a_{4} a_{1}\right| /\left|O c_{1}\right|=\rho_{\text {old }}\left(a_{4} ; a_{1}\right)$. The similarities $\triangle O c_{5} c_{2} \sim \triangle b_{4} a_{5} a_{2} \sim \triangle b_{4} e_{1} a_{1}$ yield $\rho_{\text {new }}\left(e_{1} ; a_{5}\right)=\rho_{\text {old }}\left(a_{1} ; a_{2}\right)$.

Evidently, $\rho\left(a_{5} ; a_{3}\right) \geq \rho\left(a_{2} ; a_{3}\right)$ and $\rho_{\text {new }}\left(a_{3} ; a_{4}\right)=\rho_{\text {old }}\left(a_{3} ; a_{4}\right)$. Hence we have $L^{-}\left(a_{1} a_{2} a_{5} a_{4}\right) \leq L^{-}\left(e_{1} a_{5} a_{3} a_{4}\right)$. Set $\left\{m^{\prime}\right\}=e_{1} a_{3} \cap a_{5} a_{4}$. By construction, $O \in \triangle a_{4} e_{1} a_{5}$. If $O \in \triangle e_{1} a_{5} m^{\prime}$, then by Lemma 2.6 we have $k\left(e_{1} a_{5} a_{3} a_{4}\right)=\left|O b_{4}\right| /\left|O a_{4}\right| \geq k\left(a_{1} a_{2} a_{3} a_{4}\right)$. If $O \in \triangle a_{4} e_{1} m^{\prime}$, then $k\left(e_{1} a_{5} a_{3} a_{4}\right)$ $=\left|O b_{3}\right| /\left|O a_{3}\right| \geq k$. Combining this with (46) and (53), we get (9).
3. Suppose that $O \in \triangle u n a_{4}, c_{2,3} \in a_{3} a_{4}, b_{1} \in a_{3} a_{4}, b_{2,3} \in a_{4} u$, and $b_{4} \in a_{1} a_{2}$. Find a point e_{1} that satisfies $e_{1} \in a_{4} a_{1}$ and $e_{1} b_{1} \| a_{1} a_{2}$. Set $\left\{a_{5}\right\}=\left(a_{1} a_{2}\right) \cap\left(a_{4} a_{3}\right),\left\{b_{5}\right\}=a_{4} a_{1} \cap\left(a_{5} O\right)$, and $\left\{a_{6}\right\}=\left(a_{1} a_{2}\right) \cap\left(e_{1} O\right)$. The
homothety $\triangle O h_{1} e_{1} \approx \triangle O a_{1} a_{6}$ implies $\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O e_{1}\right| /\left|O a_{6}\right|$. Observe that $\widehat{a_{6}-a_{1}}=\widehat{a_{5}-a_{1}}=c_{2} \in a_{3} a_{4}$.
(a) If $\left|O b_{1}\right| /\left|O a_{1}\right| \leq\left|O b_{2}\right| /\left|O a_{2}\right|$, then $\left\{b_{2}^{\prime}\right\}=O b_{2} \cap b_{1} e_{1}, e_{1} \in b_{2} u$, $a_{2} \in a_{1} a_{6}$. If $a_{5} \in a_{2} a_{6}$, then $\triangle a_{1} a_{5} a_{4}$ is a new normalizing figure of M^{2}. Evidently, $\left|O b_{5}\right| /\left|O a_{5}\right| \geq\left|O e_{1}\right| /\left|O a_{6}\right|$. By (16) we have $k\left(\triangle a_{1} a_{5} a_{4}\right)=k$. The inclusion $a_{1} a_{2} a_{3} a_{4} \subset \triangle a_{1} a_{5} a_{4}, c_{2} \in a_{3} a_{4}$, and inequality (4) imply $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}\left(\triangle a_{1} a_{5} a_{4}\right)$. Combining this with Corollary 2.5 we get (9). If $a_{6} \in a_{2} a_{5}$, then the trapezium $T=a_{1} a_{6} a_{7} a_{4}$, where $a_{7} \in\left(a_{4} a_{3}\right)$ and $a_{7} a_{6} \| a_{4} a_{1}$, is a new normalizing figure of M^{2}. Set $\left\{b_{7}\right\}=a_{4} a_{1} \cap\left(a_{7} O\right)$ and $b_{6}=e_{1}$. Since $\left|O b_{6}\right| /\left|O a_{6}\right|=\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O b_{7}\right| /\left|O a_{7}\right|$, we obtain $k\left(a_{1} a_{6} a_{7} a_{4}\right)=k$, and the trapezium T is distinctive. The estimate (49) of Lemma 2.8 implies (9).
(b) If $\left|O b_{2}\right| /\left|O a_{2}\right| \leq\left|O b_{1}\right| /\left|O a_{1}\right|$, then $a_{6} \in a_{1} a_{2}$. Find points e_{2}, e_{3} that satisfy $e_{2} \in O b_{1}, e_{2} b_{2} \| a_{2} a_{1}$, and $e_{3} \in O b_{1} \cap a_{2} a_{4}$. If $e_{2} \in O e_{3}$, then $\triangle a_{1} a_{2} a_{4}$ is a new normalizing figure of M^{2}. Formula (16) and $\left|O b_{2}\right| /\left|O a_{2}\right|=$ $\left|O e_{2}\right| /\left|O a_{1}\right| \leq\left|O e_{3}\right| /\left|O a_{1}\right|$ imply $k\left(\triangle a_{1} a_{2} a_{4}\right)=k$. By Lemma 2.7 with $M=a_{2}$ in (47), and Corollary 2.5, we get (9). If $e_{3} \in O e_{2}$, then the trapezium $T=a_{1} a_{2} a_{7} a_{4}$, where $\left\{a_{7}\right\}=a_{2} a_{3} \cap\left(a_{4} e_{2}\right)$, is a new normalizing figure of M^{2}. Since $\left(\widehat{a_{2}-a_{1}}\right)_{\text {new }}=c_{2}^{\prime} \in a_{7} a_{4},\left|O e_{2}\right| /\left|O a_{1}\right|=\left|O b_{2}\right| /\left|O a_{2}\right|,\left|a_{2} a_{7}\right| \leq\left|a_{1} a_{4}\right|$, and $a_{2} a_{7} \| a_{1} a_{4}$, it follows that $T=a_{1} a_{2} a_{7} a_{4}$ is a distinctive trapezium and $k(T)=k$. By Lemma 2.7 we have $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}(T)$. Together with (49) we get (9).
4. Suppose that $O \in \triangle a_{4} n a_{3}, b_{1,2} \in a_{3} a_{4}, b_{3} \in a_{4} a_{1}, b_{4} \in a_{2} a_{3}$, and $c_{2,3} \in a_{3} a_{4}$. For this kind of trapezium, in analogy with the proof of Proposition 2.7. case (b), we can prove (23), i.e., $k\left(a_{1} a_{2} a_{3} a_{4}\right)=\left|O b_{1}\right| /\left|O a_{1}\right|$. Take the trapezium $a_{1} b_{4} a_{3} a_{4}$ in the capacity of a new normalizing one of M^{2}. The chords $a_{4} b_{4}, a_{3} b_{3}$, and $a_{1} b_{1}$ are simultaneously central ones for the trapeziums $a_{1} a_{2} a_{3} a_{4}$ and $a_{1} b_{4} a_{3} a_{4}$. From (16) we get $k\left(a_{1} b_{4} a_{3} a_{4}\right)=k=\left|O b_{1}\right| /\left|O a_{1}\right|$. For normalizing points we have $c_{2,3} \in a_{3} a_{4}$ and $\widehat{b_{4}-a_{1}}=c_{b} \in c_{2} c_{3}$. Then, by Proposition 2.5 ,

$$
\begin{aligned}
\rho_{\text {new }}\left(a_{1} ; b_{4}\right)+\rho_{\text {new }}\left(b_{4} ; a_{3}\right) & =\rho_{\text {new }}\left(a_{1} ; a_{3}\right)=\rho_{\text {old }}\left(a_{1} ; a_{3}\right) \\
& =\rho_{\text {old }}\left(a_{1} ; a_{2}\right)+\rho_{\text {old }}\left(a_{2} ; a_{3}\right) .
\end{aligned}
$$

Evidently, $\rho_{\text {new }}\left(a_{3} ; a_{4}\right)=\rho_{\text {old }}\left(a_{3} ; a_{4}\right)$. We have $\left(\widehat{a_{1}-a_{4}}\right)_{\text {old }}=c_{1} \in a_{1} a_{2}$ and $\left(\widehat{a_{1}-a_{4}}\right)_{\text {new }}=c_{1}^{\prime} \in a_{1} b_{4}$. Therefore $\left|O c_{1}^{\prime}\right| \leq\left|O c_{1}\right|$ and $\rho_{\text {new }}\left(a_{4} ; a_{1}\right) \geq$ $\rho_{\text {old }}\left(a_{4} ; a_{1}\right)$. Then $L^{-}\left(a_{1} a_{2} a_{3} a_{4}\right) \leq L^{-}\left(a_{1} b_{4} a_{3} a_{4}\right)$, where the origin $O \in$ $\triangle a_{1} b_{4} a_{4}$ is in the normalizing trapezium $a_{1} b_{4} a_{3} a_{4} \subset M^{2}$. Thus, case 4 is reduced to cases 2 and 3 , where the origin $O \in \triangle a_{1} a_{2} a_{4}$ is in the normalizing trapezium $a_{1} a_{2} a_{3} a_{4}$.
5. Suppose that $O \in \triangle n m a_{3}, b_{1,2} \in a_{3} a_{4}, b_{3} \in a_{4} a_{1}, b_{4} \in a_{2} a_{3}$, and $\widehat{a_{2}-a_{1}}=c_{2} \in a_{2} a_{3}$. In analogy with case 4 , we have $k=\left|O b_{1}\right| /\left|O a_{1}\right|$. Set
$\left\{e_{1}\right\}=\left(a_{1} b_{1}\right) \cap\left(a_{2} a_{3}\right)$, and find points e_{2}, e_{3} that satisfy $e_{2} \in a_{2} a_{3}, e_{2} a_{1} \| a_{3} O ;$ $e_{3} \in a_{4} b_{4}, e_{3} b_{1} \| a_{2} a_{3}$; and $\left\{e_{4}\right\}=a_{2} a_{3} \cap\left(a_{1} e_{3}\right)$. For the parallelogram $a_{1} a_{5} a_{3} a_{4}$, the vertex a_{5} is in $\left(a_{2} a_{3}\right)$. Define

$$
e_{5}= \begin{cases}e_{2} & \text { if } e_{4} \in e_{1} e_{2} \\ e_{4} & \text { if } e_{2} \in e_{1} e_{4}\end{cases}
$$

Write $t_{1}=\left|e_{1} e_{5}\right|$ and $t_{2}=\left|e_{1} a_{5}\right|$. Let $M \in a_{5} e_{5}$ and take $t=\left|e_{1} M\right| \in\left[t_{1} ; t_{2}\right]$ as a parameter. In analogy with case 1 , the function $f(t)=L^{-}\left(a_{1} M a_{3} a_{4}\right)$, $t \in\left[t_{1} ; t_{2}\right]$, is downwards convex.
(a) If $f_{\max }=f\left(t_{2}\right)$, then $a_{1} M a_{3} a_{4}=a_{1} a_{5} a_{3} a_{4}$ is a parallelogram. The origin O is in $\triangle n m a_{3} \subset \triangle a_{4} m^{\prime} a_{3}$, where $\left\{m^{\prime}\right\}=a_{1} a_{3} \cap a_{4} a_{5}$. By Lemma 2.6, we have $k\left(a_{1} a_{5} a_{3} a_{4}\right)=\left|O b_{1}\right| /\left|O a_{1}\right|=k$. Using (46), we get (9).
(b) If $f_{\text {max }}=f\left(t_{1}\right)$, then $a_{1} M a_{3} a_{4}=a_{1} e_{5} a_{3} a_{4}$ is a trapezium. Denote by $a_{4} b_{4}^{\prime}$ and $e_{5} e_{6}$ the central chords in $a_{1} e_{5} a_{3} a_{4}$ that correspond to a_{4} and e_{5}, respectively. By definition of e_{5}, we have $a_{4} e_{3} \subseteq a_{4} b_{4}^{\prime}$. Since $\triangle O e_{3} b_{1} \approx \triangle O a_{4} a_{1}$, it follows that $k=\left|O b_{1}\right| /\left|O a_{1}\right|=\left|O e_{3}\right| /\left|O a_{4}\right| \leq$ $\left|O b_{4}^{\prime}\right| /\left|O a_{4}\right|$. The chord $e_{5} e_{6}$ is also central in the trapezium $a_{1} a_{2} a_{3} a_{4}$. Hence $k \leq\left|O e_{6}\right| /\left|O e_{5}\right| \leq 1 / k$. By (16), we have $k\left(a_{1} e_{5} a_{3} a_{4}\right)=k$. If $e_{5}=e_{4}$, then $\left\{e_{3}\right\}=a_{4} b_{4} \cap a_{1} e_{4}$, and the origin $O \in \triangle a_{1} e_{5} a_{4}$ is located inside the new normalizing trapezium $a_{1} e_{5} a_{3} a_{4}$. Such a location of the origin in the normalizing trapezium has been considered in cases 2 and 3 (this is the case when $O \in \triangle a_{1} a_{2} a_{4}$ in the trapezium $a_{1} a_{2} a_{3} a_{4}$). If $e_{5}=e_{2}$, we have $\widehat{e_{5}-a_{1}}=\widehat{e_{2}-a_{1}}=a_{3}$. Then $O \in \triangle a_{4} b_{3} a_{3}$, where the chord $a_{3} b_{3}$ is central. The latter means that O is inside the normalizing trapezium of cases 3 and 4 (in these cases $O \in \triangle a_{4} u a_{3}$ in the trapezium $a_{1} a_{2} a_{3} a_{4}$).

Summarizing, Theorem 1.2 is proved.

REFERENCES

[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
[2] S. Gołąb, Some metric problems in the geometry of Minkowski planes, Prace Akademii Górniczej w Krakowie 6 (1932), 1-79 (in Polish, with French summary).
[3] B. Grünbaum, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55-57.
[4] B. Grünbaum, The perimeter of Minkowski unit discs, Colloq. Math. 15 (1966), 135-139.
[5] B. Grünbaum, Studies in Combinatorial Geometry and the Theory of Convex Bodies, Nauka, Moscow, 1971 (in Russian).
[6] F. Klein, Elementary Mathematics from an Advanced Standpoint: Geometry, Dover, New York, 2004.
[7] K. Leichtweiss, Konvexe Mengen, Deutsch. Verlag Wiss., Berlin, 1980.
[8] V. V. Makeev, On upper estimates for the perimeter of non-symmetric unit circles of Minkowski plane, Zap. Nauchn. Sem. LOMI 299 (2003), 262-266 (in Russian).
[9] H. Martini and A. I. Shcherba, On the self-perimeter of quandrangles for gauges, Beitr. Algebra Geom. 52 (2011), 191-203.
[10] H. Martini and A. I. Shcherba, On the self-perimeter of pentagonal gauges, Aequationes Math. 84 (2012), 157-183.
[11] H. Martini and A. I. Shcherba, On the stability of the unit circle with minimal self-perimeter in normed planes, Colloq. Math. 131 (2013), 69-87.
[12] H. Martini and K. J. Swanepoel, The geometry of Minkowski spaces-a survey, Part II, Expo. Math. 22 (2004), 93-144.
[13] H. Martini, K. J. Swanepoel and G. Weiss, The geometry of Minkowski spacesa survey, Part I, Expo. Math. 19 (2001), 97-142.
[14] H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in: Gesammelte Abhandlungen, Bd. 2, Berlin, 1911, 131-229.
[15] B. H. Neumann, On some affine invariants of closed convex regions J. London Math. Soc. 14 (1939), 262-272.
[16] A. I. Shcherba, On estimates for the self-perimeter of the unit circle of a Minkowski plane, Tr. Rubtsovsk. Ind. Inst. 12 (2003), 96-107 (in Russian).
[17] A. I. Shcherba, The unit disk of smallest self-perimeter in a Minkowski plane, Mat. Zametki 81 (2006), 125-135 (in Russian); English transl.: Math. Notes 81 (2007), 108-116.
[18] A. C. Thompson, Minkowski Geometry, Cambridge Univ. Press, Cambridge, 1996.

Horst Martini
Faculty of Mathematics
Technical University of Chemnitz 09107 Chemnitz, Germany
E-mail: martini@mathematik.tu-chemnitz.de

Anatoliy Shcherba
Department of Industrial Computer Technologies
Cherkasy State Technological University Shevchenko Blvd., 460
Cherkasy, 18006, Ukraine E-mail: shcherbaanatoly@gmail.com

[^0]: 2010 Mathematics Subject Classification: 28A75, 46B20, 52A10, 52A21, 52A38, 52A40.
 Key words and phrases: convex distance functions, gauges, Minkowski plane, normalizing figures, self-diameter, self-perimeter.

