VOL. 142

2016

NO. 2

UPPER ESTIMATES ON SELF-PERIMETERS OF UNIT CIRCLES FOR GAUGES

ΒY

HORST MARTINI (Chemnitz) and ANATOLIY SHCHERBA (Cherkasy)

Abstract. Let M^2 denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure *B* which, as a unit circle of M^2 , is not necessarily centered at the origin. Hence the self-perimeter of *B* has two values depending on the orientation of measuring it. We prove that this self-perimeter of *B* is bounded from above by the four-fold self-diameter of *B*. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.

1. Basic notions and main results. Let A^2 be an affine plane. In what follows, we identify the points of A^2 with their position vectors. Denote by $R^2 := (A^2, |\cdot|)$ the adjoint Euclidean plane with the Euclidean norm $|\cdot|$ which we use as an auxiliary metric. Let B be a compact convex figure on A^2 containing the origin O as an interior point. By ∂B and int(B) we denote the boundary and the interior of B, respectively. Each pair (B; O) uniquely defines a convex distance function or gauge $g_B(x)$. Namely, if $x \in A^2$, $x \neq O$, and $\hat{x} \in \partial B$ is on the ray Ox, then

(1)
$$g_B(x) = |x|/|\hat{x}| > 0.$$

The distance function $g_B(x)$ defines the *distance* between $x, y \in A^2$ by

(2)
$$\rho_B(x;y) = g_B(y-x).$$

DEFINITION 1.1. An affine plane A^2 with metric ρ_B given by (2) and (1) is called a *Minkowski plane* M^2 . The point O is called the *origin* of M^2 . The figure B is called the *normalizing figure* or *unit circle* (or *gauge*) of M^2 .

We note that the notion of "Minkowski plane" is frequently used also for the case of *normed planes*, where B has to be centered at O (see [18], [13], and [12]). However, it is to be noted for historical correctness that H. Minkowski, giving the axiomatic foundations of the relevant theory, also considered the general (non-symmetric) case.

²⁰¹⁰ Mathematics Subject Classification: 28A75, 46B20, 52A10, 52A21, 52A38, 52A40. Key words and phrases: convex distance functions, gauges, Minkowski plane, normalizing figures, self-diameter, self-perimeter.

In the following, we write ab, ab, and (ab) for the segment, ray, and line determined by two distinct points $a, b \in A^2$ (with a as starting point in the second case), and we denote by $\angle abc$ the (oriented) angle with apex b. For triangles we write $\triangle abc$, for quadrangles abcd, and a polygonal arc is denoted by \widehat{abc} , with vertices a, b, c. The symbols \sim and \approx are used for similarity and homothety, respectively, and \parallel stands for parallelity.

For a given segment ab in M^2 , the distance $\rho_B(a; b)$ is called the *length* of this segment.

DEFINITION 1.2. For a given segment $ab \ (a \neq b)$ the position vector of the point $\widehat{b-a} \in \partial B$ defined by

(3)
$$\widehat{b-a} = (b-a)/\rho_B(a;b)$$

is called the *normalizing vector* of the segment.

Let K be a compact, convex figure in M^2 . Denote by $L_B^+(K)$ the length of ∂K measured counter-clockwise, and by $L_B^-(K)$ the length of ∂K measured clockwise. Clearly, affine transformations of the plane preserve the collinearity of vectors (see [6, pp. 75–76]). Thus, from (1) and (2) it follows that the length of $\rho_B(a; b)$ and $L_B^{\pm}(K)$ are affine invariants of the plane M^2 (see also [13, p. 5]).

It is known that if M is a convex figure inside K, then (see [7, p. 110] and [18, p. 112]) then

(4)
$$L_B^{\mp}(M) \le L_B^{\mp}(K).$$

In what follows, we call $L^{-}(B) = L_{B}^{-}(B)$ the first self-perimeter of the unit circle B, and $L^{+}(B) = L_{B}^{+}(B)$ denotes its second self-perimeter. Golab [2] proved that if B is symmetric with respect to the origin O (i.e., M^{2} is a normed plane), then $L^{-}(B) = L^{+}(B) =: L(B)$, with the sharp estimates

$$(5) 6 \le L(B) \le 8.$$

If B is not centred at O, then still $L^{\mp}(B) \geq 6$. The equality $L^{-}(B) = 6$ or $L^{+}(B) = 6$ holds if and only if B is an affinely regular hexagon (see [3], [16], [17], and [11]). Simple examples show that there is no absolute constant that bounds the self-perimeters $L^{\mp}(B)$ for non-symmetric normalizing figures from above. Grünbaum [4] proved that it is possible to choose the origin O inside B in such a way that the self-perimeters satisfy

$$(6) L^{\mp}(B) \le 9.$$

The estimate (6) cannot be improved if B is a triangle Δ , i.e., in fact $\min_{O \in int(\Delta)} L^{\mp}(\Delta) = 9$. Further results in this direction were derived in [3], [16], [17], [9], and [10].

DEFINITION 1.3. The value

(7)
$$D(B) = \max_{x,y \in B} \rho(x;y)$$

is called the *self-diameter* of the normalizing figure B of M^2 .

In the present paper we give upper estimates on the self-perimeters $L^{\mp}(B)$ in terms of the self-diameter D = D(B) of the unit circle B of a Minkowski plane M^2 . Our main results are summarized in the following theorems.

THEOREM 1.1. If B is a unit circle of self-diameter D = D(B), then (8) $L^{\mp}(B) \leq 4D(B).$

We note that Theorem 1.1 is an almost immediate extension of the result of Gołąb [2], and it is sharp for centrally symmetric figures. On the other hand, our next theorem generalizes all three results: of Gołąb [2], of Grünbaum [4], and our Theorem 1.1.

THEOREM 1.2. If P_4 is a normalizing quadrangle of diameter $D = D(P_4)$, then

(9)
$$L^{\mp}(P_4) \le 2(D(P_4))^2/(D(P_4) - 1)$$

This estimate is sharp.

It should be noticed that (9) implies (8), (6), and the right-hand inequality of (5) for all polygons with at most four vertices.

The proof of Theorem 1.2, via special constructions, can be reduced to the case when the quadrangle is a trapezium. These constructions are interesting in their own right, and we collect the related results in the following theorem.

THEOREM 1.3. For a normalizing quadrangle P_4 there is a trapezium T such that

(i) $O \in int(T)$; (ii) the self-diameters of P_4 and T satisfy (10) $D(T) \leq D(P_4)$; (iii) the self-perimeters of P_4 and T satisfy

(11)
$$L^{-}(T) \ge L^{-}(P_4).$$

2. Proofs and further results. To prove these theorems, we need some additional properties of self-diameters of normalizing figures. Without loss of generality, we consider the normalizing figure B as lying in the adjoint Euclidean plane R^2 . We intend to prove that the diameter D(B) uniquely defines the factor of symmetry k = k(B) of the figure B with respect to the origin $O \in int(B)$. The factor of symmetry (cf. Definition 2.2 below) was introduced by H. Minkowski and B. Neumann (see [14], [15], and [5, §6]). DEFINITION 2.1. A chord nm of the unit circle B is called *central* if it passes through the origin $O \in int(B)$.

 Set

$$g(nm) = \min\{|Om|/|On|; |On|/|Om|\} \le 1,$$

where $n, m \in \partial B$ and $O \in nm$. Geometrically, g(nm) is the ratio in which O divides the central chord nm of the figure B.

DEFINITION 2.2. We define the *factor of symmetry* of the unit circle B by

(12)
$$k = \min_{nm} g(nm).$$

The support function $h_k(u)$, |u| = 1, of a compact convex figure $K \subset \mathbb{R}^2$ is defined by

$$h_K(u) = \max\{\langle x, u \rangle : x \in K\},\$$

where $\langle \cdot, \cdot \rangle$ means the *scalar product* of the Euclidean plane R^2 (see [1] and [7]).

B. Grünbaum [5, §6] remarks that the factor of symmetry k(B) can, equivalently to (12), be defined as follows:

(13)
$$k = \min_{|u|=1} \{ h_B(u) / h_B(-u); h_B(-u) / h_B(u) \}.$$

PROPOSITION 2.1. The diameter D = D(B) and the factor of symmetry k = k(B) of the unit circle B satisfy

(14)
$$D(B) = 1 + 1/k.$$

Proof. Let nm be a central chord of B that provides the minimum in (12), and set k = |Om|/|On|. By (7) we have

$$D = \max_{x,y \in B} \rho(x;y) \ge \rho_B(n;m) = (|nO| + |Om|)/|Om| = 1 + 1/k.$$

To prove (14) it is sufficient to show that $D \leq 1 + 1/k$. Denote by pq the chord of B that provides the maximum in (7), i.e., $D = \rho_B(p;q) = |pq|/|On|$, where $n = \widehat{q-p}$ (see (3)). Set $\{m\} = (pO) \cap \partial B$. Since B is convex, there exists $\{l\} = On \cap qm$. The homothety $\Delta mOl \approx \Delta mpq$ implies

(15)
$$D = |pq|/|On| \le |pq|/|Ol| = |pm|/|Om| = \rho_B(p;m) \le D.$$

For the central chord pm it follows from (15) and (12) that

D = (|pO| + |Om|)/|Om| = 1 + 1/k.

COROLLARY 2.1. If nm denotes a central chord of the unit circle B, then max $\rho_B(n;m) = D(B)$.

COROLLARY 2.2. If pq is a chord of the unit circle B such that $\rho_B(p;q) = D(B)$, then the central chord pm has length $\rho_B(p;m) = D(B)$, and $qm \subset \partial B$.

Indeed, (14) and (15) imply

 $1 + 1/k = D(B) = \rho_B(p;q) = |pq|/|On| = |pm|/|Om| = |pq|/|Ol|.$

In this case $l = n = \widehat{q - p} \in qm$, and the convexity of B implies $qm \subset \partial B$.

PROPOSITION 2.2. Let nm be a central chord of the unit circle B that provides the equality $\rho_B(n;m) = D(B)$. If H(m) is a supporting line of B at $m \in \partial B$, then the line H(n) that passes through $n \in \partial B$ in such a way that $H(n) \parallel H(m)$ is also a supporting line for B.

Proof. By (14) we have |Om|/|On| = k, where k = k(B) is the factor of symmetry. Assume that $H(n) \parallel H(m)$ is not a supporting line for B. Then there is a point $a \in \partial B$ such that $a \neq n$ and $aO \cap l(n) = b \neq a$. Write $\{c\} = H(m) \cap (aO)$ and $\{e\} = Oc \cap \partial B$. The homothety $\triangle Onb \approx \triangle Omc$ and the inequality |Ob| < |Oa| imply k = |Om|/|On| = |Oc|/|Ob| > |Oe|/|Oa|. Since *ae* is a central chord, we get a contradiction to (12).

COROLLARY 2.3. Suppose that the polygon B with vertices a_1, \ldots, a_l (in this order) is taken as a unit circle and a_ib_i are central chords of it $(1 \le i \le l)$. Then the factor of symmetry k(B) is equal to

(16)
$$k = \min\{|Ob_i|/|Oa_i| : 1 \le i \le l\},\$$

where the lengths of segments are given with respect to the auxiliary Euclidean metric.

Proof. Denote by nm a central chord of length $\rho_B(n;m) = D$, hence yielding |Om|/|On| = k. The existence of such a chord is guaranteed by Corollary 2.1. Consider first the case when m is one of the vertices of B, say $m = a_2$. Then the lines (a_1a_2) and (a_2a_3) are supporting ones for B at m. By Proposition 2.2, there are two different supporting lines $H_{1,2}(n)$ at $n \in \partial B$ such that $H_1(n) \parallel (a_1a_2)$ and $H_2(n) \parallel (a_2a_3)$. Therefore, n is also a vertex of B and (16) is fulfilled.

Now it is sufficient to consider the case when m and n do not coincide with a vertex of B. Suppose, for definiteness, that n is an interior point of a_1a_2 . By Proposition 2.2, the supporting line H(m) is parallel to a_1a_2 . The line H(m) contains one of the sides of B. Write $\{c_i\} = H(m) \cap (a_iO)$ and $\{b_i\} = \partial B \cap (a_iO)$ (i = 1, 2). The homothety $\triangle Ona_i \approx \triangle Omc_i$ implies

$$k = |Om|/|On| = |Oc_i|/|Oa_i| \ge |Ob_i|/|Oa_i|.$$

Since $a_i b_i$ are central chords of B, (12) implies $|Ob_i|/|Oa_i| = |Oc_i|/|Oa_i| = k$ and $c_i = b_i$. Moreover, the segment $b_1 b_2$ is contained in ∂B .

PROPOSITION 2.3. Suppose that $O \in int(B_1 \cap B_2)$, where B_1 and B_2 are compact, convex figures on \mathbb{R}^2 with factors of symmetry $k(B_i) = k_i$ (i = 1, 2). Then the factor of symmetry of the compact convex figure $B = B_1 \cap B_2$ satisfies

(17)
$$k(B) \ge k_0 = \min\{k_1; k_2\}.$$

Proof. Denote by $h_i(u)$ (|u| = 1) the support functions for B_i (i = 1, 2). Then the support function for B is $h_B(u) = \min\{h_1(u); h_2(u)\}$ (|u| = 1). If

$$\begin{cases} h_B(u) = h_1(u), \\ h_B(-u) = h_1(-u), \end{cases} \text{ or } \begin{cases} h_B(u) = h_2(u), \\ h_B(-u) = h_2(-u), \end{cases}$$

for some fixed unit vector u, then by (13) we have

$$k_0 \le h_B(u)/h_B(-u) \le 1/k_0.$$

Suppose, for definiteness, that $h_B(u) = h_1(u)$ and $h_B(-u) = h_2(-u)$. Then, again by (13), we have

$$k_0 \le h_1(u)/h_1(-u) \le h_1(u)/h_2(-u) = h_B(u)/h_B(-u)$$

$$\le h_2(u)/h_2(-u) \le 1/k_0,$$

and (17) follows.

COROLLARY 2.4. Suppose that $O \in M^2$ is an interior point of the segment nm. Denote by H(n;m) the strip between two parallel lines $H(n) \parallel H(m)$ through n and m, respectively. If k(B) = k and

(18)
$$k_1 \le |Om|/|On| \le 1/k_1$$

with respect to an auxiliary Euclidean metric, then the factor of symmetry of the convex figure $\tilde{B} = B \cap H(n;m)$ satisfies

(19)
$$k(\tilde{B}) \ge \min\left\{k; k_1\right\}.$$

PROPOSITION 2.4. If the unit circle of M^2 is the triangle $B = \triangle a_1 a_2 a_3$, then the factor of symmetry k(B) = k satisfies $0 < k \le 1/2$, and the oriented self-perimeters satisfy the following sharp estimates:

(20)
$$5 + 4k + 1/k \le L^{\mp}(B) \le 3 + 2(1/k + k/(1-k)).$$

Proof. The factor of symmetry k and the self-perimeter of $B \subset M^2$ are invariant with respect to the choice of an auxiliary Cartesian metric in the adjoint plane R^2 . Therefore, we may assume that $\triangle a_1 a_2 a_3$ is a right triangle. Denote by N the barycenter of $\triangle a_1 a_2 a_3$. Then we have $\triangle a_1 a_2 a_3 =$ $\triangle a_1 a_2 N \cup \triangle a_2 a_3 N \cup \triangle a_3 a_1 N$. Write

$$\{b_1\} = a_2 a_3 \cap (a_1 O), \quad \{b_2\} = a_3 a_1 \cap (a_2 O), \quad \{b_3\} = a_1 a_2 \cap (a_3 O).$$

Let us prove that if $O \in \triangle a_3 N a_2$, then $k = |Ob_1|/|Oa_1|$. By Corollary 2.3, it is sufficient to show that

$$|Ob_1|/|Oa_1| \le |Ob_{2,3}|/|Oa_{2,3}|.$$

We present the proof for the first of them. Write $\{M\} = a_1b_1 \cap (a_3N)$ and $\{c\} = a_1a_3 \cap (a_2M)$. Since $\triangle a_1a_2a_3$ is a right triangle, we have $\triangle a_2Ma_1 \approx$

 $\triangle cMb_1$ and $|Mb_1|/|Ma_1| = |cM|/|Ma_2|$. Take $g \in a_3b_1$ such that $cg \parallel a_1b_1$ and $\{e\} = cg \cap a_2b_2$. The homothety $\triangle a_2OM \approx \triangle a_2ec$ implies

 $|Ob_1|/|Oa_1| \le |Mb_1|/|Ma_1| = |cM|/|Ma_2| = |eO|/|a_2O| \le |b_2O|/|a_2O|.$ Let $\{P\} = a_2a_3 \cap (a_1N), Q \in NP$, and $OQ \parallel a_2a_3$. Then $\triangle a_1b_1P \approx \triangle a_1OQ$, and therefore

$$k = |Ob_1|/|Oa_1| = |PQ|/|a_1Q| \le |PN|/|a_1N| = 1/2.$$

Observe that, by duality, it is sufficient to prove (20) for $L^-(B)$ only. Mark the vertices of $\triangle a_1 a_2 a_3$ clockwise. Write $\{S\} = N a_3 \cap (OQ)$ and $\{T\} = N a_2 \cap (OQ)$. For every $V \in ST$, set $\{W\} = a_2 a_3 \cap (a_1 V)$. Evidently, $|VW|/|Va_1| = |Ob_1|/|Oa_1| = k$. Denote by $L_V^-(B)$ the first self-perimeter of $\triangle a_1 a_2 a_3$ in case when the origin $O \in M^2$ is located at V. The function $f(V) = L_V^-(B)$ is strictly convex downwards for $V \in ST$. This is a special case of a more general statement from [8]: the self-perimeter $L_V^{\pm}(B)$ is a strictly convex function of its center V, for any normalizing figure B of the plane M^2 .

Since f(V) is convex and symmetric with respect to $Q \in ST$, we have

$$\min_{V \in ST} L_V^-(B) = L_Q^-(B), \quad \max_{V \in ST} L_V^-(B) = L_S^-(B) = L_T^-(B).$$

We calculate $L_S^-(B)$ in the adjoint plane R^2 with the Cartesian coordinate system such that the vertices of the relevant triangle get the coordinates

$$a_3(0;0), a_1(0;1+k), a_2(1+k;0).$$

Then the points S, T, and Q get the coordinates S(k;k), T(1-k;k), and Q(1/2;k), respectively. It is easy to see that

 $\begin{array}{ll} \rho_S(a_3;a_1) = (1+k)/(1-k), & \rho_S(a_1;a_2) = \rho_S(a_2;a_3) = (1+k)/k.\\ \text{Therefore, } L^-(B) \leq L_S^-(B) = 3 + 2(1/k+k/(1-k)). \text{ For } L_Q^-(B) \text{ we have }\\ \rho_Q(a_1;a_2) = (1+k)/k \text{ and } \rho_Q(a_2;a_3) = \rho_Q(a_3;a_1) = 2(1+k). \text{ Hence } L^-(B)\\ \geq L_Q^-(B) = 5 + 1/k + 4k. \text{ Evidently, the estimates in } (20) \text{ are sharp, i.e.,}\\ \text{they can be achieved.} \quad \bullet \end{array}$

COROLLARY 2.5. If the normalizing quadrangle P_4 degenerates to a triangle, then the estimate (9) is still valid.

Evidently, for $0 < k \le 1/2$ we have $2k/(1-k) \le 2k+1$. This inequality together with (20) and (14) implies $L^{\mp}(\Delta) \le 4 + 2(1/k+k) = 2D^2/(D-1)$.

The following example shows the sharpness of (9). The unit circle in this example is a quadrangle with given factor of symmetry.

EXAMPLE 2.1. Endow a plane R^2 with a Cartesian coordinate system, origin O(0;0), and a trapezium $a_1a_2a_3a_4$ with vertices

 $a_1(-k;-1), a_2(-k;k), a_3(t;k), a_4(1;-1), k \in (0;1], t \in [k^2;1],$ as a normalizing figure *B*. To find the factor of symmetry $k(a_1a_2a_3a_4)$, mark the points $b_1(k^2; k) \in a_2a_3$ and $b_3(-k; -k^2/t) \in a_1a_2$. Since $|Oa_2|/|Oa_4| = k$, $|Ob_1|/|Oa_1| = k$, and $|Ob_3|/|Oa_3| = k/t$ ($\in [k; 1/k]$), by (16) we have $k(a_1a_2a_3a_4) = k$. To find the self-perimeter $L^-(a_1a_2a_3a_4)$, evaluate the lengths of the sides of the trapezium using (1) and (3). Evidently, we have $(a_1 - a_4)(-k; 0)$ and $(a_2 - a_1)(0; k)$, and hence $\rho(a_4; a_1) = \rho(a_1; a_2) = (1+k)/k$. Mark the points

$$c_1(t;0), \ c_2(1;0), \ c_3(0;-1), \widehat{a_3 - a_2} = c_4 \in a_3 a_4, \ \widehat{a_4 - a_3} = c_5 \in a_4 a_1.$$

Via the similarities $\triangle Oc_3c_5 \sim \triangle a_3c_1c_4 \sim \triangle a_4c_2c_4$, we find the points $c_4((k+t)/(k+1); 0)$ and $c_5((1-t)/(k+1); -1)$. Then $\rho(a_2; a_3) = \rho(a_3; a_4) = 1 + k$ and $L^-(a_1a_2a_3a_4) = 4 + 2(k+1/k)$. In accordance with (14) we have $L^-(a_1a_2a_3a_4) = 2D^2/(D-1)$.

Denote by $d(K_1; K_2)$ the Hausdorff distance between compact, convex sets K_1 and K_2 in \mathbb{R}^2 (see, for instance, [5, §2]),

$$d(K_1; K_2) = \min\{\lambda \ge 0 : K_1 \subset K_2 + \lambda E, K_2 \subset K_1 + \lambda E\},\$$

where E is the unit circle of R^2 . A sequence of figures B_1, B_2, \ldots converges to the figure B if $d(B_{\nu}; B) \to 0$ as $\nu \to \infty$.

Proof of Theorem 1.1. For a compact, convex figure B with interior points, we apply a classical theorem on the approximation of B by polygons (see [1, §27]). There is a sequence B_1, B_2, \ldots of convex polygons which contain B and converge to it. By continuity for self-perimeters in M^2 , we have

$$\lim_{v \to \infty} L^{\mp}(B_v) = L^{\mp}(B), \quad \lim_{v \to \infty} D(B_v) = D(B).$$

Thus (8) is enough to prove our statement for a polygon B. Consider the centrally symmetric figure $\Delta B = \frac{1}{2}B + \frac{1}{2}(-B)$ (called the *central symmetral* of B), where (-B) = (-1)B. We can assume that B is a polygon with non-parallel sides. Then any side of ΔB is parallel either to a side of B or to a side of -B, and its length is half the length of the corresponding side of B or -B. Thus, for a normalizing figure C centered at O we have

(21)
$$L_C^{\mp}(\Delta B) = L_C^{\mp}(B).$$

According to Definition 2.2, for the symmetry coefficient k the inclusion $-B \subseteq \frac{1}{k}B$ holds. From this and from (14) we obtain

$$\Delta B = \frac{1}{2}(B - B) \subseteq \frac{1}{2}\left(1 + \frac{1}{k}\right)B = \frac{1}{2}DB,$$

i.e., DB contains B+(-B) (the *difference body* of B). Therefore, the distance functions g_B and $g_{\Delta B}$ satisfy

$$g_B(x) = \frac{D}{2}g_{DB/2}(x) \le \frac{D}{2}g_{\Delta B}(x)$$

(note that $g_{\Delta B}$ is an even function). Choosing in (21) the figure $C = \Delta B$, we obtain

$$L^{\mp}(B) = L_B^{\mp}(B) \le \frac{D}{2} L_{\Delta B}^{\mp}(\Delta B).$$

Applying (5) to the centrally symmetric figure ΔB , we come to (8), and Theorem 1.1 is proved.

To prove Theorem 1.3 we need some auxiliary statements.

PROPOSITION 2.5 (see [13] for details). The equality in the triangle inequality $\rho_B(a;c) \leq \rho_B(a;b) + \rho_B(b;c)$ for a Minkowski plane is only possible if the segment xy, where x = b - a and y = c - b, lies on the boundary of the unit circle B.

If the normalizing figure in M^2 is a polygon P_n , then we mark its vertices clockwise: $P_n = a_1 \dots a_n$. For completeness, we formulate here the analogues of Proposition 2 and Definitions 2 and 3 from [9] (see also [10, §3]).

PROPOSITION 2.6. Suppose the normalizing figure $P_4 = a_1a_2a_3a_4$ is not a trapezium. Then one can always choose an auxiliary metric and the order of the vertices in M^2 in such a way that the coordinates of the vertices become

 $a_1(-(1+y)x/y;1), a_2(1;1), a_3(1;0), a_4(0;-y),$

where x and y are some positive numbers.

DEFINITION 2.3. A normalizing quadrangle $a_1a_2a_3a_4 \subset M^2$ is called canonically given if it meets the requirements of Proposition 2.6.

REMARK 2.1. In the notation of the canonically given quadrangle the first vertex is uniquely determined, i.e., if $a_1a_2a_3a_4$ is canonically given, then $a_2a_3a_4a_1$ is not.

DEFINITION 2.4. If $a_1a_2a_3a_4$ is a canonically given quadrangle, then the point of intersection of the two lines through a_4 and a_3 which are parallel to a_3a_2 and a_2a_1 , respectively, is called the *center* of the quadrangle.

REMARK 2.2. In the auxiliary metric used for proving Proposition 2.6, the center g of the canonically given quadrangle $P_4 = a_1 a_2 a_3 a_4$ coincides with the origin of the Cartesian coordinate system, i.e., g = (0,0). We note that we will use also other auxiliary metrics on \mathbb{R}^2 , with $g \neq (0,0)$; see, for example, the proof of Lemma 2.4.

Let $\{m\} = a_1 a_3 \cap a_2 a_4$. The diagonals $a_1 a_3$ and $a_2 a_4$ split the quadrangle $a_1 a_2 a_3 a_4$ into four triangles, $\triangle a_1 m a_4$, $\triangle a_2 m a_1$, $\triangle a_3 m a_2$, $\triangle a_4 m a_3$.

PROPOSITION 2.7. Let $a_1a_2a_3a_4$ be a canonically given normalizing quadrangle. Let a_ib_i be its central chords ($0 \le i \le 4$). With respect to our auxiliary metric, the factor of symmetry $k = k(a_1a_2a_3a_4)$ can be evaluated as follows:

(a) if the origin O is in $\triangle a_1 a_2 a_4$, then

(22) $k = \min\{|Ob_i|/|Oa_i| : i \neq 3\};$

(b) if $O \in \triangle a_2 a_3 a_4$, then

(23)
$$k = |Ob_1|/|Oa_1|.$$

Proof. If $O \in \triangle a_1 m a_4$, then $b_1 \in a_3 a_4$, $b_{2,3} \in a_4 a_1$, and $b_4 \in a_1 a_2$. Find points $e_1 \in (a_1 O)$ with $a_4 e_1 \parallel a_1 a_2$ and $e_2 \in (a_3 O)$ with $b_2 e_2 \parallel a_3 a_2$. Since $a_1 a_2 a_3 a_4$ is canonically given, we have $b_1 \in Oe_1$ and $e_2 \in Ob_3$. The homothety $\triangle Oa_2 a_3 \approx \triangle Ob_2 e_2$ implies

(24)
$$|Ob_2|/|Oa_2| = |Oe_2|/|Oa_3| \le |Ob_3|/|Oa_3|.$$

If $O \in \triangle a_2ma_1$, then $b_1 \in a_2a_3$, $b_2 \in a_4a_1$, and $b_{3,4} \in a_1a_2$. Find e_3 in (Oa_3) with $a_4e_3 \parallel a_1a_2$. Since $a_1a_2a_3a_4$ is canonically given and $\triangle Ob_4b_3 \approx \triangle Oa_4e_3$, we have $|Ob_4|/|Oa_4| = |Ob_3|/|Oe_3| \leq |Ob_3|/|Oa_3|$. From this, together with (24) and (16), we obtain (22).

If $O \in \triangle a_3 m a_2$, then $b_{1,4} \in a_2 a_3$, $b_2 \in a_3 a_4$, and $b_3 \in a_1 a_2$. Find points e_i that satisfy $e_4 = (a_1 a_2) \cap (a_4 b_4)$; $e_1 \in (a_1 b_1)$, $b_2 e_1 \parallel a_1 a_2$; $e_3 \in (a_4 b_4)$, $a_3 e_3 \parallel a_1 a_2$; $e_2 \in (a_1 b_1)$, $a_4 e_2 \parallel a_3 a_2$. The canonicity of $a_1 a_2 a_3 a_4$ implies $b_4 \in Oe_4$, $b_1 \in Oe_1$, $e_3 \in Oa_4$, and $e_2 \in Oa_1$. The homotheties $\triangle Ob_1 b_4 \approx \triangle Oe_2 a_4$, $\triangle Oe_4 b_3 \approx \triangle Oe_3 a_3$, and $\triangle Oe_1 b_2 \approx \triangle Oa_1 a_2$ yield

$$\begin{aligned} |Ob_1|/|Oa_1| &\leq |Ob_1|/|Oe_2| = |Ob_4|/|Oa_4| \leq |Oe_4|/|Oa_4| \\ &\leq |Oe_4|/|Oe_3| = |Ob_3|/|Oa_3| \end{aligned}$$

and $|Ob_1|/|Oa_1| \le |Oe_1|/|Oa_1| = |Ob_2|/|Oa_2|$. Combining this with (16), we get (23).

If $O \in \triangle a_4 m a_3$, then $b_{1,2} \in a_3 a_4$, $b_3 \in a_4 a_1$, and $b_4 \in a_2 a_3$. Find points e_i that satisfy $e_1 \in (a_2 b_2)$, $b_1 e_1 \parallel a_1 a_2$; $e_2 \in (a_4 b_4)$, $b_2 e_2 \parallel a_1 a_2$; $e_3 \in (a_3 b_3)$, $b_2 e_3 \parallel a_2 a_3$; $e_4 \in (a_4 b_4)$, $b_1 e_4 \parallel a_4 a_1$. The canonicity of $a_1 a_2 a_3 a_4$ implies $e_1 \in Ob_2$, $e_2 \in Oa_4$, $e_3 \in Ob_3$, and $e_4 \in Ob_4$. The homotheties $\triangle Ob_1 e_1 \approx \triangle Oa_1 a_2$, $\triangle Ob_2 e_3 \approx \triangle Oa_2 a_3$, and $\triangle Ob_1 e_4 \approx \triangle Oa_1 a_4$ yield

$$|Ob_1|/|Oa_1| = |Oe_1|/|Oa_2| \le |Ob_2|/|Oa_2| = |Oe_3|/|Oa_3| \le |Ob_3|/|Oa_3|;$$

$$|Oo_1|/|Oa_1| = |Oe_4|/|Oa_4| \le |Oo_4|/|Oa_4|$$

In combination with (16), we get (23).

Our treatments essentially depend on the possible location of the origin O inside a canonically given quadrangle $a_1a_2a_3a_4$. Denote by g the centre of the quadrangle $a_1a_2a_3a_4$ and draw the lines (a_3g) and (a_4g) . Set $\{u\} = a_4a_1 \cap (a_3g)$ and $\{w\} = a_1a_2 \cap (a_4g)$.

DEFINITION 2.5. We use the following notation for normalizing vectors of the sides of a canonically given quadrangle $P_4 = a_1 a_2 a_3 a_4$:

$$c_1 = a_1 - a_4$$
, $c_2 = a_2 - a_1$, $c_3 = a_3 - a_2$, $c_4 = a_4 - a_3$.

Observe that Definition 2.5 implies $c_1 \in a_1 a_2$ and $c_4 \in a_4 a_1$.

Set $\{v\} = a_1a_3 \cap a_4w$ and $\{n\} = a_2a_4 \cap a_3u$. Remember that we have already defined the points $\{g\} = a_3u \cap a_4w$ and $\{m\} = a_1a_3 \cap a_2a_4$. The chords a_3u , a_4w and the diagonals a_1a_3 , a_2a_4 split the canonically given quadrangle $a_1a_2a_3a_4$ into nine parts: six triangles Δa_1wv , Δa_3ma_2 , Δuga_4 , Δa_4gn , Δa_4na_3 , Δnma_3 and three quadrangles a_1vgu , wa_2mv , vmng. In view of Proposition 2.7 and Definition 2.5, the location of the origin O inside one of these parts uniquely defines the locations of c_i on the sides of $a_1a_2a_3a_4$ and implies either (22) or (23) for the factor of symmetry $k(a_1a_2a_3a_4)$.

DEFINITION 2.6. We say that a normalizing quadrangle P_4 is majorized by a trapezium T if the trapezium meets all the requirements of Theorem 1.3, i.e., $O \in int(T)$ and the inequalities (10) and (11) are satisfied.

REMARK 2.3. In accordance with (14), it is possible to replace the inequality (10) in Definition 2.6 by the condition $k(P_4) \leq k(T)$ on the respective factors of symmetry.

REMARK 2.4. Let l_0 be a line through the origin $O \in int(B)$. Let B'be a figure axially symmetric with respect to l_0 . Then $L^{\mp}(B) = L^{\pm}(B')$. In what follows, we refer to this fact as *duality*. Due to duality, it is sufficient to prove Theorem 1.3 for the first self-perimeter $L^{-}(P_4)$ of the quadrangle P_4 .

REMARK 2.5. In what follows, we mark the lengths and self-perimeters with respect to an old and new normalizing figure B with subscript "old" or "new", respectively. Namely, if P is an old normalizing polygon and P' is the new one, then we write $L^{-}(P) = L_{old}^{-}(P)$ in case B = P, and $L^{-}(P') = L_{new}^{-}(P')$ in case B = P'.

The following two corollaries are consequences of our main theorems.

LEMMA 2.1. If $O \in \triangle a_1 w a_4 \cup \triangle a_4 g a_3$, then the canonically given quadrangle $a_1 a_2 a_3 a_4$ can be majorized by some trapezium T.

Proof. Observe that $\triangle a_1 w a_4 = \triangle a_1 v a_4 \cup \triangle a_1 w v$.

1. If $O \in \triangle a_1 v a_4$, then the normalizing vectors c_i and the endpoints b_i of the central chords $a_i b_i$ are located as follows: $c_3 \in a_4 a_1$, c_2 is on the polygonal arc $\widehat{a_2 a_3 a_4}$, $b_1 \in a_3 a_4$, $b_{2,3} \in a_4 a_1$, $b_4 \in a_1 a_2$ (see Definition 2.5 and (22)). Find points a_5 and b_5 that satisfy $a_5 \in (a_2 b_1)$, $a_4 a_5 \parallel a_1 a_2$, and $\{b_5\} = a_1 a_2 \cap (a_5 O)$. Taking the trapezium $a_1 a_2 a_5 a_4$ as a new normalizing figure of M^2 , we see that $(\widehat{a_1 - a_4})_{\text{new}} = (\widehat{a_1 - a_4})_{\text{old}} = c_1, (\widehat{a_2 - a_1})_{\text{new}} = c_2' \in a_2 b_1 \subset a_2 a_5$ and $|Oc_2'| \leq |Oc_2|$, where $a_2 b_1$ subtends the arc $\widehat{a_2 a_3 b_1}$. Then

 $\rho_{\text{old}}(a_4; a_1) = \rho_{\text{new}}(a_4; a_1), \quad \rho_{\text{old}}(a_1; a_2) \le \rho_{\text{new}}(a_1; a_2).$ Let $c'_4 = \widehat{a_4 - a_5}$ and $c'_5 = \widehat{a_5 - a_2} = \widehat{b_1 - a_2}$. Since $c_{3,4}, c'_{4,5} \in a_4 a_1$, by Proposition 2.5 we have $\rho_{\text{old}}(a_2; a_3) + \rho_{\text{old}}(a_3; a_4) = \rho_{\text{old}}(a_2; a_4) = \rho_{\text{new}}(a_2; a_4) = \rho_{\text{new}}(a_2; a_5) + \rho_{\text{new}}(a_5; a_4).$

The homothety $\triangle Oa_5a_4 \approx \triangle Ob_5b_4$ implies $|Ob_5|/|Oa_5| = |Ob_4|/|Oa_4|$. The segments a_ib_i (i = 1, 2, 4) are central chords of $a_1a_2a_3a_4$ and $a_1a_2a_5a_4$. By (22), we have $k(a_1a_2a_5a_4) = k(a_1a_2a_3a_4) = k$. Therefore, the trapezium $T = a_1a_2a_3a_4$ majorizes $a_1a_2a_3a_4$.

2. If $O \in \triangle a_1 wv$, then the points c_i and b_i are located as follows: $c_3 \in a_4a_1, b_1 \in a_2a_3, b_2 \in a_4a_1, b_{3,4} \in a_1a_2, c_2 \in a_2b_1 \subset a_2a_3$. By Proposition 2.5, $\rho(b_1; a_4) = \rho(b_1; a_3) + \rho(a_3; a_4)$ and $L^-(a_1a_2a_3a_4) = L^-(a_1a_2b_1a_4)$. The segments a_ib_i (i = 1, 2, 4) are central chords of $a_1a_2a_3a_4$ and $a_1a_2b_1a_4$. Therefore, $k(a_1a_2b_1a_4) = k$.

The quadrangle $a_1a_2b_1a_4$ is evidently a canonical one. Denote by g_1 its center and set $\{v_1\} = a_4w \cap a_1b_1$. By construction, $O \in \triangle a_1v_1a_4 \subset a_1a_2b_1a_4$, which corresponds to the first case considered above.

3. If $O \in \triangle a_4 g a_3$, then the points c_i , b_i are located as follows: $c_{2,3} \in a_3 a_4$, $b_3 \in a_4 a_1$, $b_1 \in a_3 a_4$, and b_4 is on the polygonal arc $\widehat{a_1 a_2 a_3}$. Canonicity of $a_1 a_2 a_3 a_4$ implies the existence of $a_5 \in a_1 a_2$ such that $a_3 a_5 \parallel a_4 a_1$. The trapezium $a_1 a_5 a_3 a_4$ can be taken as a new normalizing figure of M^2 , and then $\widehat{a_5 - a_1} = c_2$, $\widehat{a_1 - a_4} = c_1 \in a_1 a_5 \subset a_1 a_2$, $\widehat{a_3 - a_5} = c'_3 \in c_2 c_3 \subset a_3 a_4$. By Proposition 2.5 we have

$$\rho_{\text{old}}(a_1; a_2) + \rho_{\text{old}}(a_2; a_3) = \rho_{\text{old}}(a_1; a_3)$$
$$= \rho_{\text{new}}(a_1; a_3) = \rho_{\text{new}}(a_1; a_5) + \rho_{\text{new}}(a_5; a_3)$$

and $L^{-}(a_1a_2a_3a_4) = L^{-}(a_1a_5a_3a_4).$

To estimate the factor of symmetry $k(a_1a_5a_3a_4)$, we use Corollary 2.4. We have $(a_1a_4) \parallel (a_5a_3)$. Choosing in (18)

$$k_1 = \min\{|Ob_3|/|Oa_3|; |Oa_3|/|Ob_3|\}, \quad k_1 \ge k,$$

we infer from (19) that $k(a_1a_5a_3a_4) \ge k$. Therefore, the trapezium $T = a_1a_5a_3a_4$ majorizes $a_1a_2a_3a_4$. Lemma 2.1 is proved.

LEMMA 2.2. If $O \in wa_2a_3v$, then the canonically given normalizing quadrangle $a_1a_2a_3a_4$ can be majorized by some trapezium T.

Proof. Observe that the trapezium wa_2a_3v equals $wa_2mv \cup \triangle a_2a_3m$.

1. If $O \in wa_2mv$, then the normalizing vectors c_i and the ends b_i of the central chords a_ib_i are located as follows: $c_2 \in a_2a_3$, $c_3 \in a_3a_4$, $b_1 \in a_2a_3$, $b_2 \in a_4a_1$, $b_{3,4} \in a_1a_2$. Remember that in this case formula (22) is satisfied. Find a point a_5 such that $a_4a_5 \parallel a_2a_1$ and $a_5a_1 \parallel a_3a_2$. For the polygonal arc $\widehat{a_3a_5a_1}$, we consider $\{b_6\} = (a_2O) \cap \widehat{a_3a_5a_1}$. Then either $b_6 \in a_5a_1$ or $b_6 \in a_3a_5$. If $b_6 \in a_5a_1$, then the end b_5 of the central chord a_5b_5 in the trapezium $a_1a_2a_3a_5$ is in a_1a_2 . The homotheties $\triangle Oa_4a_5 \approx \triangle Ob_4b_5$ and $\triangle Oa_2b_1 \approx \triangle Ob_6a_1$ imply $|Ob_5|/|Oa_5| = |Ob_4|/|Oa_4|$ and $|Ob_6|/|Oa_2| =$

 $|Oa_1|/|Ob_1|$. The segment a_3b_3 is a central chord in $a_1a_2a_3a_5$. Then formula (16) implies $k(a_1a_2a_3a_5) = k$. If $b_6 \in a_3a_5$, then the central chord a_5b_5 is such that $b_5 \in a_2a_3$. Find a point e_i on the line (a_2b_6) that satisfies $b_5e_3 \parallel a_3e_1 \parallel$ $a_5e_2 \parallel a_1a_2$. The homotheties $\triangle Oa_3e_1 \approx \triangle Ob_3a_2$, $\triangle Oa_4e_2 \approx \triangle Ob_4a_2$, and $\triangle Oa_5a_1 \approx \triangle Ob_5b_1$ imply

$$\begin{aligned} |Oa_3|/|Ob_3| &= |Oe_1|/|Oa_2| \le |Ob_6|/|Oa_2| \le |Oe_2|/|Oa_2| = |Oa_4|/|Ob_4|; \\ |Ob_1|/|Oa_1| &= |Ob_5|/|Oa_5|. \end{aligned}$$

By formula (16), we have $k(a_1a_2a_3a_5) \ge k$.

To estimate the self-perimeter of the trapezium $a_1a_2a_3a_5$, set $a_1 - a_5 = c'_1 \in a_1a_2$. The similarity $\triangle a_1a_4a_5 \sim \triangle Oc_1c'_1$ implies

$$\rho_{\text{old}}(a_4; a_1) = |a_4 a_1| / |Oc_1| = |a_5 a_1| / |Oc_1'| = \rho_{\text{new}}(a_5; a_1).$$

We have $(\widehat{a_3 - a_2})_{\text{new}} = c'_3 \in Oc_3$, $(\widehat{a_2 - a_1})_{\text{new}} = c_2 \in a_2a_3$ and hence

$$\rho_{\text{old}}(a_2; a_3) \le \rho_{\text{new}}(a_2; a_3), \quad \rho_{\text{old}}(a_1; a_2) = \rho_{\text{new}}(a_1; a_2).$$

Set $\widehat{a_4 - a_3} = c_4 \in a_4 a_1$, $(\widehat{a_5 - a_3})_{\text{new}} = c_5 \in a_5 a_1$, and $\{e_4\} = Oc_4 \cap a_1 a_3$. Find a point e_5 that satisfies $e_5 \in a_1 a_5$ and $c_4 e_5 \parallel a_4 a_5$. The point a_1 is the centre of the homothety $\triangle e_4 c_4 e_5 \approx \triangle a_3 a_4 a_5$. Set $\{e_6\} = (c_4 e_5) \cap (Oc_5)$ and consider the homothety $\triangle e_4 c_4 e_5 \approx \triangle Oc_4 e_6$. Then $c_5 \in Oe_6$ and

$$\rho_{\text{old}}(a_3; a_4) = |a_3 a_4| / |Oc_4| = |a_3 a_5| / |Oe_6| \le |a_3 a_5| / |Oc_5| = \rho_{\text{new}}(a_3; a_5).$$

Therefore, $L^{-}(a_1a_2a_3a_5) \ge L^{-}(a_1a_2a_3a_4)$, and the trapezium $a_1a_2a_3a_5$ majorizes the given quadrangle $a_1a_2a_3a_4$.

2. If $O \in \triangle a_2 a_3 m$, then the points c_i and b_i are located as follows: $c_2 \in a_2 a_3, c_3 \in a_3 a_4, b_{1,4} \in a_2 a_3, b_2 \in a_3 a_4, b_3 \in a_1 a_2$. By formula (23), the factor of symmetry is $k = |Ob_1|/|Oa_1|$. In complete analogy with item 1, we construct the trapezium $a_1 a_2 a_3 a_5$ ($a_4 a_5 \parallel a_2 a_1$) and obtain the inequality $L^-(a_1 a_2 a_3 a_5) \geq L^-(a_1 a_2 a_3 a_4)$. Find $\{b'_2\} = a_3 a_5 \cap (a_2 O)$ such that

$$|Oa_3|/|Ob_3| \le |Ob_2'|/|Oa_2| \le |Ob_2|/|Oa_2|.$$

We have $\{b_5\} = (Oa_5) \cap (a_2a_3)$, $\triangle Oa_5a_1 \approx \triangle Ob_5b_1$, and $|Ob_5|/|Oa_5| = k$. Thus, the quadrangle $a_1a_2a_3a_4$ is majorized by the trapezium $T = a_1a_2a_3a_5$. Lemma 2.2 is proved.

To study the case $O \in \triangle nma_3$, we need the following statement.

PROPOSITION 2.8. Let $\triangle abc$ be a triangle in the adjoint plane \mathbb{R}^2 . Let the points $d \in bc$, $e \in ca$, and $f \in ab$ be such that $de \parallel ba$, $df \parallel ca$, and $O \in df$. Set $\{h\} = (bO) \cap (de)$, $q \in dh \cap de$, and $\{p\} = bq \cap df$. Take t = |eq|as a parameter. Then the function y(t) = 1/|Op| is downwards convex over the interval $(t_1; t_2)$, where $t_2 = |ed|$ and $t_1 = 0$ if $de \subset dh$, while $t_1 = |eh|$ if $dh \subset de$. Proof. Set $\{l\} = ac \cap (bq)$. The homothety $\triangle bpf \approx \triangle bla$ implies $|pf| = |fb| \cdot |al|/|ab|$. Since $\triangle leq \approx \triangle lab$ and |eq| = t, we have |ab|/t = |al|/|el| = |ae|/|el| + 1. Therefore, $1/|el| = (|ab| - t)/(t \cdot |ae|)$. The similarity $\triangle bpf \sim \triangle qle$ implies $1/|pf| = t/(|el| \cdot |fb|) = (|ab| - t)/(|fb| \cdot |ea|)$. Set $\alpha = |ae| \cdot |fb|, \gamma = |Of|, \beta = |ab| > |af| = |ed| \ge t$. Then $|pf| = \alpha/(\beta - t)$. Observe that $|pf| \ge |Of|$, and hence $t \ge \beta - \alpha/\gamma$. If O = f, then $\gamma = 0$, and the function $y(t) = 1/|Op| = 1/|pf| = (\beta - t)/\alpha$ is linear with respect to the parameter t. If $O \ne f$, then use the equality $|Op| = |pf| - \gamma$ to deduce $y(t) = 1/|Op| = -1/\gamma + \alpha \cdot \gamma^{-2}/(t - (\beta - \alpha/\gamma))$. This means that for $t > \beta - \alpha/\gamma$ the graph of y(t) is strictly downwards convex, namely the arc of a hyperbola.

DEFINITION 2.7. Define r, z, s in such a way that $r \in a_4a_1, a_2r \parallel a_3a_4, \{z\} = a_1a_3 \cap a_2r$, and $\{s\} = a_2r \cap \widehat{ngw}$, where \widehat{ngw} is a polygonal arc (the existence of r follows from the canonicity of $a_1a_2a_3a_4$).

In what follows, we use the figure $G = a_2 a_3 a_4 r \cap \triangle g v a_3$. Observe that

(25)
$$G = \begin{cases} \triangle gva_3 & \text{if } s \in vw, \\ gsza_3 & \text{if } s \in gv, \\ \triangle sza_3 & \text{if } s \in gn. \end{cases}$$

We will consider the cases when $O \in G$ or $O \notin G$.

Again, the next three corollaries follow from our main theorems.

LEMMA 2.3. If $O \in G$, then the canonically given normalizing quadrangle $a_1a_2a_3a_4$ is majorized by some trapezium T.

Proof. We restrict our considerations to the most general case of (25), when $G = gsza_3$. Since $r \in a_4a_1$, we have $\triangle nma_3 \subset G$ and $G = \triangle nma_3 \cup gszmn$. Observe that $a_4 - a_3 = c_4 \in a_4r$, $a_2 - a_1 = c_2 \in a_2a_3$. Set $\{a_7\} = (Oc_2) \cap (a_4a_3)$ and find points $a_{5,6}$ that satisfy $a_{5,6} \in (a_4a_3)$, $a_2a_5 \parallel a_1a_4$, and $a_2a_6 \parallel Oa_4$. Write

(26)
$$a_8 = \begin{cases} a_7 & \text{if } a_7 \in a_4 a_5, \\ a_5 & \text{if } a_5 \in a_4 a_7. \end{cases}$$

Let $M \in a_6a_8$, and take $t = |a_4M|$ as a parameter. Then $t \in [t_1; t_2]$, where $t_1 = |a_4a_6|$ and $t_2 = |a_4a_8|$. Set $t_0 = |a_4a_3|$. If $t = t_0$, then $M = a_3$. Take a canonically given quadrangle $a_1a_2Ma_4$ as the new normalizing figure of M^2 . Consider the self-perimeter $L^-(a_1a_2Ma_4)$ as a function f(t)of t, i.e., $f(t) = L^-(a_1a_2Ma_4)$ for $t \in [t_1; t_2]$. We have $a_3 - a_2 = c_3 \in a_3a_4$, and write $(a_5 - a_2)_{\text{new}} = c_5$ and $(M - a_2)_{\text{new}} = c_M$. Since $\triangle a_1b_1a_4$ is non-degenerate and $Oc_5 \parallel a_1a_4$, by construction $c_5 \in b_1a_4 \subset a_3a_4$. Moreover, $c_M \in a_4c_5 \subset a_4a_3$. The similarity $\triangle a_2Ma_3 \sim \triangle Oc_Mc_3$ implies $\rho_{\text{new}}(a_2; M) = |a_2M|/|Oc_M| = |a_2a_3|/|Oc_3| = \rho_{\text{old}}(a_2; a_3)$. The function $\rho_{\text{new}}(M; a_4) = |Ma_4|/|Oc_4| = t/|Oc_4|$ is linear in t, where $c_4 = (a_4 - M)_{\text{new}} = a_4 - a_3 \in a_4 a_1$. Evidently, $(a_1 - a_4)_{\text{new}} = c_1 \in a_1 a_2$ and $\rho_{\text{new}}(a_4; a_1) = \rho_{\text{old}}(a_4; a_1)$. From (26) it follows that $(a_2 - a_1)_{\text{new}} = c'_2 \in a_2 M$. By Proposition 2.8, if we take $b = a_2$, $p = c'_2$, q = M, and $e = a_4$, then we get the downwards convex function $y(t) = 1/|Oc'_2|$ and $\rho_{\text{new}}(a_1; a_2) = |a_1 a_2|/|Oc'_2|$. Set

(27)
$$a_9 = \begin{cases} b_1 & \text{if } a_6 \in a_4 b_1, \\ a_6 & \text{if } b_1 \in a_4 a_6, \end{cases}$$

and $t_3 = |a_4a_9|$. Then $t_1 = |a_4a_6| \le |a_4a_9| = t_3 < |a_4a_3| \le |a_4a_8| = t_2$. Thus, the function $f(t) = L^-(a_1a_2Ma_4)$ is downwards convex for $t \in [t_3; t_2]$. Therefore,

(28)
$$\max_{[t_3;t_2]} f(t) = \max\left\{f(t_3); f(t_2)\right\}.$$

Consider the following four possible maxima of f(t) on $[t_3; t_2]$ according to the conditions (26)–(28).

1. Suppose that $t = t_3$, $a_9 = b_1$, and $f_{\max} = f(t_3)$. If $O \in gszmn$, then all the chords $a_i b_i$ $(i \neq 3)$ remain central chords for the new canonical $a_1 a_2 b_1 a_4$. If $O \in \triangle nma_3 \subset \triangle a_4 a_2 a_3$, then $k(a_1 a_2 b_1 a_4) = |Ob_1|/|Oa_1|$ by (23). Thus, by (16) we have $k(a_1 a_2 b_1 a_4) = k(a_1 a_2 a_3 a_4)$. By construction, $c_M \in Ma_4$, $c'_2 \in a_2 M$, $O \in a_1 b_1$ (a diagonal of $a_1 a_2 b_1 a_4$), and hence $a_1 a_2 b_1 a_4$ has all the properties of the normalizing quadrangle of Lemma 2.2.

2. Suppose that $f_{\text{max}} = f(t_3)$ and $a_9 = a_6$. By construction, the new normalizing quadrangle $a_1a_2a_6a_4$ is canonically given, we have $b_1 \in a_6a_4$ and $c'_6 = (a_6 - a_2)_{\text{new}} = a_4$, and the central chords a_ib_i in this quadrangle are central for $a_1a_2a_3a_4$. Hence (22) and $O \in \triangle a_1a_2a_4$ imply $k(a_1a_2a_6a_4) = k(a_1a_2a_3a_4)$. Since $c'_6 = a_4$, the quadrangle $a_1a_2a_6a_4$ has all the properties of the normalizing quadrangles of Lemma 2.1.

3. Suppose that $f_{\max} = f(t_2)$ and $a_8 = a_5$. By construction, $a_1a_2a_5a_4$ is a trapezium, the segments a_1b_1 and a_2b_2 are central chords for $a_1a_2a_3a_4$ as well, $(\widehat{a_2 - a_1})_{\text{new}} = c'_2 \in a_2a_5$, and the central chord a_5b_5 is such that $b_5 \in a_4a_1$. If $O \in \triangle nma_3 \subset \triangle a_4a_2a_5$, then by (23) we have $k(a_1a_2a_5a_4) = |Ob_1|/|Oa_1| = k(a_1a_2a_3a_4)$. If $O \in gszmn \subset \triangle a_4a_1a_2$, then $\triangle Oa_5a_2 \approx \triangle Ob_5b_2$ implies $|Ob_5|/|Oa_5| = |Ob_2|/|Oa_2|$. By (16) and (22) we have $k(a_1a_2a_5a_4) = k(a_1a_2a_3a_4)$, and $T = a_1a_2a_5a_4$ is a majorizing trapezium.

4. Let $f_{\text{max}} = f(t_2)$ and $a_8 = a_7$. Here we use the properties of the trapezium T from case 3, for which $k(a_1a_2a_5a_4) = k(a_1a_2a_3a_4)$. The chord a_1b_1 remains central for the quadrangle $a_1a_2a_7a_4$. If $O \in \triangle a_4a_2a_7$, then by (23) we have $k(a_1a_2a_7a_4) = k(a_1a_2a_3a_4)$. If $O \in gszmn$, then the chords a_1b_1, a_2b_2 , and a_4b_4 are central for $a_1a_2a_7a_4 \supset a_1a_2a_3a_4$. By (22), we have

 $k(a_1a_2a_7a_4) = k$. Since $a_7 = c'_2 = (\widehat{a_2 - a_1})_{\text{new}}$, the new canonically given normalizing quadrangle $a_1a_2a_7a_4$ meets all the requirements of Lemma 2.1, and Lemma 2.3 is proved.

To study the case $O \notin G$ in a canonically given quadrangle $a_1a_2a_3a_4$, we introduce the following definitions (see (25)).

DEFINITION 2.8. A canonically given normalizing quadrangle $a_1a_2a_3a_4$ is called a *quadrangle of first special type* if

1) the origin satisfies

(29)
$$O \in \Omega \equiv \triangle ra_1 a_2 \cap \triangle g v a_3 \neq \emptyset,$$

2) the factor of symmetry satisfies

(30)
$$k(a_1a_2a_3a_4) = |Ob_2|/|Oa_2| = |Ob_4|/|Oa_4|.$$

DEFINITION 2.9. A canonically given normalizing quadrangle $a_1a_2a_3a_4$ is called a *quadrangle of second special type* if (29) holds, but

(31)
$$k = k(a_1a_2a_3a_4) = |Ob_1|/|Oa_1| = |Ob_2|/|Oa_2|.$$

LEMMA 2.4. If a normalizing quadrangle $a_1a_2a_3a_4$ is of first special type, then it is majorized by some trapezium T.

Proof. By (29), we have $O \in \triangle a_4 a_1 a_2$, and (22) yields $k \leq |Ob_1|/|Oa_1|$. Moreover, $a_2 - a_1 = c_2 \in a_2 a_3$, $b_1 \in a_3 a_4$, $a_2 r \parallel a_3 a_4$, and $b_2 \in ra_1 \subset a_4 a_1$, $a_4 - a_3 = c_4 \in ra_1$. Choose a Cartesian coordinate system of R^2 in such a way that $b_4 a_4 \subset Ox$, $b_2 a_2 \subset Oy$ and O(0;0), $a_4(1;0)$, $b_4(-k;0)$, $a_2(0;1)$, $b_2(0;-k)$. Here we use an auxiliary metric where the centre g of the canonically given quadrangle $a_1 a_2 a_3 a_4$ does not in general coincide with the origin O of \mathbb{R}^2 (see Remark 2.2). Since $\{a_1\} = (a_1 a_2) \cap (a_1 a_4)$, we have $a_1(-k/(1-k); -k/(1-k))$. Find $a_{5,6} \in R^2$ such that $a_5 a_4 \parallel a_2 b_2$, $a_2 a_5 \parallel a_1 a_4$, $a_6 \in a_5 a_4$, and $a_2 a_6 \parallel a_4 b_4$. It is easy to see that $a_5(1; 1 + k)$, $a_6(1; 1)$. The vertex a_3 is from $\triangle a_2 a_5 a_6$, because by (29) we have $c_4 \in a_4 b_2$, $c_3 \in a_3 a_4$, and $a_1 a_2 a_3 a_4$ is canonically given.

Consider now a_3 as one of the points $M(a; b) \in \triangle a_2 a_5 a_6$. We also make the restriction $c_2 \in a_2 M$. The coordinates of $c_2(x_2; y_2)$ satisfy

$$\begin{cases} y = x/k, & \frac{1}{x_2} = \frac{1}{k} + \frac{1-b}{a}, \\ y - 1 = (b-1)/a \cdot x, & \frac{1}{x_2} = \frac{1}{k} + \frac{1-b}{a}, \end{cases}$$

and we have

$$\rho(a_1; a_2) = -x_1/x_2 = k/(1-k) \cdot (1/k + (1-b)/a)$$

= 1/(1-k) + k(1-b)/(a(1-k)).

The coordinates of $M - a_2 = c_M(x_3; y_3)$ satisfy $y = (b-1)/a \cdot x$, $y = b/(a-1) \cdot (x-1)$ and hence $1/x_3 = 1 + (a-1) \cdot (1-b)/(ab)$ and $\rho(a_2; M) = a/x_3 = a + (a-1) \cdot (1-b)/b$. The point $c_4(x_4; y_4)$ is on the lines $y = a/x_3 = a + (a-1) \cdot (1-b)/b$.

 $b/(a-1) \cdot x$ and y+k = kx, and hence $-1/y_4 = 1/k + (1-a)/b$ and $\rho(M; a_4) = -b/y_4 = b/k + 1 - a$. The value $\rho(a_4; a_1)$ does not depend on the location of $M \in \Delta a_2 a_5 a_6$. Let us define a function

$$f(a;b) = \rho(a_1;a_2) + \rho(a_2;M) + \rho(M;a_4), \quad M(a;b) \in \triangle a_2 a_5 a_6.$$

Thus, f(a; b) = 2 + 1/(1 - k) + k(1 - b)/(a(1 - k)) - a + (a - 1)/b + b/k, where $b \ge 1$ and $0 < a \le 1$.

We calculate the derivatives:

$$f'_{a} = -\frac{k}{1-k} \cdot \frac{1-b}{a^{2}} - 1 + \frac{1}{b}, \quad f'_{b} = -\frac{k}{1-k} \cdot \frac{1}{a} - \frac{a-1}{b^{2}} + \frac{1}{k}.$$

The stationary points of f(a; b) are

(32)
$$\begin{cases} \begin{bmatrix} b = 1, \\ b = \frac{1-k}{k}a^2, \\ \frac{k}{1-k} \cdot \frac{1}{a} + \frac{a-1}{b^2} = \frac{1}{k}, \end{bmatrix} \begin{bmatrix} b = 1, \\ \frac{a}{b} + \frac{a-1}{b^2} = \frac{1}{k}, \end{bmatrix} \begin{bmatrix} b = 1, \\ a = \frac{b^2+k}{k(b+1)}. \end{cases}$$

We calculate the second derivatives:

$$f_{aa}'' = \frac{2k}{1-k} \cdot \frac{1-b}{a^3}, \quad f_{bb}'' = 2 \cdot \frac{a-1}{b^3}, \quad f_{ab}'' = \frac{k}{1-k} \cdot \frac{1}{a^2} - \frac{1}{b^2}.$$

We consider separately the case $b = (1-k)/k \cdot a^2$. In this case $f''_{ab} = (b-1)/b^2$ and

$$\Delta(a;b) = f_{aa}'' \cdot f_{bb}'' - [f_{ab}'']^2 = 4 \cdot \frac{k}{1-k} \cdot \frac{(b-1)(1-a)}{a^3 \cdot b^3} - \frac{(b-1)^2}{b^4}$$
$$= 4 \cdot \frac{(b-1)(1-a)}{b^4 \cdot a} - \frac{(b-1)^2}{b^4}.$$

Taking into account (32), we obtain

$$\triangle(a;b) = \frac{b-1}{b^4} \left[\frac{4}{a} - (3+b) \right] = \frac{b-1}{b^4} \left[\frac{4k(b+1)}{b^2 + k} - (3+b) \right].$$

Since $b > 1 \ge k$, we have $b^2 + k > k(b+1)$ and $3 + b > 4k(b+1)/(b^2 + k)$. The inequality $\triangle(a;b) < 0$ implies that f(a;b) achieves its maximum only at the boundary of $\triangle a_2 a_5 a_6$. Observe that if b = 1, then $M(a;1) \in a_2 a_6$.

We describe in detail the boundary of a polygon Σ that contains the vertex $M \in \Sigma \subset \triangle a_2 a_5 a_6$ of the canonically given quadrangle $a_1 a_2 M a_4$ of first special type. By (29), we have $b_1 \in M a_4$ and $c_2 \in a_2 M$. Find a point e_0 such that $e_0 \in (a_1 O)$, $O \in a_1 e_0$, and $|Oe_0|/|Oa_1| = k$. Let e_3 be such that $e_3 \in a_2 a_5$, $Oe_3 \parallel a_1 a_2$. Set $\{e_1\} = (a_4 e_0) \cap (a_2 a_6)$, $\{e_2\} = (Oe_3) \cap (a_4 e_0)$, $\{e_4\} = (a_4 e_0) \cap (a_2 a_5)$, and $\{e_5\} = (Oe_3) \cap a_2 a_6$. We have $|Ob_1|/|Oa_1| \ge k$ and hence $M \in \triangle a_4 e_4 a_5$. If $e_1 \notin e_5 a_6$, then $\Sigma = e_5 e_3 a_5 a_6$. If $e_4 \in e_3 a_5$, then $\Sigma = e_1 e_4 a_5 a_6$. If $e_1 \in e_5 a_6$ and $e_4 \notin e_3 a_5$, then $\Sigma = e_2 e_3 a_5 a_6 e_1$. Observe that, by (22), $k(a_1 a_2 M a_4) = k(a_1 a_2 a_3 a_4) = k$ for the quadrangle of first special type, namely $k(a_1 a_2 M a_4) = \min\{k; |Ob_1|/|Oa_1|\} = k$. We estimate

the self-perimeter $L^{-}(a_{1}a_{2}Ma_{4})$ when $M \in \partial \Sigma$ for the most general case when Σ is a pentagon, i.e., $\partial \Sigma = e_{2}e_{3} \cup e_{3}a_{5} \cup a_{5}a_{6} \cup a_{6}e_{1} \cup e_{1}e_{2}$.

1. Suppose that $M \in e_2e_3$. Then in the canonically given quadrangle $a_1a_2Ma_4$ we have $c_2 = M$. Such quadrangles were described in Lemma 2.1, and hence the conclusion of Lemma 2.4 holds.

2. Suppose that $M \in e_3a_5$. Then $a_2M \parallel a_1a_4$, and the majorizing trapezium is $T = a_1a_2Ma_4$.

3. Suppose that $M \in a_5a_6$. Then $a_2b_2 \parallel Ma_4$ and $r = b_2$. The case $O \in a_2r \subset a_2Ma_4r$ was considered in Lemmas 2.1–2.3, and hence the conclusion of Lemma 2.4 holds.

4. Suppose that $M \in a_2a_6$. Then $a_2M \parallel Oa_4$ and $M - a_2 = c_M = a_4$. Thus, $O \in a_4w \subset \Delta a_4a_1w$, and we can apply Lemma 2.1.

5. Suppose that $M \in e_1e_2$. Then $e_0 = b_1$ and $|Ob_1|/|Oa_1| = k$. To study the properties of the quadrangle $a_1a_2Ma_4$ of first special type, it is convenient to use another adjoint plane R^2 , namely such that $a_1(-1;0)$, $a_4(0;-1)$, $b_1(k;0)$, and $b_4(0;k)$. Set $\{a_7\} = (a_4b_1) \cap (Oc_2)$, $c_2 \in a_2M$, and $a_2 \in (a_1b_4)$. Let $a_2(x_2;y_2)$, $a_7(x_7;y_7)$, and M(a;b). Then (see (30))

$$|Ob_1|/|Oa_1| = |Ob_2|/|Oa_2| = |Ob_4|/|Oa_4| = k.$$

Set $t = y_2/x_2$. Then a_2 belongs to the lines y = tx and y = kx+1. The point $b_2(x_3; y_3)$ belongs to the lines y = tx and y = -x-1. Solving the systems, we find $x_2 = 1/(t-k)$ and $x_3 = -1/(t+1)$. The ratios $|Ob_2|/|Oa_2| = -x_3/x_2 = (t-k)/(t+1) = k$ imply t = 2k/(1-k) and $x_2 = (1-k)/(k+k^2)$. The point a_7 is on the lines y = kx and $y = 1/k \cdot x - 1$, and therefore $x_7 = k/(1-k^2)$. By (29), we have $(\widehat{M} - a_2) = c_M \in Ma_4, c_2 \in a_2M$, and hence $x_2 \leq a \leq x_7$. In terms of k the latter means that $(1-k)/(k+k^2) \leq a \leq k/(1-k^2)$. The solution in a exists if $(1-k)^2 \leq k^2$, i.e., $k \in [1/2; 1]$. By the hypothesis, $O \in \Omega \subset \Delta ra_1a_2$, where $ra_2 \parallel Ma_4$. The case $O \in sz$ (see (25)) was considered in Lemma 2.3. Suppose that $O \notin sz$. Since the slope of a_2b_2 is equal to t = 2k/(1-k) and the slope of a_4M is equal to 1/k, we have 1/k > t. In terms of k the latter inequality means that $2k^2 + k - 1 < 0$, i.e., $k \in (0; 1/2)$. Thus $O \in sz$, and case 5 is settled.

Hence Lemma 2.4 is proved.

LEMMA 2.5. If a normalizing quadrangle $a_1a_2a_3a_4$ is of second special type, then it is majorized by some trapezium T.

Proof. By (29), we have $c_2 \in a_2a_3$, $c_3 \in a_3a_4$, $c_4 \in rb_2 \subset a_4a_1$, and $a_2r \parallel a_3a_4$. By (31), $|Ob_1|/|Oa_1| = |Ob_2|/|Oa_2| = k \leq |Ob_4|/|Oa_4|$, and hence $\triangle Ob_1b_2 \approx \triangle Oa_1a_2$. Find points a_5, b_5, a_6, e_1 that satisfy $a_4 \in a_1a_5$, $\{b_5\} = a_1a_2 \cap (a_5O), |Ob_5|/|Oa_5| = k; a_6 \in (b_2b_1), a_2a_6 \parallel a_1a_4;$ and $\{e_1\} =$ $a_2b_1 \cap Oc_2$ (the chords a_ib_i are central ones). Set $\{a_7\} = (a_2a_6) \cap (a_5b_1)$, $\{e_2\} = (Oe_1) \cap (a_5b_1)$, and $\{e_3\} = (Oe_1) \cap a_2a_6$. By construction, the trapezium $b_1e_1e_3a_6$ contains the point a_3 of the initial quadrangle $a_1a_2a_3a_4$.

Define a polygon Σ depending on the location of a_7 with respect to the segment a_2e_3 :

(33)
$$\Sigma = \begin{cases} b_1 e_2 e_3 a_6 & \text{if } a_7 \in a_2 e_3, \\ b_1 e_1 e_3 a_6 & \text{if } a_2 \in a_7 e_3, \\ b_1 a_7 a_6 & \text{if } a_7 \in e_3 a_6. \end{cases}$$

Take a point $M \in \Sigma$ and find a point e_4 such that $e_4 \in (Mb_1)$ and $Oe_4 \parallel a_2M$. Set $\{a_8\} = (Mb_1) \cap a_1a_5$ and $\{b_8\} = (a_8O) \cap a_1a_2$. We have $O \in a_1b_1$. The non-degeneracy of $\triangle a_1b_1a_8$ implies $c_6 = a_6 - a_2 \in b_1a_4$. Consider the quadrangle $a_1a_2Ma_8$ of second special type in the capacity of a normalizing quadrangle of M^2 . Observe that if $M = a_3 \in \Sigma$, then it coincides with the initial one, i.e., $a_1a_2a_3a_4$. Canonicity of $a_1a_2Ma_8$ and the inclusions $a_8 \in a_5b_2 \subset a_5a_1$ and $b_8 \in b_5a_2 \subset a_1a_2$ yield $k = |Ob_5|/|Oa_5| \leq |Ob_8|/|Oa_8| \leq |Oa_2|/|Ob_2| = 1/k$. The latter inequality and the equalities (22) and (31) imply $k(a_1a_2Ma_8) = k(a_1a_2a_3a_4) = k$.

To estimate the self-perimeter $L^{-}(a_{1}a_{2}Ma_{8})$, we calculate the lengths of the sides by using (1)–(3). For the normalizing vectors we have $c'_{2} = (\widehat{a_{2} - a_{1}})_{\text{new}} \in a_{2}M$, $c_{8} = \widehat{a_{8} - M} \in a_{8}a_{1} \subset a_{5}a_{1}$, $c_{1} = \widehat{a_{1} - a_{4}} = \widehat{a_{1} - a_{8}}$, and $\widehat{M - a_{2}} = c_{M} \in \widehat{b_{1}a_{8}a_{1}}$, where $\widehat{b_{1}a_{8}a_{1}}$ is again a polygonal arc. If c_{M} is in $b_{1}a_{8}$, then $c_{M} = e_{4}$ and $\rho(a_{2}; M) = |a_{2}M|/|Oe_{4}|$. If $c_{M} \in a_{8}a_{1}$, then $c_{M} \in Oe_{4}$ and $\rho(a_{2}; M) \geq |a_{2}M|/|Oe_{4}|$. Define a function of $M \in \Sigma$ by

$$f(M) = \rho(a_1; a_2) + \rho(M; a_8) + \rho(a_8; a_1) + |a_2M| / |Oe_4|,$$

where the distance function is meant with respect to $a_1a_2Ma_8$. We have $a_3 \in \Sigma$, and by (29) we get $a_3 - a_2 = c_3 \in b_1a_4$. Hence

(34)
$$\max_{\Sigma} f(M) \ge L^{-}(a_1 a_2 a_3 a_4).$$

Evidently,

(35)
$$f(M) \le L^{-}(a_1 a_2 M a_8), \quad M \in \Sigma.$$

We want to prove that f(M) attains its maximum at the boundary of the polygon Σ , i.e., when $M \in \partial \Sigma$. We choose a Cartesian system of coordinates in the adjoint plane R^2 in such a way that O(0;0), $a_2(0;1)$, $a_1(-1;0)$, $b_1(k;0)$, $b_2(0;-k)$, and we set M(a;b) (see Remark 2.2). Since $a_1a_2a_6b_2$ is a parallelogram, $\Delta b_1a_2a_6$ is in the first quadrant and $0 \leq a, b \leq 1$. The case b = 0 means that $M = b_1$ and hence $O \in a_1M$. Also this case was considered in Lemma 2.2. If a = 0, then $M = a_2$ and $a_1a_2Ma_8 = a_1a_2b_1a_8$. For the canonically given quadrangle $a_1a_2b_1a_8$ we have $O \in a_1b_1$. This case was considered in Lemma 2.2. Thus, we suppose that $a, b \in (0; 1]$. Taking into account that $M \in b_1 e_1 e_3 a_6$, we find the abscissa of $\{c'_2\} = (Oe_1) \cap a_2 M$ by solving the system $y = x, y-1 = (b-1)/a \cdot x$, i.e., $(1+(1-b)/a) \cdot x = 1$. Hence $\rho(a_1; a_2) = |a_1 a_2|/|Oc'_2| = 1 + (1-b)/a$. The point $\{e_4\} = (Oe_4) \cap (Mb_1)$ is defined by $y = x \cdot (b-1)/a$ and $y = b \cdot (x-k)/(a-k)$. Thus, for $e_4 = (x_e; y_e)$ we have $1/x_e = 1/k + (a-k)(1-b)/(kba)$ and $|a_2 M|/|Oe_4| = a/x_e = a/k + (a-k)(1-b)/(kb)$.

Set $\{b_M\} = a_8 a_1 \cap (MO)$. The similarity $\triangle M a_8 b_M \sim \triangle O c_8 b_M$ implies $\rho(M; a_8) = |Ma_8|/|Oc_8| = |Mb_M|/|Ob_M| = 1 + |OM|/|Ob_M|.$

The point $b_M(x_b; y_b)$ is on the lines $y = b \cdot x/a$ and y + k = -kx. Hence $-1/x_b = (k + b/a)/k$ and $\rho(M; a_8) = 1 + a + b/k$. The points $\{c_1\} = (Oc_1) \cap a_1a_2$ and $\{a_8\} = (Mb_1) \cap (a_1b_2)$ can be found as solutions of the systems y = x + 1, y = -kx and y + k = -kx, y = b(x - k)/(a - k), respectively. If one writes $c_1(x_c; y_c)$ and $a_8(x_8; y_8)$, then $-1/x_c = 1 + k$ and $x_8 = k \cdot (b - (a - k))/(b + k(a - k))$. Finally,

$$\rho(a_8; a_1) = |a_8 a_1| / |Oc_1| = -(1+x_8) / x_c = b(1+k)^2 / (b+k(a-k)).$$

We express the function f(M) by means of the coordinates of M(a; b):

$$f(a;b) = 2 + (1-b)/a + (a+b)/k + (a-k) \cdot (1-b)/(kb) + a + b(1+k)^2/(b+k(a-k)).$$

Evidently, $f'_a = 1 - (1 - b) \cdot a^{-2} + 1/(kb) - (1 + k)^2 \cdot b \cdot k \cdot (b + k(a - k))^{-2}$. Then

(36)
$$f_{aa}'' = 2 \cdot (1-b) \cdot a^{-3} + 2(1+k)^2 \cdot b \cdot k^2 \cdot (b+k(a-k))^{-3}.$$

Find a point c'_1 that satisfies $c'_1 \in a_1a_2$ and $b_1c'_1 \parallel a_2a_6 \parallel b_2a_1$. In a parallelogram $b_1c'_1a_2a_6$, the equation of the side $(b_1c'_1)$ is y = -k(x-k). By the hypothesis, $M(a;b) \in \Sigma \subset \Delta b_1a_2a_6 \subset b_1c'_1a_2a_6$, and hence b > -k(a-k). Combining $0 < a, b \leq 1$ and the equality (36), we get $f''_{aa} > 0$. Thus, the function f = f(M), where $M \in \Sigma$, can achieve its maximal value only at $\partial \Sigma$. To estimate f_{max} from above, consider, in accordance with (33), the following five cases:

1. If $M \in a_6b_1$, $M \neq b_1$, then $a_1a_2Ma_8 = a_1a_2Mb_2$ is a trapezium.

2. If $M \in e_3a_6$, then $a_8a_1 \parallel a_2M$ and $a_1a_2Ma_8$ is a trapezium.

3. If $M \in e_1e_3$, then $M = c'_2 = a_2 - a_1$, and the canonically given quadrangle $a_1a_2Ma_8$ meets the requirements of Lemma 2.1. By the inequalities (34) and (35) we have $L^-(a_1a_2a_3a_4) \leq f(M) \leq L^-(a_1a_2Ma_8)$. Thus, for the quadrangle $a_1a_2a_3a_4$ there exists a majorizing trapezium T.

4. If $M \in b_1e_1$ and $M \neq b_1$, then the quadrangle $a_1a_2Ma_8$ degenerates to $\triangle a_1a_2a_8$. By Corollary 2.5, we have $L^-(\triangle) \leq 2D^2/(D-1)$. A suitable choice of the adjoint plane R^2 transforms the isosceles trapezium $T = a_1a_2b_1b_2$ into the trapezium from our Example 2.1, showing the sharpness of (9)

(for $t = k^2$). Thus $L^-(\triangle) \leq 2D^2/(D-1) = L^-(T)$, and $a_1a_2b_1b_2$ is the majorizing trapezium.

5. If $M \in b_1e_2$, $M \neq b_1$, then $a_8 = a_5$ and $a_1a_2Ma_8 = a_1a_2Ma_5$. Here $|Ob_1|/|Oa_1| = |Ob_2|/|Oa_2| = |Ob_5|/|Oa_5| = k$, $c'_2 = a_2 - a_1 \in a_2M$, and $c_8 = a_5 - M = c_5 \in a_5a_4$. Since $a_4 \in b_2a_5$, there is a point $r' \in a_5r$ such that $a_2r' \parallel Ma_5$ and $O \in \triangle a_1a_2r'$. If $\widehat{M-a_2} = c_M \in Ma_5$, then the canonically given quadrangle $a_1a_2Ma_5$ is of first special type as described in Lemma 2.4. If $c_M \in a_5a_1$, then the normalizing quadrangle meets the requirements of Lemma 2.1, and Lemma 2.5 is proved.

Proof of Theorem 1.3. If the normalizing quadrangle $P_4 = a_1a_2a_3a_4$ is a trapezium, then the statement of the theorem is obvious. By Proposition 2.6, we may restrict our considerations to canonically given quadrangles $a_1a_2a_3a_4 \subset M^2$. According to Definition 2.4, denote by g the center of $a_1a_2a_3a_4$. Set $\{u\} = a_4a_1 \cap (a_3g), \{w\} = a_1a_2 \cap (a_4g), \text{ and } \{v\} = a_1a_3 \cap a_4w$. We have $a_2r \parallel a_3a_4$, where $r \in a_4a_1$. The theorem is already proved in Lemmas 2.1–2.3 for three particular locations of the origin O inside $a_1a_2a_3a_4$. Namely, if $O \in \triangle a_1wa_4 \cup \triangle ga_3a_4 \cup wa_2a_3v \cup ra_2a_3a_4$, then for the normalizing quadrangle $a_1a_2a_3a_4$ there is a majorizing trapezium T (see Definition 2.6). Keep the notation for the polygon $\Omega \equiv \triangle ra_1a_2 \cap \triangle gva_3$ in correspondence with (29). If $\Omega = \emptyset$, then the proof is complete. If $O \in \Omega$, then the proof is completed by Lemmas 2.4 and 2.5 for normalizing quadrangles $a_1a_2a_3a_4$ of first and second special type (see Definitions 2.8 and 2.9).

Introducing some auxiliary metric for M^2 , i.e., the metric of the adjoint plane R^2 , we now prove the theorem in the case of $O \in \Omega$ for an arbitrary canonically given normalizing quadrangle $a_1a_2a_3a_4$. Since $\Omega \subset \Delta a_1a_2a_4$, we consider two cases in accordance to (22): either $k(a_1a_2a_3a_4) = k =$ $|Ob_2|/|Oa_2|$, or min{ $|Ob_1|/|Oa_1|$; $|Ob_4|/|Oa_4|$ } = $k < |Ob_2|/|Oa_2|$.

1. Suppose that $k = |Ob_2|/|Oa_2| \le |Ob_1|/|Oa_1|$ and $O \in \Omega$. Find a point e_1 that satisfies $e_1 \in Ob_1$ and $b_2e_1 \parallel a_1a_2$, i.e., $\triangle Oa_1a_2 \approx \triangle Oe_1b_2$. Set $\{e_2\} = Ob_1 \cap a_3u$ and

$$e_3 = \begin{cases} e_1 & \text{if } e_1 \in b_1 e_2, \\ e_2 & \text{if } e_2 \in b_1 e_1, \end{cases} \quad \{e_4\} = a_4 a_1 \cap (a_3 e_3).$$

If $e_3 = e_2$, then $e_4 = u$. To apply Proposition 2.8, we introduce the following notation:

 $\widehat{a_3 - a_2} = c_3 \in a_3 a_4, \quad \{d\} = (Oc_3) \cap (a_1 a_4), \quad b := a_3, \quad h := b_3, \quad e := a_1,$ where $h \in ed$. Find points c and a that satisfy $c \in (bd), a_1 c \parallel a_2 b; a \in (a_1 c),$ and $ab \parallel ed$. Write $\{f\} = ab \cap (dO), t_1 = |a_1 b_3| = |eh| > 0,$ and $t_2 = |a_1 d|$. Let $q \in e_4 d \subset hd$. If one writes $t_3 = |ee_4|$ and t = |eq|, then $t_1 \leq t_3 \leq t \leq t_2$. Set $\{p\} = Od \cap a_3 q$. For the new canonically given quadrangle $a_1 a_2 a_3 q \subset M^2$ we have $p = (a_3 - a_2)_{\text{new}} \in a_3 q$ and $\rho_{\text{new}}(a_2; a_3) = |a_2a_3|/|Op|$. By Proposition 2.8, the function $y(t) = |a_2a_3|/|Op|$ is downwards convex for $t \in [t_3; t_2]$. Set $c_1 = a_1 - q = a_1 - a_4 \in a_1a_2$, $c_2 = a_2 - a_1 \in a_2a_3$, $c_q = q - a_3 \in qa_1 \subset da_1$, and $c_4 = a_4 - a_1 \in a_4a_1 \subset da_1$. Since $\triangle a_3a_4q \sim \triangle Oc_4c_q$, we have $\rho_{\text{new}}(a_3;q) = |a_3q|/|Oc_q| = |a_3a_4|/|Oc_4| = \rho_{\text{old}}(a_3;a_4) = \text{const}$, $t \in [t_3; t_2]$. The function $\rho_{\text{new}}(q;a_1) = |qa_1|/|Oc_1| = t/|Oc_1|$ is linear in t, and $\rho_{\text{new}}(a_1;a_2) = \rho_{\text{old}}(a_1;a_2)$. Thus, the self-perimeter function $f(t) \equiv L^-(a_1a_2a_3q)$ is downwards convex in $t \in [t_3; t_2]$. Among the quadrangles $\{a_1a_2a_3q\}$ we consider those for which $k(a_1a_2a_3q) \ge k(a_1a_2a_3a_4)$. Take the points $a_5 \in (a_1a_4)$ and $\{b_5\} = (a_1a_2) \cap (a_5O)$. If $a_5 \in a_4e_4$, then the canonicity of $a_1a_2a_3a_4$ implies $|Ob_5|/|Oa_5| \ge |Ob_4|/|Oa_5| \ge k$. If a_5 satisfies the conditions $a_4 \in e_4a_5$ and $|a_1a_5| \to \infty$, then $|Ob_5|/|Oa_5| \to 0$. By continuity, there is a point a_5 such that $a_4 \in a_1a_5$ and $|Ob_5|/|Oa_5| = k$. Set

$$a_6 = \begin{cases} d & \text{if } d \in a_4 a_5, \\ a_5 & \text{if } a_5 \in a_4 d, \end{cases}$$

and $t_4 = |a_1 a_6|$, where $t_3 \le t_4 \le t_2$. The convexity of $f(t), t \in [t_3; t_4]$, implies (37) $\max_{[t_3; t_4]} f(t) = \max\{f(t_3); f(t_4)\}.$

Consider the following four possible maxima of f(t) in (37).

(a) Let $f_{\text{max}} = f(t_3)$ and $e_3 = e_1$. Then in $a_1a_2a_3e_4$ the central chord a_1e_1 satisfies $|Oe_1|/|Oa_1| = |Ob_2|/|Oa_2| = k$, $c_2 \in a_2a_3$, and $c_3 \in a_3a_4$, and the quadrangle is of second special type. Lemma 2.5 completes the proof.

(b) Let $f_{\text{max}} = f(t_3)$ and $e_3 = e_2$. Then $a_1 a_2 a_3 e_4$ contains a trapezium $(e_4 = u, a_1 a_2 \parallel a_3 u)$.

(c) Let $f_{\max} = f(t_4)$ and $a_6 = d$. Then $a_1a_2a_3q = a_1a_2a_3d$, $d = a_3 - a_2$, $\{w_1\} = a_1a_2 \cap (dO)$, $dw_1 \parallel a_4w$, and $O \in \triangle a_1w_1d$. This case was considered in Lemma 2.1.

(d) Let $f_{\text{max}} = f(t_4)$ and $a_6 = a_5$. Then $a_1a_2a_3q = a_1a_2a_3a_5$ and $|Ob_5|/|Oa_5| = |Ob_2|/|Oa_2| = k$, $c_2 \in a_2a_3$, $c_3 \in a_3a_5$, and $r \in b_2a_4 \subset b_2a_5$. This means that $a_1a_2a_3a_5$ is a quadrangle of first special type. The result of Lemma 2.4 completes the proof.

2. Suppose that $|Ob_2|/|Oa_2| > k = k(a_1a_2a_3a_4)$. Take auxiliary points as follows: $e_1 \in Ob_1$, $|Oe_1|/|Oa_1| = k$; $e_2 \in a_4a_1$, $e_1e_2 \parallel a_1a_2$; $e_7 \in (a_4a_3)$, $Oe_7 \parallel a_1a_2$; $a_8 \in a_1a_2$, $a_8O \parallel a_3a_4$; $\{r'\} = a_4a_1 \cap (a_8O)$; $\{a_5\} = (a_1a_2) \cap (e_2O)$; $a_6 \in (a_1a_2)$, $a_6F \parallel Oa_4$. Further, we use the point $\{F\} = (a_1b_1) \cap (a_2a_3)$. Since $O \in \Omega$, we have $b_1 \in a_1F$, $a_3 \in a_2F$, and $b_2 \in e_2r' \subset a_1r$. Set $\{a_7\} = (a_1a_2) \cap (Fe_7)$, $a_9 \in a_1a_2$ and $Fa_9 \parallel a_4a_1$; $\{e_i\} = (a_4a_3) \cap (Fa_i)$, where i = 5, 6, 7, 9. Write $t_1 = |a_1a_9|$ and $t_2 = \min\{|a_1a_i| : 5 \le i \le 7\}$. Denote by a_{10} the point such that $a_{10} \in (a_1a_2)$ and $|a_1a_{10}| = t_2$. Canonicity

of $a_1 a_2 a_3 a_4$ yields

$$(38) a_1a_9 \subset a_1a_2 \subset a_1a_{10} \subset \bigcap_{5 \le i \le 7} a_1a_i.$$

Consider an arbitrary point $M \in a_9a_{10}$ and introduce a parameter $t = |a_1M|$, where $t \in [t_1; t_2]$. Set $\{N\} = MF \cap (a_4a_3)$. If $|a_1a_2| = t_0$, then for $t = t_0 \in [t_1; t_2]$ we have $MN = a_2a_3$. The canonically given quadrangle a_1MNa_4 plays the role of a new normalizing figure of M^2 .

Let us show that the self-perimeter function

(39)
$$f(t) \equiv L^{-}(a_1 M N a_4), \quad t_1 \le t \le t_2,$$

is downwards convex in t. Evidently, $(a_1 - a_4)_{new} = c_1 \in a_1 a_9 \subset a_1 a_2$ and

(40)
$$\rho_{\text{new}}(a_4; a_1) = \rho_{\text{old}}(a_4; a_1).$$

By (38), we have $c_M = (\widehat{M} - a_1)_{\text{new}} \in MN$ and $c_2 = \widehat{a_2 - a_1} \in a_2 a_3$. The factors of homothety for the triangles $\triangle a_1 MF \approx \triangle Oc_M F$ and $\triangle a_1 a_2 F \approx \triangle Oc_2 F$ are the same, so (1) implies

(41)
$$\rho_{\text{new}}(a_1; M) = |a_1 M| / |Oc_M| = |a_1 F| / |OF|$$
$$= |a_1 a_2| / |Oc_2| = \rho_{\text{old}}(a_1; a_2), \quad M \in a_9 a_{10}.$$

Set $c_N = (\widehat{N-M})_{\text{new}} \in Na_4$ and $c_3 = \widehat{a_3 - a_2} \in a_3a_4$. Find a point τ that satisfies $\tau \in (Oc_3)$ and $c_N \tau \parallel a_1 a_2$. The similarity $\triangle FNa_3 \sim \triangle Oc_N c_3$ implies

$$\rho_{\text{new}}(M; N) = |MF|/|Oc_N| - |NF|/|Oc_N| = |MF|/|Oc_N| - |a_3F|/|Oc_3|.$$

Set $\gamma_1 = |a_3F|/|Oc_3|.$ Then

(42)
$$\rho_{\text{new}}(M;N) = |MF|/|Oc_N| - \gamma_1.$$

The similarity $\Delta FMa_2 \sim \Delta Oc_N \tau$ implies $|MF|/|Oc_N| = |Fa_2|/|O\tau|$. This ratio does not depend on the choice of the metric of R^2 , and hence we may assume $\angle a_1a_2a_3 = \pi/2$. Let $\angle c_3Oc_N = \phi$ and $\angle c_Nc_3O = \alpha$. In $\triangle Oc_Nc_3$ we find $|Oc_3| = |O\tau| \cdot (1 + \cot \alpha \cdot \tan \phi)$. From this and the equality $\angle a_2FM = \angle c_3Oc_N = \phi$ we conclude

$$\begin{aligned} |Fa_2|/|O\tau| &= (|Fa_2| + \cot \alpha \cdot |Ma_2|)/|Oc_3| \\ &= |Fa_2|/|Oc_3| + \cot \alpha \cdot (|a_1a_2| - t)/|Oc_3| = \gamma_2 - \gamma_3 \cdot t, \end{aligned}$$

where $\gamma_2 = |Fa_2|/|Oc_3| + \cot \alpha \cdot |a_1a_2|/|Oc_3|$ and $\gamma_3 = \cot \alpha/|Oc_3|$ are constants. By (42), the function

(43)
$$\rho_{\text{new}}(M; N) = (\gamma_2 - \gamma_1) - \gamma_3 \cdot t, \quad t \in [t_1; t_2],$$

is linear in t. By construction, $b_1 \in a_4 N$ and $c_4 = a_4 - a_3 = a_4 - N$. Then

(44)
$$\rho_{\text{new}}(N; a_4) = |Na_4| / |Oc_4| = |a_4b_1| / |Oc_4| + |b_1N| / |Oc_4|$$
$$\equiv \gamma_4 + |b_1N| / |Oc_4|.$$

Find the points P and P_1 that satisfy $P \in FN$, $b_1P \parallel a_1a_2$; $P_1 \in b_1F$, $PP_1 \parallel Nb_1$. The homothety $\triangle Fa_1M \approx \triangle Fb_1P$ implies that $|b_1P| = |a_1M| \cdot |b_1F|/|a_1F| = \gamma_5 t$, where $\gamma_5 = |b_1F|/|a_1F|$ is a constant. We write $\angle b_1c_3O = \omega$ and $\angle Pb_1P_1 = \beta$. In $\triangle b_1PP_1$ we have $\angle b_1PP_1 = \pi/2 - \omega$ and $\angle PP_1b_1 = \pi/2 + \omega - \beta$. The sine theorem implies $|b_1P|/\cos(\omega - \beta)$ $= |b_1P_1|/\cos\omega = |PP_1|/\sin\beta$. From this and the homothety $\triangle FP_1P \approx \triangle Fb_1N$ we obtain

$$b_1 N| = |PP_1| \cdot \frac{|b_1 F|}{|P_1 F|} = \frac{|b_1 P| \cdot \sin \beta}{\cos(\omega - \beta)} \cdot \frac{|b_1 F|}{|b_1 F| - |b_1 P_1|}$$
$$= \frac{|b_1 F| \cdot \sin \beta}{\cos \omega} \cdot \frac{|b_1 P| \cdot \cos \omega / \cos(\omega - \beta)}{|b_1 F| - \cos \omega \cdot |b_1 P| / \cos(\omega - \beta)}.$$

From (44) we get

$$\rho_{\text{new}}(N;a_4) = \gamma_4 - \frac{|b_1F| \cdot \sin\beta}{|Oc_4| \cdot \cos\omega} + \frac{|b_1F|^2 \cdot \sin\beta \cdot \cos(\omega-\beta)/\cos^2\omega}{|b_1F| \cdot \cos(\omega-\beta)/\cos\omega - |b_1P|} \cdot \frac{1}{|Oc_4|}$$

Introducing positive constants

$$\gamma_{6} = |b_{1}F| \cdot \sin\beta/(\cos\omega \cdot |Oc_{4}|),$$

$$\gamma_{7} = |b_{1}F|^{2} \cdot \sin\beta \cdot \cos(\omega - \beta)/(\cos^{2}\omega \cdot |Oc_{4}|),$$

$$\gamma_{8} = |b_{1}F| \cdot \cos(\omega - \beta)/\cos\omega,$$

we have

(45)
$$\rho_{\text{new}}(N; a_4) = \gamma_4 - \gamma_6 + \gamma_7 / (\gamma_8 - \gamma_5 \cdot t).$$

Since $|b_1F| > |b_1P_1|$, we have $\gamma_8 - \gamma_5 \cdot t > 0$ for $t \in [t_1; t_2]$. The right-hand side of (45) is a downwards convex function of t. By (40), (41), (43), and (45), the function (39), that is, $f(t) = L^-(a_1MNa_4)$ ($t_1 \le t \le t_2$), is downwards convex in t. Therefore, max $f(t) = \max\{f(t_1); f(t_2)\}$. Consider the following four possible maxima of f(t) on $[t_1; t_2]$:

(a) Suppose that $f_{\max} = f(t_1)$ and $a_1MNa_4 = a_1a_9e_9a_4$ is a trapezium $(a_4a_1 \parallel e_9a_9)$. Since $b_1 \in a_4e_9$, it follows that $(e_9O) \cap (a_4a_1) = \{b_9\}$ is in a_4a_1 . We have $|Ob_9|/|Oe_9| \in [k; 1/k]$, and from (19) we get $k(a_1a_9e_9a_4) \ge k$. The trapezium $T = a_1a_9e_9a_4$ majorizes $a_1a_2a_3a_4$.

(b) Suppose that $f_{\text{max}} = f(t_2)$ and $a_{10} = a_7$. Then $a_1 M N a_4 = a_1 a_7 e_7 a_4$. In the canonically given quadrangle $a_1 a_7 e_7 a_4$ the points $c_7 = a_7 - a_1 = e_7$, $e_7 - a_7 \in e_7 a_4$, and the origin O meet the requirements of Lemma 2.1.

(c) Suppose that $f_{\text{max}} = f(t_2)$ and $a_{10} = a_6$. Then $a_1MNa_4 = a_1a_6e_6a_4$. In the canonically given quadrangle we have $e_6 - a_6 = a_4$, $\{w_1\} = a_1a_6 \cap (a_4O), w_1a_4 \parallel a_6e_6$, and $O \in \triangle a_4a_1w_1$. This case was considered in Lemma 2.1.

(d) Suppose that $f_{\text{max}} = f(t_2)$ and $a_{10} = a_5$. Then $a_1 M N a_4 = a_1 a_5 e_5 a_4$. By construction, $|Oe_2|/|Oa_5| = k$, $a_5 - a_1 = c_5 \in a_5 e_5$, $e_5 - a_5 \in e_5 a_4$. Take r_1 such that $r_1 \in a_4a_1$, $a_5r_1 \parallel e_5a_4 \parallel a_3a_4$. Since $a_2 \in a_1a_5$, we have $a_1r_1 \supset a_1r$ and $O \in \triangle r_1a_1a_5$. Moreover, if g_1 is a center of the canonically given $a_1a_5e_5a_4$, $\{w_1\} = a_1a_5 \cap (a_4g_1)$, and $\{v_1\} = a_4w_1 \cap a_1e_5$, then the inclusion $a_4a_3 \subset a_4e_5$ implies $O \in \triangle g_1v_1e_5$. In analogy with (29), consider $\Omega_1 = (\triangle r_1a_1a_5) \cap (\triangle g_1v_1e_5)$ with $O \in \Omega_1$. Therefore, case (d) is reduced to case 1 of the proof.

Thus, Theorem 1.3 is proved.

REMARK 2.6. In what follows, we mark the vertices of the trapezium $T = a_1 a_2 a_3 a_4$ clockwise in such a way that $a_4 a_1 \parallel a_2 a_3$ and $|a_4 a_1| \ge |a_2 a_3|$ with respect to the metric of the adjoint plane R^2 . In this case always $c_1 \in a_1 a_2$, $c_3 \in a_3 a_4$, and $c_4 \in a_4 a_1$.

LEMMA 2.6. Let $a_1a_2a_3a_4$ be a normalizing parallelogram, $\{m\} = a_1a_3 \cap a_2a_4$, and $O \in \triangle a_1a_2m$. Then the corresponding factor of symmetry satisfies

$$k = k(a_1a_2a_3a_4) = |Ob_3|/|Oa_3| = |Ob_4|/|Oa_4|,$$

and for the self-perimeter we get

(46)
$$L^{-}(a_1a_2a_3a_4) \le 4 + 2(1/k+k) = 2D^2/(D-1).$$

Proof. The central chords a_3b_3 and a_4b_4 form homothetic triangles $\triangle Ob_3b_4 \approx \triangle Oa_3a_4$. Moreover $|Ob_3|/|Oa_1| = |Ob_4|/|Oa_4|$. We look for points $e_{3,4}$ that satisfy $e_3 \in a_2b_2$, $b_3e_3 \parallel a_2a_3$ and $e_4 \in a_1b_1$, $b_4e_4 \parallel a_1a_4$, respectively. Since the chords a_ib_i are central ones, we have $e_3 \in Ob_2$, $e_4 \in Ob_1$ and $\triangle Ob_4e_4 \approx \triangle Oa_4a_1$, $\triangle Ob_3e_3 \approx \triangle Oa_3a_2$. Therefore $|Ob_4|/|Oa_4| = |Oe_4|/|Oa_1| \leq |Ob_1|/|Oa_1|$ and $|Ob_3|/|Oa_3| = |Oe_3|/|Oa_2| \leq |Ob_2|/|Oa_2|$, and hence $k = |Ob_{3,4}|/|Oa_{3,4}|$.

Denote by $L_V^-(a_1a_2a_3a_4)$ the self-perimeter of the parallelogram $a_1a_2a_3a_4$ in case the origin $O \in M^2$ is at some point V. Find points e_1 , e_2 that satisfy $e_1 \in a_1a_3$, $e_2 \in a_2a_4$, $e_1e_2 \parallel a_1a_2$, and $O \in e_1e_2$. As mentioned in the proof of Proposition 2.4, the function $f(V) = L_V^-(a_1a_2a_3a_4)$, where $V \in e_1e_2$, is strictly downwards convex. By symmetry, $\max L_V^-(a_1a_2a_3a_4) = f(e_1) =$ $f(e_2) = L_e^-(a_1a_2a_3a_4)$, where $e = e_2$. In case O = e we have $\rho(a_4; a_1)$ $= \rho(a_1; a_2)$ and $\rho(a_2; a_3) = \rho(a_3; a_4)$. Using the homotheties $\Delta a_2Oc_2 \approx$ $\Delta a_2a_4a_3$ and $\Delta a_4Oc_4 \approx \Delta a_4a_2a_1$, where $c_2 = a_2 - a_1 \in a_2a_3$, we calculate

$$\begin{split} \rho(a_1;a_2) &= |a_4a_3| / |Oc_2| = |a_4a_2| / |Oa_2| = 1 + |Oa_4| / |Oa_2| = 1 + 1/k, \\ \rho(a_3;a_4) &= |a_2a_1| / |Oc_4| = |a_4a_2| / |Oa_4| = 1 + |Oa_2| / |Oa_4| = 1 + k. \end{split}$$

The latter equalities and (14) imply (46).

LEMMA 2.7. Let the vertices of the normalizing trapezium $a_1a_2a_3a_4$ be marked as in Remark 2.6, $O \in \triangle a_1a_2a_4$, and $a_2 - a_1 = c_2 \in a_3a_4$. If $M \in a_2a_3$, then the self-perimeters of the trapeziums $a_1a_2a_3a_4$ and $a_1a_2Ma_4$ satisfy

(47)
$$L^{-}(a_1a_2a_3a_4) \le L^{-}(a_1a_2Ma_4).$$

Proof. By the hypothesis, $a_2 - a_1 = c_2 \in a_3 a_4$ and $a_3 - a_1 = e_1 \in c_2 c_3 \subset a_3 a_4$. Proposition 2.5 implies that $\rho_{\text{old}}(a_1; a_2) + \rho_{\text{old}}(a_2; a_3) = \rho_{\text{old}}(a_1; a_3)$. Set $a_4 - M = c'_4 \in a_4 a_1$. Then $\triangle Oc'_4 c_4 \sim \triangle a_4 M a_3$. If the trapezium $a_1 a_2 M a_4$ is taken as a new normalizing figure of M^2 , then $\rho_{\text{new}}(a_4; a_1) = \rho_{\text{old}}(a_4; a_1)$ and

(48)
$$\rho_{\text{new}}(M; a_4) = |Ma_4|/|Oc_4'| = |a_3a_4|/|Oc_4| = \rho_{\text{old}}(a_3; a_4).$$

The endpoint b_1 of the central chord a_1b_1 in the trapezium $a_1a_2a_3a_4$ belongs to a_3a_4 , i.e., $b_1 \in a_3a_4$. We look for a point e_2 on the chord Mb_1 and, at the same time, on the side of $\triangle Ma_3b_1$ such that $e_1e_2 \parallel a_3M \parallel a_2a_3$.

The homotheties $\Delta b_1 e_1 e_2 \approx \Delta b_1 a_3 M$, $\Delta b_1 O e_2 \approx \Delta b_1 a_1 M$, and $\Delta O e_1 e_2 \approx \Delta a_1 a_3 M$ imply $|a_1 a_3|/|O e_1| = |a_1 b_1|/|O b_1| = |a_1 M|/|O e_2|$. For a new normalizing trapezium $a_1 a_2 M a_4$, we have $(\widehat{a_2 - a_1})_{\text{new}} = c'_2 \in M a_4$, $(\widehat{M - a_2})_{\text{new}} = c_M \in M a_4$, and $(\widehat{M - a_1})_{\text{new}} = e_3 \in M a_4$, $\{e_3\} = O e_2 \cap M a_4$. By Proposition 2.5,

$$\rho_{\text{new}}(a_1; a_2) + \rho_{\text{new}}(a_2; M) = \rho_{\text{new}}(a_1; M)$$

= $|a_1 M| / |Oe_3| \ge |a_1 M| / |Oe_2| = |a_1 a_3| / |Oe_1| = \rho_{\text{old}}(a_1; a_3).$

From this and (48) we get (47).

DEFINITION 2.10. A normalizing trapezium $T = a_1 a_2 a_3 a_4$ is called *distinctive* if its vertices are marked in accordance with Remark 2.6, $a_2 - a_1 = c_2 \in a_3 a_4$, and the central chords $a_1 b_1$ and $a_2 b_2$ are such that $|Ob_1|/|Oa_1| = |Ob_2|/|Oa_2|$.

LEMMA 2.8. The self-perimeter of a distinctive trapezium $T = a_1 a_2 a_3 a_4$ satisfies

(49)
$$L^{-}(T) \le 4 + 2(1/k+k),$$

where k = k(T) is the factor of symmetry of T.

Proof. The cases of degeneration of T into a triangle or a parallelogram were considered in Corollary 2.5 and Lemma 2.6. In what follows, we assume that $|a_4a_1| > |a_2a_3| > 0$. By Definition 2.10, the central chords a_ib_i satisfy $|Ob_1|/|Oa_1| = |Ob_2|/|Oa_2| = |Ob_3|/|Oa_3|$, $b_1 \in a_3a_4$, $b_{2,3} \in a_4a_1$, $b_4 \in a_1a_2$. We also have $\widehat{a_3 - a_1} = e_1 \in c_2b_1 \subset c_2c_3 \subset a_3a_4$. We first consider the following particular cases.

1. Suppose that $k = |Ob_i|/|Oa_i|$, $0 \le i \le 4$ (see (16)). Find a point e_2 that satisfies $e_2 \in a_4a_1$ and $a_3e_2 \parallel a_2a_1$. We intend to calculate the self-perimeter $L^-(a_1a_2a_3a_4)$.

The homothety $\triangle b_4 Oc_1 \approx \triangle b_4 a_4 a_1$ implies (50) $|a_1 a_4| = |Oc_1| \cdot |b_4 a_4| / |Ob_4| = |Oc_1| \cdot (1 + |Oa_4| / |Ob_4|) = |Oc_1| \cdot (1 + 1/k).$ Therefore, $\rho(a_4; a_1) = 1 + 1/k$. Since $\triangle a_3 c_3 O \approx \triangle a_3 a_4 b_3$, we have

 $\rho(a_3; a_4) = |a_3 a_4| / |Oc_4| = |a_3 b_3| / |Ob_3| = 1 + |Oa_3| / |Ob_3| = 1 + 1/k.$

By Proposition 2.5, $\rho(a_1; a_3) = \rho(a_1; a_2) + \rho(a_2; a_3)$. The homothety $\Delta b_1 Oe_1 \approx \Delta b_1 a_1 a_3$ implies $\rho(a_1; a_3) = |a_1 a_3| / |Oe_1| = |a_1 b_1| / |Ob_1| = 1 + |Oa_1| / |Ob_1| = 1 + 1/k$. Finally,

(51)
$$L^{-}(a_1a_2a_3a_4) = 3(1+1/k).$$

Let us prove (49) for case 1. Since c_2 is in a_3a_4 , we have $|Oc_1| \ge |a_2a_3| = |a_1e_2| = |a_1a_4| - |e_2a_4|$. Since $\triangle a_1c_1O \approx \triangle a_1b_4b_1$, we get $|b_4b_1| = |Oc_1| \cdot |a_1b_1|/|Oa_1| = |Oc_1|(1+k)$. The figure $a_1b_4b_1b_2$ is a parallelogram, $|a_1b_2| = |b_4b_1|$, and hence $|b_2a_4| = |a_1a_4| - |a_1b_2| = |Oc_1| \cdot (1/k - k)$. Using subsequently the homotheties $\triangle a_4b_1b_2 \approx \triangle a_4a_3e_2$, $\triangle a_1a_3e_2 \approx \triangle b_3b_1b_2$, and $\triangle Oa_1a_3 \approx \triangle Ob_1b_3$, we obtain $|e_2a_4| = |b_2a_4| \cdot |a_3e_2|/|b_1b_2| = |b_2a_4| \cdot |a_1a_3|/|b_1b_3| = |b_2a_4| \cdot |Oa_3|/|Ob_3| = |b_2a_4|/k$. Then we have $|e_2a_4| = |Oc_1| \cdot (1 - k^2)/k^2$, and using (50) we obtain $|Oc_1| \ge |a_1e_2| = |Oc_1| \cdot (1 + 1/k) - |Oc_1| \cdot (1 - k^2)/k^2 \ge 0$. From this we obtain $1 \ge (2k^2 + k - 1)/k^2 \ge 0$ or $1/2 \le k \le (\sqrt{5} - 1)/2$. If $k \ge 1/2$, then $1/k \le 2k + 1$, and together with (51) this gives (49).

2. Suppose that $k = |Ob_4|/|Oa_4| \le |Ob_1|/|Oa_1|$. Write $\{e_3\} = a_1b_1 \cap a_2a_4$, and find a point e_4 that satisfies $e_4 \in Ob_1$ and $e_4b_4 \parallel a_1a_4$.

2.1. If $e_3 \in e_4b_1$, then

 $|Ob_4|/|Oa_4| = |Oe_4|/|Oa_1| \le |Oe_3|/|Oa_1| \le |Ob_1|/|Oa_1| = |Ob_2|/|Oa_2|.$

In view of (16), the latter means that $k(\triangle a_1a_2a_4) = k = k(T)$. By Lemma 2.7 and Corollary 2.5, inequality (47) implies (49).

2.2. If $e_4 \in e_3b_1$, then take the point $\{a_5\} = a_2a_3 \cap (a_4e_4)$. By Lemma 2.7, for the trapezium $a_1a_2a_5a_4$ we have $L^-(a_1a_2a_3a_4) \leq L^-(a_1a_2a_5a_4)$. Since $\triangle Oe_4b_4 \approx \triangle Oa_1a_4$, we have $k = |Oe_4|/|Oa_1| = |Ob_4|/|Oa_4| \leq |Ob_2|/|Oa_2| = |Ob_3|/|Oa_3|$ and $k(a_1a_2a_5a_4) = k$. Set $\{a_6\} = (a_1a_2) \cap (a_4a_5)$. Find a point e_5 that satisfies $e_5 \in a_1a_4$ and $e_4e_5 \parallel a_1a_2$. Write $\{a_7\} = (e_5O) \cap (a_1a_2)$. With respect to the new normalizing trapezium $a_1a_2a_5a_4$ we have $(a_2 - a_1)_{\text{new}} = c'_2 \in a_5a_4, a_5 - a_2 = c_5 \in a_5a_4, a_1 - a_4 = c_1 \in a_1a_2, \text{ and } (a_4 - a_5)_{\text{new}} = c'_4 \in a_4a_1$. If $a_6 \in a_2a_7$, then the homothety $\triangle Oe_4e_5 \approx \triangle Oa_1a_7$ implies $k(\triangle a_1a_6a_4) = k$. By construction, $a_1a_2a_5a_4 \subset \triangle a_1a_6a_4, a_6 - a_1 = c'_2$, and $a_4 - a_6 = c'_4$. Therefore, (4) implies $L^-(a_1a_2a_5a_4) \leq L^-(\triangle a_1a_6a_4)$. The latter inequality and Corollary 2.5 imply (49). If $a_7 \in a_2a_6$, then find a point a_8 that satisfies $a_8 \in (a_4a_5)$ and $a_7a_8 \parallel a_1a_4$. Since $\triangle Oa_1a_7 \approx \triangle Oe_4e_5$, evidently $k(a_1a_7a_8a_4) = k$. In view of (4) and the relations $(a_7 - a_1)_{\text{new}}$

 $= c'_2 \in a_5 a_4, \ (a_8 - a_7)_{\text{new}} = c_5 \in a_5 a_4, \ a_1 a_7 a_8 a_4 \supset a_1 a_2 a_5 a_4, \text{ the self-peri$ $meter of the trapezium <math>a_1 a_7 a_8 a_4$ satisfies $L^-(a_1 a_7 a_8 a_4) \ge L^-(a_1 a_2 a_5 a_4) \ge L^-(a_1 a_2 a_3 a_4)$. Since $|Ob_i|/|Oa_i| = k, \ i = 1, 4, 7, 8$, by construction case 2.2 is reduced to case 1.

3. Suppose that $k = |Ob_1|/|Oa_1| \leq |Ob_4|/|Oa_4|$. Set $\{e_6\} = Ob_4 \cap a_1a_3$, and find a point e_7 that satisfies $e_7 \in Ob_4$ and $b_1e_7 \parallel a_4a_1$, where $\triangle Oa_4a_1 \approx \triangle Oe_7b_1$. Observe that $c_{2,3} \in a_3a_4$. The normalizing vector for the point $M \in a_2a_3$ is $\widehat{M-a_1} = c_M \in a_3a_4$, and by Proposition 2.5 we have $\rho(a_1; a_3) = \rho(a_1; M) + \rho(M; a_3)$. With respect to the new normalizing trapezium $a_1Ma_3a_4 \subset M^2$ we have $(\widehat{a_1 - a_4})_{\text{new}} = c'_1$ which is $Oc_1 \cap a_1M$, $|Oc'_1| \leq |Oc_1|$, and $\rho_{\text{new}}(a_4; a_1) \geq \rho_{\text{old}}(a_4; a_1)$. Evidently, $\rho_{\text{new}}(a_3; a_4) = \rho_{\text{old}}(a_3; a_4)$. Thus

(52)
$$L^{-}(a_1a_2a_3a_4) \le L^{-}(a_1Ma_3a_4), \quad M \in a_2a_3.$$

3.1. If $e_6 \in b_4e_7$, then the central chords a_1b_1 , a_3b_3 , a_4e_6 of $\triangle a_1a_3a_4$ satisfy $k = |Ob_1|/|Oa_1| = |Ob_3|/|Oa_3| = |Oe_7|/|Oa_4| \le |Oe_6|/|Oa_4|$. By (16), we have $k(\triangle a_1a_3a_4) = k$, and by (52) with $M = a_3$ we have $L^-(a_1a_2a_3a_4) \le L^-(\triangle a_1a_3a_4)$. With Corollary 2.5, we get (49).

3.2. If $e_7 \in b_4 e_6$, then let $\{a_5\} = a_2 a_3 \cap (a_1 e_7)$ and $\{b_5\} = (a_5 O) \cap a_4 a_1$. The self-perimeter of the new normalizing trapezium $a_1 a_5 a_3 a_4 \subset M^2$ satisfies (52) with $M = a_5$. The central chords $a_1 b_1$, $a_5 b_5$, $a_3 b_3$, and $a_4 e_7$ satisfy $k = |Ob_1|/|Oa_1| = |Ob_5|/|Oa_5| = |Ob_3|/|Oa_3| = |Oe_7|/|Oa_4|$. Thus, case 3.2 is reduced to case 1, and Lemma 2.8 is proved.

Proof of Theorem 1.2. Let $k(P_4)$ and k(T) be the factors of symmetry for a given normalizing quadrangle P_4 and its majorizing trapezium T, respectively. The latter exists by Theorem 1.3. In view of (14), condition (10) is equivalent to $k(P_4) \leq k(T)$. If (49) holds for an arbitrary trapezium, then the estimate (9) for the first self-perimeter holds due to the inequalities

(53)
$$L^{-}(P_4) \leq L^{-}(T) \leq 4 + 2(1/k(T) + k(T))$$

 $\leq 4 + 2(1/k(P_4) + k(P_4)) = 2D^2/(D-1).$

The inequality (9) for the second self-perimeter $L^+(P_4)$ follows by duality.

Denote the vertices of the trapezium T in accordance with Remark 2.6, i.e., $T = a_1 a_2 a_3 a_4$, $a_4 a_1 \parallel a_2 a_3$ and $|a_4 a_1| \ge |a_2 a_3|$ in the adjoint plane R^2 . Find a point $u \in a_4 a_1$ such that $ua_3 \parallel a_1 a_2$. Write $\{m\} = a_1 a_3 \cap a_2 a_4$ and $\{n\} = ua_3 \cap a_2 a_4$. The chord ua_3 and the diagonals $a_1 a_3$ and $a_2 a_4$ split Tinto six parts: $a_1 a_2 a_3 a_4 = \triangle a_2 a_3 m \cup \triangle a_1 a_2 m \cup a_1 m n u \cup \triangle u n a_4 \cup \triangle n m a_3$ $\cup \triangle a_4 n a_3$.

Our reasonings depend on the possible location of the origin $O \in M^2$ with respect to the above mentioned parts of T. **1.** Suppose that $O \in \triangle a_2 a_3 m \subset \triangle a_2 a_3 a_4$. Similarly to (23) (Proposition 2.7), we have $k = |Ob_i|/|Oa_i|$, i = 1, 4, where $a_i b_i$ are central chords in T. Take a point a_5 in such a way that $a_1 a_5 a_3 a_4$ is a parallelogram. Select $M \in b_4 a_5$. Introduce a parameter $t = |b_1M|$ and set $t_1 = |b_1b_4|$ and $t_2 = |b_1a_5|$. Observe that $t_1 \leq t \leq t_2$. Consider the new normalizing trapezium $a_1Ma_3a_4 \subset M^2$, and define the self-perimeter function

$$f(t) = L^{-}(a_1 M a_3 a_4), \quad t \in [t_1; t_2].$$

Write $(a_1 - a_4)_{\text{new}} = c'_1 \in a_1 M$, $(M - a_1)_{\text{new}} = c_M \in b_4 b_1 \subset a_2 a_3$, and $a_3 - M = a_3 - a_2 = c_3 \in a_3 a_4$. Evidently, $\rho_{\text{new}}(a_3; a_4) = \rho_{\text{old}}(a_3; a_4)$. The similarity $\Delta a_1 M a_2 \sim \Delta O c_M c_2$ implies $\rho_{\text{new}}(a_1; M) = |a_1 M| / |O c_M| =$ $|a_1 a_2| / |O c_2| = \rho_{\text{old}}(a_1; a_2)$. The function $\rho_{\text{new}}(M; a_3) = |M a_3| / |O c_3| =$ $(t + |b_1 a_3|) / |O c_3|$ is linear in t. The homothety $\Delta a_1 M b_1 \approx \Delta a_1 c'_1 O$ yields $\rho_{\text{new}}(a_4; a_1) = |a_1 a_4| / |O c'_1| = |a_1 a_4| \cdot |a_1 b_1| / (|O a_1| \cdot t)$. Thus, the function f(t)is downwards convex on $[t_1; t_2]$, and hence max $f(t) = \max\{f(t_1); f(t_2)\}$.

(a) If $f_{\text{max}} = f(t_2)$, then $a_1Ma_3a_4 = a_1a_5a_3a_4$ is a parallelogram. We have $O \in \triangle a_3ma_2 \subset \triangle a_3m'a_5$, where $\{m'\} = a_1a_3 \cap a_5a_4$. Since $k = |Ob_4|/|Oa_4|$, by Lemma 2.6 we have $k(a_1a_5a_3a_4) = k$ and (46) holds. In combination with (53) we get (9).

(b) If $f_{\text{max}} = f(t_1)$, then $a_1Ma_3a_4 = a_1b_4a_3a_4$. The line through a_4 parallel to a_1b_4 is a supporting one for the trapezium $a_1b_4a_3a_4$. We have $|Ob_4|/|Oa_4| = k = k(a_1a_2a_3a_4)$ by hypothesis, and $k(a_1b_4a_3a_4) = k$ by Corollary 2.4. By construction, $|b_4a_3| \leq |a_1a_4|$ and $b_1 \in b_4a_3$, and hence $a_1b_4a_3a_4$ is affinely equivalent to the trapezium from Example 2.1 that shows the sharpness of inequality (9).

2. Suppose that $O \in a_1a_2nu = (\triangle a_1a_2m) \cup (a_1mnu)$. We have $b_4 \in a_1a_2$. Construct a parallelogram $e_1a_5a_3a_4$ such that $e_1 \in a_4a_1$, $b_4 \in e_1a_5$, and $a_2 \in a_5a_3$. Mark the points $\widehat{a_4 - a_3} = c_4 \in a_4e_1 \subset a_4a_1$, $(\widehat{a_1 - a_4})_{\text{old}} = c_1 \in a_1a_2$, $(\widehat{a_1 - a_4})_{\text{new}} = c'_1 \in e_1a_5$, $\widehat{a_2 - a_1} = c_2 \in a_2a_3$, $(\widehat{a_5 - a_1})_{\text{new}} = c_5 \in a_5a_3$, and $\widehat{a_3 - a_2} = \widehat{a_3 - a_5} = c_3 \in a_3a_4$. The homotheties $\triangle b_4Oc'_1 \approx \triangle b_4a_4e_1$ and $\triangle b_4Oc_1 \approx \triangle b_4a_4a_1$ imply $\rho_{\text{new}}(a_4; e_1) = |a_4e_1|/|Oc'_1| = |a_4b_4|/|Ob_4| = |a_4a_1|/|Oc_1| = \rho_{\text{old}}(a_4; a_1)$. The similarities $\triangle Oc_5c_2 \sim \triangle b_4a_5a_2 \sim \triangle b_4e_1a_1$ yield $\rho_{\text{new}}(e_1; a_5) = \rho_{\text{old}}(a_1; a_2)$.

Evidently, $\rho(a_5; a_3) \geq \rho(a_2; a_3)$ and $\rho_{\text{new}}(a_3; a_4) = \rho_{\text{old}}(a_3; a_4)$. Hence we have $L^-(a_1a_2a_5a_4) \leq L^-(e_1a_5a_3a_4)$. Set $\{m'\} = e_1a_3 \cap a_5a_4$. By construction, $O \in \triangle a_4e_1a_5$. If $O \in \triangle e_1a_5m'$, then by Lemma 2.6 we have $k(e_1a_5a_3a_4) = |Ob_4|/|Oa_4| \geq k(a_1a_2a_3a_4)$. If $O \in \triangle a_4e_1m'$, then $k(e_1a_5a_3a_4)$ $= |Ob_3|/|Oa_3| \geq k$. Combining this with (46) and (53), we get (9).

3. Suppose that $O \in \triangle una_4$, $c_{2,3} \in a_3a_4$, $b_1 \in a_3a_4$, $b_{2,3} \in a_4u$, and $b_4 \in a_1a_2$. Find a point e_1 that satisfies $e_1 \in a_4a_1$ and $e_1b_1 \parallel a_1a_2$. Set $\{a_5\} = (a_1a_2) \cap (a_4a_3), \{b_5\} = a_4a_1 \cap (a_5O), \text{ and } \{a_6\} = (a_1a_2) \cap (e_1O)$. The

homothety $\triangle Ob_1 e_1 \approx \triangle Oa_1 a_6$ implies $|Ob_1|/|Oa_1| = |Oe_1|/|Oa_6|$. Observe that $a_6 - a_1 = a_5 - a_1 = c_2 \in a_3 a_4$.

(a) If $|Ob_1|/|Oa_1| \leq |Ob_2|/|Oa_2|$, then $\{b'_2\} = Ob_2 \cap b_1e_1$, $e_1 \in b_2u$, $a_2 \in a_1a_6$. If $a_5 \in a_2a_6$, then $\triangle a_1a_5a_4$ is a new normalizing figure of M^2 . Evidently, $|Ob_5|/|Oa_5| \geq |Oe_1|/|Oa_6|$. By (16) we have $k(\triangle a_1a_5a_4) = k$. The inclusion $a_1a_2a_3a_4 \subset \triangle a_1a_5a_4$, $c_2 \in a_3a_4$, and inequality (4) imply $L^-(a_1a_2a_3a_4) \leq L^-(\triangle a_1a_5a_4)$. Combining this with Corollary 2.5 we get (9). If $a_6 \in a_2a_5$, then the trapezium $T = a_1a_6a_7a_4$, where $a_7 \in (a_4a_3)$ and $a_7a_6 \parallel a_4a_1$, is a new normalizing figure of M^2 . Set $\{b_7\} = a_4a_1 \cap (a_7O)$ and $b_6 = e_1$. Since $|Ob_6|/|Oa_6| = |Ob_1|/|Oa_1| = |Ob_7|/|Oa_7|$, we obtain $k(a_1a_6a_7a_4) = k$, and the trapezium T is distinctive. The estimate (49) of Lemma 2.8 implies (9).

(b) If $|Ob_2|/|Oa_2| \leq |Ob_1|/|Oa_1|$, then $a_6 \in a_1a_2$. Find points e_2 , e_3 that satisfy $e_2 \in Ob_1$, $e_2b_2 \parallel a_2a_1$, and $e_3 \in Ob_1 \cap a_2a_4$. If $e_2 \in Oe_3$, then $\triangle a_1a_2a_4$ is a new normalizing figure of M^2 . Formula (16) and $|Ob_2|/|Oa_2| = |Oe_2|/|Oa_1| \leq |Oe_3|/|Oa_1|$ imply $k(\triangle a_1a_2a_4) = k$. By Lemma 2.7 with $M = a_2$ in (47), and Corollary 2.5, we get (9). If $e_3 \in Oe_2$, then the trapezium $T = a_1a_2a_7a_4$, where $\{a_7\} = a_2a_3 \cap (a_4e_2)$, is a new normalizing figure of M^2 . Since $(\widehat{a_2 - a_1})_{\text{new}} = c'_2 \in a_7a_4$, $|Oe_2|/|Oa_1| = |Ob_2|/|Oa_2|$, $|a_2a_7| \leq |a_1a_4|$, and $a_2a_7 \parallel a_1a_4$, it follows that $T = a_1a_2a_7a_4$ is a distinctive trapezium and k(T) = k. By Lemma 2.7 we have $L^-(a_1a_2a_3a_4) \leq L^-(T)$. Together with (49) we get (9).

4. Suppose that $O \in \triangle a_4na_3$, $b_{1,2} \in a_3a_4$, $b_3 \in a_4a_1$, $b_4 \in a_2a_3$, and $c_{2,3} \in a_3a_4$. For this kind of trapezium, in analogy with the proof of Proposition 2.7, case (b), we can prove (23), i.e., $k(a_1a_2a_3a_4) = |Ob_1|/|Oa_1|$. Take the trapezium $a_1b_4a_3a_4$ in the capacity of a new normalizing one of M^2 . The chords a_4b_4 , a_3b_3 , and a_1b_1 are simultaneously central ones for the trapeziums $a_1a_2a_3a_4$ and $a_1b_4a_3a_4$. From (16) we get $k(a_1b_4a_3a_4) = k = |Ob_1|/|Oa_1|$. For normalizing points we have $c_{2,3} \in a_3a_4$ and $b_4 - a_1 = c_b \in c_2c_3$. Then, by Proposition 2.5,

$$\rho_{\text{new}}(a_1; b_4) + \rho_{\text{new}}(b_4; a_3) = \rho_{\text{new}}(a_1; a_3) = \rho_{\text{old}}(a_1; a_3)$$
$$= \rho_{\text{old}}(a_1; a_2) + \rho_{\text{old}}(a_2; a_3).$$

Evidently, $\rho_{\text{new}}(a_3; a_4) = \rho_{\text{old}}(a_3; a_4)$. We have $(a_1 - a_4)_{\text{old}} = c_1 \in a_1 a_2$ and $(a_1 - a_4)_{\text{new}} = c'_1 \in a_1 b_4$. Therefore $|Oc'_1| \leq |Oc_1|$ and $\rho_{\text{new}}(a_4; a_1) \geq \rho_{\text{old}}(a_4; a_1)$. Then $L^-(a_1 a_2 a_3 a_4) \leq L^-(a_1 b_4 a_3 a_4)$, where the origin $O \in \Delta a_1 b_4 a_4$ is in the normalizing trapezium $a_1 b_4 a_3 a_4 \subset M^2$. Thus, case 4 is reduced to cases 2 and 3, where the origin $O \in \Delta a_1 a_2 a_4$ is in the normalizing trapezium $a_1 a_2 a_3 a_4$.

5. Suppose that $O \in \triangle nma_3$, $b_{1,2} \in a_3a_4$, $b_3 \in a_4a_1$, $b_4 \in a_2a_3$, and $\widehat{a_2 - a_1} = c_2 \in a_2a_3$. In analogy with case 4, we have $k = |Ob_1|/|Oa_1|$. Set

 $\{e_1\} = (a_1b_1) \cap (a_2a_3)$, and find points e_2, e_3 that satisfy $e_2 \in a_2a_3, e_2a_1 || a_3O;$ $e_3 \in a_4b_4, e_3b_1 || a_2a_3;$ and $\{e_4\} = a_2a_3 \cap (a_1e_3)$. For the parallelogram $a_1a_5a_3a_4$, the vertex a_5 is in (a_2a_3) . Define

$$e_5 = \begin{cases} e_2 & \text{if } e_4 \in e_1 e_2, \\ e_4 & \text{if } e_2 \in e_1 e_4. \end{cases}$$

Write $t_1 = |e_1e_5|$ and $t_2 = |e_1a_5|$. Let $M \in a_5e_5$ and take $t = |e_1M| \in [t_1; t_2]$ as a parameter. In analogy with case 1, the function $f(t) = L^-(a_1Ma_3a_4)$, $t \in [t_1; t_2]$, is downwards convex.

(a) If $f_{\text{max}} = f(t_2)$, then $a_1Ma_3a_4 = a_1a_5a_3a_4$ is a parallelogram. The origin O is in $\triangle nma_3 \subset \triangle a_4m'a_3$, where $\{m'\} = a_1a_3 \cap a_4a_5$. By Lemma 2.6, we have $k(a_1a_5a_3a_4) = |Ob_1|/|Oa_1| = k$. Using (46), we get (9).

(b) If $f_{\text{max}} = f(t_1)$, then $a_1Ma_3a_4 = a_1e_5a_3a_4$ is a trapezium. Denote by $a_4b'_4$ and e_5e_6 the central chords in $a_1e_5a_3a_4$ that correspond to a_4 and e_5 , respectively. By definition of e_5 , we have $a_4e_3 \subseteq a_4b'_4$. Since $\triangle Oe_3b_1 \approx \triangle Oa_4a_1$, it follows that $k = |Ob_1|/|Oa_1| = |Oe_3|/|Oa_4| \leq |Ob'_4|/|Oa_4|$. The chord e_5e_6 is also central in the trapezium $a_1a_2a_3a_4$. Hence $k \leq |Oe_6|/|Oe_5| \leq 1/k$. By (16), we have $k(a_1e_5a_3a_4) = k$. If $e_5 = e_4$, then $\{e_3\} = a_4b_4 \cap a_1e_4$, and the origin $O \in \triangle a_1e_5a_4$ is located inside the new normalizing trapezium $a_1e_5a_3a_4$. Such a location of the origin in the normalizing trapezium has been considered in cases 2 and 3 (this is the $e_5 - a_1 = e_2 - a_1 = a_3$. Then $O \in \triangle a_4b_3a_3$, where the chord a_3b_3 is central. The latter means that O is inside the normalizing trapezium of cases 3 and 4 (in these cases $O \in \triangle a_4ua_3$ in the trapezium $a_1a_2a_3a_4$).

Summarizing, Theorem 1.2 is proved.

REFERENCES

- [1] T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper*, Springer, Berlin, 1934.
- [2] S. Gołąb, Some metric problems in the geometry of Minkowski planes, Prace Akademii Górniczej w Krakowie 6 (1932), 1–79 (in Polish, with French summary).
- [3] B. Grünbaum, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55-57.
- B. Grünbaum, The perimeter of Minkowski unit discs, Colloq. Math. 15 (1966), 135–139.
- B. Grünbaum, Studies in Combinatorial Geometry and the Theory of Convex Bodies, Nauka, Moscow, 1971 (in Russian).
- [6] F. Klein, Elementary Mathematics from an Advanced Standpoint: Geometry, Dover, New York, 2004.
- [7] K. Leichtweiss, Konvexe Mengen, Deutsch. Verlag Wiss., Berlin, 1980.
- [8] V. V. Makeev, On upper estimates for the perimeter of non-symmetric unit circles of Minkowski plane, Zap. Nauchn. Sem. LOMI 299 (2003), 262–266 (in Russian).
- H. Martini and A. I. Shcherba, On the self-perimeter of quandrangles for gauges, Beitr. Algebra Geom. 52 (2011), 191–203.

[10]	H. Martini and A. I. Shcherba, On the self-perimeter of pentagonal gauges, Ae	qua-
	tiones Math. 84 (2012), 157–183.	

- [11] H. Martini and A. I. Shcherba, On the stability of the unit circle with minimal self-perimeter in normed planes, Colloq. Math. 131 (2013), 69–87.
- [12] H. Martini and K. J. Swanepoel, The geometry of Minkowski spaces—a survey, Part II, Expo. Math. 22 (2004), 93–144.
- [13] H. Martini, K. J. Swanepoel and G. Weiss, The geometry of Minkowski spaces a survey, Part I, Expo. Math. 19 (2001), 97–142.
- [14] H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in: Gesammelte Abhandlungen, Bd. 2, Berlin, 1911, 131–229.
- B. H. Neumann, On some affine invariants of closed convex regions J. London Math. Soc. 14 (1939), 262–272.
- [16] A. I. Shcherba, On estimates for the self-perimeter of the unit circle of a Minkowski plane, Tr. Rubtsovsk. Ind. Inst. 12 (2003), 96–107 (in Russian).
- [17] A. I. Shcherba, The unit disk of smallest self-perimeter in a Minkowski plane, Mat. Zametki 81 (2006), 125–135 (in Russian); English transl.: Math. Notes 81 (2007), 108–116.
- [18] A. C. Thompson, *Minkowski Geometry*, Cambridge Univ. Press, Cambridge, 1996.

Horst Martini	Anatoliy Shcherba
Faculty of Mathematics	Department of Industrial Computer Technologies
Technical University of Chemnitz	Cherkasy State Technological University
09107 Chemnitz, Germany	Shevchenko Blvd., 460
E-mail: martini@mathematik.tu-chemn	itz.de Cherkasy, 18006, Ukraine
	E-mail: shcherbaanatoly@gmail.com

Received 22 May 2014; revised 27 April 2015

(6271)