AXIAL PERMUTATIONS OF ω^{2}
 BY
 PAWEŁ KLINGA (Gdańsk)

Abstract

We prove that every permutation of ω^{2} is a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.

1. Introduction. We consider axial permutations of the infinite matrix ω^{2}, where ω denotes $\{0,1,2, \ldots\}$, the set of natural numbers. We say that a permutation $f: \omega^{2} \rightarrow \omega^{2}$ is horizontal if there exists $g: \omega^{2} \rightarrow \omega$ such that $f(x, y)=(x, g(x, y))$. Analogously, f is vertical if there exists $g: \omega^{2} \rightarrow \omega$ such that $f(x, y)=(g(x, y), y)$. A permutation is axial if it is either horizontal or vertical.

In 1935 Stefan Banach posed a question in The Scottish Book whether every permutation of ω^{2} is a composition of a finite number of axial permutations. A positive answer was given by Nosarzewska [N], stating that a sufficient number of axial permutations is 5 . This number was reduced to 4 by Ehrenfeucht and Grzegorek [EG], G]. The subject of axial permutations has also been treated in [Sz1] and [Sz2].

In this paper, we are interested in permutations for which the support is finite, i.e.

$$
|\operatorname{supp}(\sigma)|=|\{n \in \omega: \sigma(n) \neq n\}|<\aleph_{0} .
$$

We will prove that every permutation of ω^{2} is a composition of a finite number of axial permutations, where each axial permutation has a finite support on each axis. In the final part of the paper we generalize one of our results to the case of ideals of subsets of natural numbers.
2. Permutations with finite supports. By $[n, m]$ and $[n, m)$ we will denote the sets $\{n, n+1, \ldots, m\}$ and $\{n, n+1, \ldots, m-1\}$, respectively. We will say that a subset of ω^{2} is an L-area if it is of the form $[0, m]^{2} \backslash[0, n)^{2}$. Additionally, we require all L-areas to be sufficiently thick, i.e. $2 n \leq m$.

In the proof of Lemma 2.2 , we are going to use the following result from [EG].

[^0]Theorem 2.1 ([EG]). Let A be a set of an arbitrary cardinality and $|B|<\aleph_{0}$. Every permutation of $A \times B$ is a composition of three axial permutations, where the first one is horizontal.

For each L-area we consider permutations that we will call good. These are horizontal or vertical permutations $f:[0, m]^{2} \backslash[0, n)^{2} \rightarrow[0, m]^{2} \backslash[0, n)^{2}$ of the following form:

$$
f(x, y)= \begin{cases}(x, y), & x \in[0, n) \\ (x, g(x, y)), & x \in[n, m]\end{cases}
$$

or

$$
f(x, y)= \begin{cases}(x, y), & y \in[0, n) \\ (h(x, y), y)), & y \in[n, m] .\end{cases}
$$

Lemma 2.2. Each permutation of an L-area can be represented as a composition of at most 24 good permutations.

Proof. Fix some L-area and its permutation σ. Divide the L-area into three subsets: $L_{1}=[n, m] \times[0, n), L_{2}=[n, m]^{2}, L_{3}=[0, n) \times[n, m]$. We will be using the following notation:

$$
\begin{gathered}
(x, y) \oplus(n, m)=(x+n, y+n) \\
A(i, j)=\left\{(x, y) \in L_{j}: \sigma(x, y) \in L_{i}\right\} .
\end{gathered}
$$

The final composition will be constructed within the following twelve steps.

Step 1. Define a permutation f_{1} of the L-area by

$$
f_{1}(x, y)= \begin{cases}\sigma(x, y) \oplus(0, n) & \text { if }(x, y) \in A(1,2), \\ (x, y) & \text { otherwise }\end{cases}
$$

Step 2. Define a horizontal permutation f_{2} by

$$
f_{2}(x, y)= \begin{cases}(x, y+n) & \text { if }(x, y) \in[n, m) \times[0, n) \\ (x, y-n) & \text { if }(x, y) \in[n, m] \times[n, 2 n) \\ (x, y) & \text { otherwise }\end{cases}
$$

Then $\left(f_{2} \circ f_{1}\right)(x, y)=\sigma(x, y)$ for every $(x, y) \in A(1,2)$.
Step 3. Since L_{2} now contains some elements which originally belonged to L_{1}, we repeat the method from the first two steps, i.e. let f_{3} be a permutation such that for each $(x, y) \in A(1,2)$ we have $f_{3}(x, y)=\sigma(x, y) \oplus(0, n)$, and f_{3} is the identity elsewhere. While f_{3} acts similarly to f_{1}, it is not the same permutation, as $A(1,2)$ now has a different form.

Step 4. We shift the aforementioned elements into L_{1} using a horizontal permutation f_{4} where

$$
f_{4}(x, y)= \begin{cases}(x, y+n) & \text { if }(x, y+n) \in A(1,2), \\ (x, y-n) & \text { if }(x, y) \in A(1,2), \\ (x, y) & \text { otherwise }\end{cases}
$$

Step 5 . We now use a vertical permutation f_{5} constructed in an analogous way to the horizontal permutation f_{2} :

$$
f_{5}(x, y)= \begin{cases}(x+n, y) & \text { if }(x, y) \in[0, n) \times[n, m] \\ (x-n, y) & \text { if }(x, y) \in[n, 2 n) \times[n, m] \\ (x, y) & \text { otherwise }\end{cases}
$$

Step 6 . Since L_{2} now contains some elements which originally belonged to L_{3}, we repeat the method of rearranging those $(x, y) \in L_{2}$ for which $\sigma(x, y) \in L_{1}$. Let f_{6} be a permutation such that for each $(x, y) \in A(1,2)$ we have $f_{6}(x, y)=\sigma(x, y) \oplus(0, n)$.

Step 7. We proceed similarly to Step 4. Define a horizontal permutation f_{7} by

$$
f_{7}(x, y)= \begin{cases}(x, y+n) & \text { if }(x, y+n) \in A(1,2), \\ (x, y-n) & \text { if }(x, y) \in A(1,2), \\ (x, y) & \text { otherwise. }\end{cases}
$$

The rearranging of L_{1} is now complete.
STEP 8 . Let f_{8} be a permutation such that for each $(x, y) \in A(3,2)$ we have $f_{8}(x, y)=\sigma(x, y) \oplus(n, 0)$.

Step 9. We set $f_{9}(x, y)=f_{5}(x, y)$.
STEP 10. Let f_{10} be a permutation such that for each $(x, y) \in A(3,2)$ we have $f_{10}(x, y)=\sigma(x, y) \oplus(n, 0)$.

Step 11. Similarly to Step 7, we shift the aforementioned elements into L_{3} using a vertical permutation f_{11} where

$$
f_{11}(x, y)= \begin{cases}(x+n, y) & \text { if }(x+n, y) \in A(3,2) \\ (x-n, y) & \text { if }(x, y) \in A(3,2), \\ (x, y) & \text { otherwise }\end{cases}
$$

The rearranging of L_{3} is now complete.
STEP 12. Let f_{12} be a permutation such that for each $(x, y) \in L_{2}$ we have $f_{12}(x, y)=\sigma(x, y)$. This completes the rearranging of L_{2} and therefore of the entire L-area.

Each of the twelve permutations is either good or by Theorem 2.1 can be represented as a composition of three axial permutations, which are also good for the L-area. One can check that the total sufficient number of good permutations is 24 .

We will say that a partition of ω^{2} is an L-partition if it consists only of disjoint L-areas. For every permutation σ of ω^{2} we may consider its decomposition into disjoint cycles. Such a decomposition defines a partition of ω^{2}, which we will denote $\pi(\sigma)$. Recall that a partition \mathcal{F} is a refinement of a partition \mathcal{G}, if for every $A \in \mathcal{F}$ there exists $B \in \mathcal{G}$ such that $A \subseteq B$. In this case we write $\mathcal{F} \prec \mathcal{G}$. We will say that a permutation σ of ω^{2} is an L-permutation if $\pi(\sigma)$ is a refinement of some L-partition.

Corollary 2.3. Every L-permutation can be represented as a composition of at most 24 axial permutations which have finite supports on each axis.

Proof. Fix an L-permutation σ. The partition $\pi(\sigma)$ is a refinement of some L-partition \mathcal{F}. According to Lemma 2.2, for each member $A \in \mathcal{F}$ it is sufficient to use 24 good permutations to obtain $\sigma_{\lceil A}$. To prove the assertion, simply take such compositions simultaneously on all members of \mathcal{F}.

Lemma 2.4. Let A be such that $|A|=\aleph_{0}$. Every permutation of A can be represented as a composition of two permutations σ_{1}, σ_{2}, where each σ_{i} has only finite cycles.

Proof. Since every permutation of a countable set A can consist of finite and infinite cycles, it suffices to consider a permutation that consists only of one cycle. Also, it suffices to assume that this permutation is a shift on the set of integers, i.e. $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}, \sigma(k)=k+1$. Set $\sigma_{1}(k)=-(k+1)$ and $\sigma_{2}(k)=-k$. Then $\sigma=\sigma_{2} \circ \sigma_{1}$ and the length of all cycles of both σ_{1} and σ_{2} is 2 .

Lemma 2.5. Let π be a partition of ω^{2} such that every element of π is finite. Then there exist partitions τ_{1}, τ_{2} such that $\pi \prec \tau_{1} \cup \tau_{2}$ and every element of both τ_{1} and τ_{2} is an L-area.

Proof. Let us denote $\pi=\left\{P_{n}: n \in \omega\right\}$. Inductively define the following sets: $B_{0}=\emptyset, A_{0}=P_{0}, A_{n}=\bigcup\left\{P \in \pi: P \cap B_{n} \neq \emptyset\right\} \cup P_{n}$. Pick B_{n} so that it is of the form $\left[0, b_{n}\right)^{2}, B_{n} \backslash B_{n-1}$ is an L-area and $B_{n} \supseteq A_{n-1}$. Notice that $B_{n} \subseteq A_{n} \subseteq B_{n+1}$. Also, since $P_{n} \subseteq A_{n}$, we have $\bigcup_{n \in \omega} B_{n}=\omega^{2}$.

Define

$$
\tau_{1}=\left\{B_{2}, B_{4} \backslash B_{2}, B_{6} \backslash B_{4}, \ldots\right\}, \quad \tau_{2}=\left\{B_{1}, B_{3} \backslash B_{1}, B_{5} \backslash B_{3}, \ldots\right\} .
$$

Obviously τ_{1} and τ_{2} are partitions consisting of L-areas.
We will show that $\pi \prec \tau_{1} \cup \tau_{2}$. Fix $P \in \pi$. Define $l_{0}=\min \left\{l \in \omega: B_{l} \cap P \neq \emptyset\right\}$. Of course $l_{0}>0$. We have $B_{l_{0}-1} \cap P=\emptyset$. Also $P \subseteq A_{l_{0}} \subseteq B_{l_{0}+1}$. Therefore
we obtain $P \subseteq B_{l_{0}+1} \backslash B_{l_{0}-1}$. If l_{0} is odd, then $B_{l_{0}+1} \backslash B_{l_{0}-1} \in \tau_{1}$, and if l_{0} is even, then $B_{l_{0}+1} \backslash B_{l_{0}-1} \in \tau_{2}$.

Lemma 2.6. Each permutation $\sigma: \omega^{2} \rightarrow \omega^{2}$ which has only finite cycles can be represented as a composition of two L-permutations.

Proof. Since σ has only finite cycles, each member of $\pi(\sigma)$ is finite. By Lemma 2.5, there exist two partitions τ_{1}, τ_{2} such that $\pi(\sigma) \prec \tau_{1} \cup \tau_{2}$ and all members of both partitions are L-areas.

We will now define two permutations σ_{1} and σ_{2}. Fix $p \in \omega^{2}$. Let $C \in \pi(\sigma)$ be such that $p \in C$. Since $\pi(\sigma) \prec \tau_{1} \cup \tau_{2}$, there is $L \in \tau_{1} \cup \tau_{2}$ such that $C \subseteq L$. If $L \in \tau_{1}$, then set $\sigma_{1}(p)=\sigma(p)$. Otherwise set $\sigma_{1}(p)=p$. Analogously, if $L \in \tau_{1}$, then set $\sigma_{2}(p)=p$, and otherwise set $\sigma_{2}(p)=\sigma(p)$. Obviously σ_{1} and σ_{2} are L-permutations and $\sigma=\sigma_{1} \circ \sigma_{2}$.

Finally, we prove our main result.
Theorem 2.7. Every permutation of ω^{2} can be represented as a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.

Proof. Let σ be a fixed permutation of ω^{2}. According to Lemma 2.4 , σ is a composition of two permutations σ_{1}, σ_{2}, each with all cycles finite. By Lemma 2.6, each σ_{i} is a composition of two L-permutations, and in view of Corollary 2.3 each L-permutation can be represented as a composition of at most 24 axial permutations which have finite supports on each axis. Altogether we find that every permutation of ω^{2} can be represented as a composition of 96 axial permutations, where each axial permutation moves only a finite number of elements on each axis.

Notice that while for any permutation σ of ω^{2} it is possible to represent it by four axial permutations, it is not true that four permutations with finite supports are sufficient. We now focus on the construction of a counterexample.

We denote by $\sigma[A]$ the image of the set A under the function σ. We are going to use the following lemma.

Lemma 2.8 ($\left[\mathbf{G}\right.$, Proposition 1 and Remark 2, p. 156]). Let $\sigma: \omega^{2} \rightarrow \omega^{2}$ be a permutation. The following are equivalent:
(i) σ can be represented as a composition $\sigma_{4} \circ \sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$, where σ_{1}, σ_{3} are horizontal and σ_{2}, σ_{4} are vertical.
(ii) For every finite set $A \subseteq \omega$ there is no finite set $B \subseteq \omega$ such that $\sigma[(\omega \backslash A) \times \omega] \subseteq \omega \times B$.
Lemma 2.9. Assume $P \subseteq \omega^{2}$ intersects each row in a single point. There is no vertical and finitely supported permutation τ of ω^{2} such that $\omega^{2} \backslash \tau[P]$ intersects each row in a single point.

Proof. There exists an infinite set $Z \subseteq \omega$ and $n<k$ such that $(Z \times$ $\{n, k\}) \cap P=\emptyset$. Indeed, if $|(\omega \times\{0\}) \cap P|<\aleph_{0}$ and $|(\omega \times\{1\}) \cap P|<\aleph_{0}$, then it suffices to take $n=0, k=1$ and $Z=\{m \in \omega:(m, 0) \notin P \wedge(m, 1) \notin P\}$. On the other hand, if $|(\omega \times\{i\}) \cap P|=\aleph_{0}$ for $i=0$ or $i=1$, then $(Z \times\{2,3\}) \cap P=\emptyset$, where $Z=\{m \in \omega:(m, i) \in P\}$. In that case, $n=2, k=3$ are sufficient.

Now suppose there does exist a permutation τ as in the statement. Since $\operatorname{supp}(\tau)$ has finite intersections with each column, there exists an infinite set $Z_{1} \subseteq Z$ such that $\left(Z_{1} \times\{n, k\}\right) \cap(P \cup \operatorname{supp}(\tau))=\emptyset$. But then τ restricted to $Z_{1} \times\{n, k\}$ is the identity, and therefore we obtain $Z_{1} \times\{n, k\} \subseteq$ $\tau\left[Z_{1} \times\{n, k\}\right] \subseteq \tau\left[\omega^{2} \backslash P\right]$, which yields a contradiction, because $\tau\left[\omega^{2} \backslash P\right]$ has horizontal intersections which consist of one point.

Example 2.10. Divide ω^{2} into the first column, $A=\{(m, 0): m \in \omega\}$, and the rest, $B=\{(m, n): m \in \omega, n>0\}$. Let $\sigma: \omega^{2} \rightarrow \omega^{2}$ be a permutation such that $\sigma[A]=B, \sigma[B]=A$.

Using Lemma 2.8 we find that σ is a composition of four axial permutations (one can find both a composition such that σ_{1} is vertical and a composition such that it is horizontal). Suppose that $\sigma=\sigma_{4} \circ \sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$ for some axial permutations $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ such that the support of each of those is finite. We have two cases:
(1) σ_{1}, σ_{3} are vertical and σ_{2}, σ_{4} are horizontal.
(2) σ_{1}, σ_{3} are horizontal and σ_{2}, σ_{4} are vertical.

In the first case, obviously $\sigma_{1}[A]=A$ and $\sigma_{1}[B]=B$, since σ_{1} is vertical and A is a column. Denote $P=\sigma_{2}\left[\sigma_{1}[A]\right]$ and notice that P has exactly one common point with each row (because σ_{2} is horizontal). Because $\sigma=$ $\sigma_{4} \circ \sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$, we have $\sigma_{3}[P]=\sigma_{4}^{-1}[B]$. As σ_{4} is horizontal, $\omega^{2} \backslash \sigma_{3}[P]$ would intersect each row at a single point. But this is impossible due to Lemma 2.9 .

In the second case, we have $\sigma^{-1}=\sigma_{1}^{-1} \circ \sigma_{2}^{-1} \circ \sigma_{3}^{-1} \circ \sigma_{4}^{-1}$ and $\sigma_{1}^{-1}, \sigma_{3}^{-1}$ are horizontal, while $\sigma_{2}^{-1}, \sigma_{4}^{-1}$ are vertical. Moreover, $\sigma^{-1}[A]=B$ and $\sigma^{-1}[B]$ $=A$, hence we obtain the first case.

In fact, our example has a slightly stronger property: σ is not a composition $\sigma_{4} \circ \sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$, where σ_{1}, σ_{3} are vertical (resp. horizontal), σ_{2}, σ_{4} are horizontal (resp. vertical) and σ_{3} (resp. σ_{2}) has a finite support on each axis.

Instead of an axial permutation σ such that $\operatorname{supp}(\sigma)$ is finite on each axis, we may consider a more general variation, i.e. σ such that $\operatorname{supp}(\sigma) \in \mathcal{I}$ on each axis, for some proper ideal \mathcal{I}.

Recall that a family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal if it is closed under taking subsets and finite unions. Additionally, it is proper if $\omega \notin \mathcal{I}$ (therefore $\mathcal{I} \neq$ $\mathcal{P}(\omega)$). Intuitively, it is a family of small (but not necessarily finite) subsets of ω. Obviously, the family of finite subsets of ω (traditionally denoted as \mathscr{F} in) is a proper ideal, and in most cases we assume that \mathcal{F} in $\subseteq \mathcal{I}$, so it makes
sense to ask about the generalization of the results concerning finite sets to their ideal counterparts.

Lemma 2.11. Let $\mathcal{I} \subseteq \mathcal{P}(\omega)$ be a proper ideal. Assume $P \subseteq \omega^{2}$ intersects each row in a single point. There is no vertical permutation τ of ω^{2} such that $\operatorname{supp}(\tau) \in \mathcal{I}$ on each axis and $\omega^{2} \backslash \tau[P]$ intersects each row in a single point.

The proof is a minor modification of the proof of Lemma 2.9, obtained by replacing "finite" with "belonging to \mathcal{I} ".

Let σ denote the permutation from Example 2.10. We obtain the following.
Corollary 2.12. Let $\mathcal{I} \subseteq \mathcal{P}(\omega)$ be a proper ideal. It is not possible to represent σ as the composition $\sigma_{4} \circ \sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$ where σ_{1}, σ_{3} are vertical, σ_{2}, σ_{4} are horizontal and σ_{3} is such that its support belongs to \mathcal{I} on each axis.

Obviously, the counterpart for which σ_{1} is horizontal (etc.) also holds.
Notice that in Lemma 2.11 one cannot omit the assumption that the support of σ_{3} is in \mathcal{I}, i.e. there exists a set P and a vertical permutation σ with the properties as in Lemma 2.11. Indeed, let $\left\{K_{n}: n \in \omega\right\}$ be any partition of ω into infinite sets. Define $\bar{P}=\bigcup_{n \in \omega} K_{n} \times\{n\}$. For all $n \in \omega$ let $\sigma_{n}: \omega \rightarrow \omega$ be any permutation such that $\sigma_{n}\left[K_{n}\right]=\omega \backslash K_{n}$ and $\sigma_{n}\left[\omega \backslash K_{n}\right]=K_{n}$. Set $\sigma(m, n)=\left(\sigma_{n}(m), n\right)$. Then $\sigma[P]=\omega^{2} \backslash P$ and the intersection of $\omega^{2} \backslash P$ with each line is the whole line except one point.

Acknowledgements. The author would like to express his gratitude to the referee for valuable suggestions and corrections which have improved the original manuscript.

REFERENCES

[EG] A. Ehrenfeucht and E. Grzegorek, On axial maps of direct products I, Colloq. Math. 32 (1974), 1-11.
[G] E. Grzegorek, On axial maps of direct products II, Colloq. Math. 34 (1976), 145164.
[N] M. Nosarzewska, On a Banach's problem on infinite matrices, Colloq. Math. 2 (1951), 194-197.
[Sz1] M. Szyszkowski, On axial maps of the direct product of finite sets, Colloq. Math. 75 (1998), 31-38.
[Sz2] M. Szyszkowski, Axial functions, a chapter in the monograph Traditional and Present-Day Topics in Real Analysis, Łódź Univ. Press, 2013.

Paweł Klinga
Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: pklinga@mat.ug.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 03E05, 03E20; Secondary 26B40.
 Key words and phrases: axial maps, permutations, matrices, ideals.

