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MARKOV-KREIN TRANSFORM

BY

JACQUES FARAUT (Paris) and FAIZA FOURATI (Tunis)

Abstract. The Markov—Krein transform maps a positive measure on the real line
to a probability measure. It is implicitly defined through an identity linking two holo-
morphic functions. In this paper an explicit formula is given. Its proof is obtained by
considering boundary values of holomorhic functions. This transform appears in several
classical questions in analysis and probability theory: Markov moment problem, Dirichlet
distributions and processes, orbital measures. An asymptotic property for this transform
involves Thorin-Bondesson distributions.

1. Introduction. A probability measure ;1 and a bounded positive mea-
sure v on R are said to be linked by the Markov—Krein relation if

S (z—lt)"”” p(dt) = exp(— S log(z — u) V(du)),
R R

where k = v(R). The study of this relation is motivated by the following
observation by Okounkov (see [O, Proposition 8.2, p. 172]). Consider the
action of the orthogonal group O(n) on the space Sym(n,R) of n x n real
symmetric matrices, or the action of the unitary group U(n) on the space
Herm(n,C) of n x n Hermitian matrices. An orbit O for this action is de-
termined by the eigenvalues aq,...,a, of a matrix in O. The projection of
the associated orbital measure on the straight line generated by a rank one
matrix is a probability measure p on R which satisfies the relation

1
(z —a;)4?’

n

1
Hi (Z _ t)nd/2 ’u(dt) - H
where d = 1 in the case of Sym(n,R), and d = 2 in the case of Herm(n, C).

This formula is a special case of the Markov—Krein relation with
n
d
VvV = Zl 55@2 .
1=
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The probability measures appearing in this geometric setting are gen-
eralized spline distributions we will study in Section 2. In Section 3 it will
be proven that given a positive measure v with compact support, there
is a unique probability measure p with compact support satisfying the
Markov—Krein relation. Hence we get a map: to the positive measure v the
Markov—Krein transform associates the probability measure u. We will see
in Section 2 that this transform is related to the Dirichlet distributions in
case v is a discrete measure. An explicit formula for the transform is given
in Section 4 by using boundary values of holomorphic functions. This for-
mula is essentially a special case of the one obtained in [Ci]. In Section 6 we
consider a sequence (v,,) of positive measures and the sequence (p,,) of the
Markov—Krein transforms. We study the asymptotic of u, as v,(R) goes
to infinity. The result we will establish involves Thorin—Bondesson distri-
butions (or extended generalized gamma convolutions, EGGC), a class of
probability measures introduced by Thorin [T1], [T2] (see also [B]).

The Markov—Krein transform shows up in several questions of classical
analysis. We have mentionned its relation to orbital measures. It appears in
the solution of the Markov moment problem by Krein and Nudel’'man [Kr].
It plays a central role in the theory of Dirichlet processes. See [Ci], [J].
A large part of the book by Kerov [Ke] is devoted to the Markov—Krein cor-
respondence in the framework of the asymptotic analysis for representations
of the symmetric group. It has been a source of inspiration for our work.

2. The generalized spline distributions M, (a;7). We recall defi-
nitions and results from [F1]. For 7 = (71,...,7,) € (R})" (n > 2), the

Dirichlet distribution DT(«LT) is the probability measure on the simplex
Apg={u=(u,...,up) ER" |u; >0, us +---4+u, =1}
defined by

|
| ) DO ) = ——

o VS addw),
Ap_1 n A

n—1
where « is the uniform probability measure on A,,_1, i.e. the normalized
restriction to A,,_1 of the Lebesgue measure on the hyperplane uy + - - -+ uy
=1, and
Cp(1) = S ul L ul T a(du).
Anfl
The evaluation of the constant C,(7) gives
I'(m)...I'(m)
Cn(7) = (n = )———,
" ()

where |T| =711 + -+ + Tp.
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For a = (ay,...,a,) € R", with a; < --- < a,, the probability measure
M, (a;7) on R is the image of the Dirichlet distribution DY by the map
A1 — R, u—ajug + -+ antin,
i.e., for a continuous function F' on R,
VF(t) My(as73dt) = | Flagu + -+ + anuy) DY) (du).
R An 1

The support of M, (a;T) is compact, supp(M,(7;a)) C [a1,a,). ff 71 =+ =
Tn, = 1, then M, (a;7) is a spline distribution (see [Cu]). For 7, > 0, we will
say that M, (a;7) is a generalized spline distribution.

For instance, for n = 2,

§ 1(t) Ma(ai midt) = 1
) I(r

)72

By the change of variable t = a1 (1 — u) + agu we get

1
nt T2)) SF a1 (1 — u) + agu) (1 — u) ™ du.
0

T +72—1) 92
V F(t)(t — a))™ ag — ) " dt.

ai

(a2 —a1)
B(11,72)

S F(t) My(a;T;dt) =
R

We define the functipn log z on C\ |—00,0] and, for o € C, the function
2® as follows: if z = re??, with r > 0, —7 < 6 < m, then logz = logr + 6

and 2% = @ logz __ TaezaG

THEOREM 2.1. The probability measure M, (a;T) satisfies the relation

HSQ(Z_]_MMn(CL;T;dt) _ ilj(z_lai)ri

for z € C\ ]—o0,ay].

(See [F1, Theorem 3.1].) This is a special case of the Markov—Krein
relation we will consider in the next section.

3. The Markov—Krein transform. Let v be a nonzero positive mea-
sure on R such that
S log(1 + |u]) v(du) < oo,
R

and p a probability measure on R. We say that the measures p and v are
linked by the Markov-Krein relation if, for z € C\ R,

S (z—lt)"”” p(dt) = exp(— S log(z — u) V(du)),
R

R
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where £ = v(R), the total measure of v. By Theorem 2.1, the measures
pu= Mp(7;a) and

n
V= E Ti(sai
i=1

are linked by the Markov—Krein relation. In fact, in this case, the relation
becomes

|t =11() w=ntein

R =1

Let us assume that the measures p and v are compactly supported, and
denote by h,, and p,, their moments:

ho =\t p(dt),  pm = |t v(dt).
R R

(Observe that kK = v(R) = pp.) Being compactly supported, p and v are
determined by the sequences of their moments. Hence, by expanding in
power series both sides of the Markov—Krein relation, one obtains:

PROPOSITION 3.1. The measures p and v are linked by the Markov—
Krein relation if and only if the moments hy,, and py, of u and v satisfy

Z (:i;n hpw™ = exp(Z l;:wm>

m=0 m=1

for sufficiently small w. It follows that hy, can be written as a polynomial
in P1y---yPm?

m! = 1 Pa Pa
B — - T ek
" (K)m ; k! Z (631 Q

a;>1l,a14Fag=m

(Recall the Pochhammer symbol (K)m = k(k+1)...(k+m —1).)

THEOREM 3.2. For a given nonzero positive measure v on R with com-
pact support, there is a unique probability measure p with compact support
such that v and p are linked by the Markov—Krein relation.

By definition the Markov—Krein transform is the map which associates
to the positive measure v the probability measure p. (Theorem 3.2 can also
be obtained from an explicit inversion formula of the transform, a special
case of [Ci, Theorem 1].)

Proof of Theorem 3.2. If the measure p exists, it is unique, since, by
Proposition 3.1, the moments of i are determined by those of v.
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Assume supp(v) C [a, b]. There is a sequence v(™ of measures with finite
support in [a, b,

l/(n) = Z Ti(n)(sa(n),
i=1 !

which converges weakly to v. By Theorem 2.1 the measures (™ and p(") =

M, (7" a(™) are linked by the Markov-Krein relation. The moment pﬁ,?)

of v, converges to the corresponding moment p,,, of v. Observe that hﬁS) =1,
and, for m > 1, by Proposition 3.1, the moments hﬁ,’}) have limits h,,. The
numbers h,, are moments of a probability measure p, and p is the weak limit
of (™. Furthermore, p and v are linked by the Markov—Krein relation. m

4. An explicit formula for the Markov—Krein transform. We
first recall the definition of hyperfunctions of one variable and some of their
elementary properties (see for instance [M]). Let U C R be open and W C C
a complex open neighborhood of U with W N R = U. The space B(U) of
hyperfunctions on U is defined as

B(U) = O(W\U)/O(W),

where, for V' C C open, O(V) is the space of holomorphic functions on V.
For FF € O(W \ U), the equivalence class of F is denoted by [F]. Define

F+:{F on W+, F_:{O on W+,
0 onW~—, —F onW-.
(W* = {2z € W | £Imz > 0}.) The hyperfunctions [FT] and [F'~] are
denoted by F'(z + i0) and F(x — i0), and called the boundary values of F'.
Hence

[F] = F(x +1i0) — F(z —10).

Intuitively [F] is the jump of F' along U. A hyperfunction f € B(U) vanishes
on an open set Uy C U if there is a representative F' of f which is holomor-
phic on (W \ U) U Uy. The support supp(f) of the hyperfunction f € B(U)
is the smallest closed set C' C U such that f vanishes on U \ C. The space
of hyperfunctions on U with support contained in C'is denoted by B¢ (U).

Recall the space A(K) of holomorphic functions in a neighborhood of
the compact set K C R:

AK) = |J ow),
UDK

where U is a complex open neighborhood of K. The space 2(K) is endowed
with the inductive limit topology. An analytic functional on K is a contin-
uous linear form on A(K), and the space of analytic functionals on K is
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denoted by 2 (K). The Cauchy transform G of T € A'(K), defined by
1
Gr(z) = <Tt’ z—t>’

is holomorphic on C \ K, and defines a hyperfunction [Gp]. The map & :
T — f = [Gr] is an isomorphism from 2'(K) onto Bx(R). It follows that
the space D} of distributions supported in K can be seen as a subspace of
Br(R).

Let U C R be open, and € > 0. A function F defined on

{z=ax+iy|lzelU 0< |yl <e}

is said to be of moderate growth along U if, for every K C U compact, there
is a constant C' > 0 and an integer N > 0 such that

C
|F(x +iy)| < P (ze K, 0<[yl <e).
Yy
Let T € A (K), let f € Bg(R) be its image by the isomorphism @, and F a
representative of f. Then T is a distribution if and only if F' is of moderate
growth along R. In such a case, for ¢ € D(R),

>0 S(F(t +ig) — F(t —ie))p(t) dt.
R

(T,p) = lim
e—0,¢
Furthermore supp(7") = supp(f). For a compactly supported distribution T,
the classical Cauchy—Stieltjes formula can be written [Gr] = —2inT.
The distribution Y, is defined, for Rea > 0, by
1 [e.e]
Yo, p) = —— \ p()t*dt D(R
ort) = 75 L) (v € D(R)),
and admits an analytic continuation for a € C. These distributions Y, satisfy
Yok Yg=VYais, Yo=90, Y ,,=0" (meN).

In particular Y, x Y_, = 9.

Recall that, for @ € C, the holomorphic function 2% in C \ |—o0,0] is
defined as follows: if z = re® with r > 0, —7 < 6 < 7, then 2 = r®e'®?,
The function 2% is of moderate growth along R, and

1
= —2ir———Yq+1-
/LTFF(—O[) a+1

[2°]
(Eor a distribution 7' on R, 7T is the image of T by the symmetry ¢ — —t:
(T, ) = (T, ) with ¢(t) = p(—t).) In particular, for m € N, [z™] = 0, and
form>1,

R T —— ()

(m—1)!

[z



MARKOV-KREIN TRANSFORM 143

We will now give an explicit formula for the Markov—Krein transform.
Let v be a positive measure on R with compact support, x = v(R). Recall
that the Markov—Krein transform pu of v is the unique probability measure p
such that

{ (15 p(dt) = eXp<— | log(z — u) V(du))
R

g (2 t)
(Theorem 3.2). Furthermore, the support of y is compact.
THEOREM 4.1. Let q be the holomorphic function defined on C\ R by

q(z) = exp(— S log(z — u) V(du)).
R

Then q is of moderate growth, and

1 .
p=—5I(K)Ye1xlq.
Observe that, if kK = 1, then one obtains the classical Cauchy—Stieltjes
formula p = —5-q].

LEMMA 4.2. Let f be a holomorphic function on C\R, and u a measure
on R with compact support. Then the function F defined by

F(2) = | 7=~ 1) pla)
R
is holomorphic on C\ R. If f is of moderate growth along R, then F is of
moderate growth as well, and the distributions [f] and [F] satisfy
[F] = [f]* p.
Proof. If f is of moderate growth along R, since p is compactly sup-

ported, an easy estimate shows that F' is of moderate growth as well. Then,
for ¢ € D(R),

lim |\ (F(t+ie) — F(t —ie))p(t) dt

e—0, €>0R
= 6_}érr€1>0 S (S f(t+ie—s) — f(t —ic—s)) ,u(ds))cp(t) dt
R R
S (a—}ll)nal>0ﬂ£ ft+ie) — f(t —ie))p(t —s) dt) p(ds).
This equality means that [F] = [f] * p. Let us explain why it is possible

to interchange the limit and the integration. In fact, for 0 < € < gy and
|s| < A, there is a constant C' such that

) V(f(t+ie) = f(t —ie))p(t — s) dt‘ <C,
R
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since the distribution T, defined by

(Teop) = V(f(t +ie) = f(t —ie))p(t) dt
R
converges as £ — 0, and the set of functions (- — s) is bounded in D(R) for
|s] <A m

Proof of Theorem 4.1. The Markov—Krein relation can be written

| e () = a(2).

2 z—t)r

(This means that g is a generalized Stieltjes transform of p.) By Lemma 4.2
the function q is of moderate growth along R, and

[27"] % = [q].
We saw that
1 .
= —2¢ Yi_..
[277] ZWF(H) 1
Therefore, since Y. 1 %Y, = d,
1 .
w= —ﬁf(ﬁ)Ym_l * [q].

(Recall that, if distributions 77,75, T3 have supports bounded from above,
the following associativity holds: (T} * To) * T3 =Ty * (To * 13).) =

The logarithmic potential of the measure v is defined on R by

with values in |—o0, 00].

THEOREM 4.3. If expUY is locally integrable and k = v(R) > 1, then
the probability measure p has a density h. Define

1
g(z) = —sin(mv(]z, 00|)) exp U" (x).
T
(i) If k =1, then h(x) = g(x).
(ii) If kK > 1, then
h(z) = (k—1) | (s — 2)"2g(s) ds.
This formula can be obtained from one in [Ci] (part (ii) of Theorem 1,
with 7 = —00, A(—00) = 0, o = k—1). The proof there is obtained by using
results of Widder and Hirschman about generalized Stieltjes transforms.
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Proof of Theorem 4.3. By Theorem 4.1 all we have to show is that the

distribution —%%[q] is defined by the locally integrable function g. Let

H(z)= Slog
R

po— v(du).

The function log z can be written
log z = log |z| + i Arg(z),

and
log |z if x >0,

lim 1 +ie) =
i log(z £ i) {10g|1"iiﬂ' if x < 0.

e—0,e>0
It follows that
lim H(x +ie) =U"(z) F inv([z, 0of)

e—0,e>0

and

1 ) . .
it + ) otz 1)

1 . . .
= i e (exp H @ o ie) — exp H(z — i)

1 ) )
=_——exp UV(.’L‘) (e—zmz([z,oo[) o ezm/([x,oo[))

21
= %exp U (z) sin(mv([z, 00])) = g().

To prove that this limit holds in the distribution sense one observes that,
forx € R and € > 0,

lq(z £ ie)| = exp( f 10g \/—4—e2y(du))
R
<exp( Slog]a:—u] )) =expU”(z). n
R
EXAMPLES. Assume the measure v is discrete,
n
v=> 7ibs, (a1<---<an,n>3)

Then its Markov—Krein transform is M, (a1, ...,an;71,...,7,). In that case

q(z) = ﬁ(z_l%)T
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(a) Assume 71 = --- = 7, = 1. Then ¢ is a rational function which can
be written
- 1 1
z) = Ci with ¢; = .
(=) le—ai ’ Haj—az
i=1 JF#i
Therefore

lq] = —QiWZCi(Sai.
j=1

Since 1
Y -2
Yi—1 %0, = m(a_xm )

the measure p has a density h given by

h(z)=(n—1) ) cila; —2)" >
a;>x
This density is a spline function with knots a, ..., ay: the function h is of
class C"3, and its restriction to each interval laj,a;41] is a polynomial of
degree < n — 2. In this case M, (a;7) is a spline distribution.
(b) Assume 0 < 7; <1 (1 <i<mn),k =71+ -+ 7, > 1. Then the

function
n

expU”(z) = H |z —a;|”™
i=1

is locally integrable and

1. - o
g(z) == s1n<7r Z n) H |z — a;| 7"
m a; >x =1
The map
v (1,5),  Me(R) = M(R) x Ry,

where p is the Markov—Krein transform of v and x = v(R), is injective,
but not surjective. It is an open problem to determine the image of this
map. In case v is a probability measure, Kerov has the following result. He
defined a continuous diagram supported by a compact interval [a,b] to be a
real function w defined on R such that

w(ur) —w(uz)] < fur —ug|  (u1,u2 € R),
and there is ¢ € R such that, for u ¢ [a, b],

w=|u—cl.

To a continuous diagram w € D[a, b] we associate the distribution v, = jw”
(the second derivative is taken in the distribution sense). Then (v, 1) =1
and v, is a probability measure if and only if w is convex. The map w > /)]
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is injective, and if v, is a measure, then

w(u) = S lu — z| v, (dx).
R
By [Ke, p. 152], the map which associates to a continuous diagram w €
Dla, b] the Markov transform fx of v,,, determined by the relation
1
S Po— p(dt) = exp(—(yw, log(z — U)>)7
[a,b]

is a homeomorphism from D[a, b] onto the set M1[a, b] of probability mea-
sures on [a, b].

5. Thorin—Bondesson distributions. For £ € R*, 7 > 0, let (&, 7)
denote the gamma distribution on R with density
[ -1
Y ——e S"u|"T .
(6 Frge
(Recall the Heaviside function: Y (t) = 1 for t > 0 and Y (¢t) = 0 for ¢t < 0.)
The Fourier-Laplace transform ¢ of v(£, 7) is given by

-
o2) = et man = ()
R §—2

It is defined for Rez < £ if £ > 0, and for Rez > ¢ if £ < 0, and admits a
holomorphic extension to C \ [§, 00[ if £ > 0, and to C\ ]—o0,&] if £ < 0.

A Thorin—-Bondesson distribution (or extended generalized gamma con-
volution, EGGC) is a probability measure g on R which is a limit for the
tight topology of convolution products of gamma distributions:

p=lim (ﬁ>*v(§§n),7i("))

n—o0

=1

(see [T1], [T2], [B]). The set 7. of Thorin-Bondesson distributions is closed
in the tight topology and a semigroup for the convolution. Chapter 9 in [5]
is devoted to the measures in the Bondesson class, denoted BO. These mea-
sures are sub-probabilities supported by [0,c0[. The probability measures
in the Bondesson class are precisely the Thorin—-Bondesson distributions (in
our terminology) which are supported by [0, co].

The Fourier-Laplace transform ¢ of

Y1, e Ty ) = (&, ) ® e % Y (En, Th)
is given by

@(z):S€Zt’7(517--.,§n;71,...,Tn;dt):H< Afi )
i=1

R
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It is defined for |Rez| < o, with ¢ = inf |¢;|, and admits a holomorphic
continuation to C\ |—o0, —o] U [0, 00[. Let us observe that the function ¢

can be written
p(z) = exp (é{loes?;(g ¢ ) (dﬁ))

n
V= Z Ti(S{i-
=1

The measure vy(&1,...,&p;T1,...,Ty) is infinitely divisible. In fact, for
t > 0, the measures

with

e =&, EnitTe, o tTh)
form a continuous semigroup of probability measures. Since a limit of in-
finitely divisible probability measures is infinitely divisible, every measure p
in 7 is infinitely divisible. Its Fourier—Laplace transform has the form
p(2) = | e p(dt) = e,
R

where 1 is a continuous function on iR. Let B, denote the set of continuous
functions v (z) on iR such that e¥(*) is the Fourier-Laplace transform of a
measure g in Te.

THEOREM 5.1. Let ¢ be a continuous function on iR, with (0) = 0.
The following properties are equivalent:

(i) v belongs to Be: For every t > 0, the function eV is the Fourier—
Laplace transform of a probability measure in Te.
(ii) The restriction of ¢ to iR* admits a holomorphic extension to C\R,
the derivative of which is a Pick function.
(iii) v admits the representation

V) = B2t + §<1 st ) v,

where B € R, v > 0, and v is a positive measure on R* such that

[ log = u(de) <00, | = w(de) < oo,
ocieics 1 |s\>15

or equivalently

S log<1 + §2> v(d€) < oo
R*
Furthermore

1
B = Reib/(i), Y= yli_)nolo ; Imw’(iy), v %

[¥'].
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This is a reformulation of results in [Bl Section 7]. By the change of

variable £ — u = 1/£, we get the representation
2
R e | R L

where the measure 1y, the image of v by this map, satisfies

S log(1 + u?) vo(du) < oo.

R*
Observe that

. 1
Re(i) = —3 (7 + S log(1 + u?) I/()(dU)).
R*

To the measure vy on R* we associate the bounded positive measure 7 on R
defined, for bounded continuous functions f on R, by

| f(w) (du) = v£(0) + | f(u)log(1 +u®) vo(du).
R R*
Noticing that

1 uz 1,
i%m(bg“ —uR Tty 1) =37

we obtain the representation

$(z) =Bz — | <1og<1 —uz)+
R
By slightly modifying the statement of [B, Theorem 7.1.1], one gets the
following one. On the set B, we consider the topology of uniform convergence
on compact sets in iR, and on the set M(R) of positive bounded measures,
the tight topology.

uz v(du)
1+ u? ) log(l +u2)’

THEOREM 5.2. The map
Be = Rx M(R), ¢ (B,7),
18 a homeomorphism.

EXAMPLE (Symmetric stable laws). For 0 < a < 2, the function v de-
fined on iR by ¥ (iy) = —|y|* belongs to B.. It extension to C\ R is given by

—(—iz)* ifImz >0,
v ={ "7
—(12) if Imz <0,
which is a Pick function. If 0 < a < 2, then 1 admits the representation

0= o5 o -

If o = 2, then ¢(2) = 22. In that case 3 =0, v = 2, and v = 0.
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6. An asymptotic property for the Markov—Krein transform.
In this section we consider a sequence (v,) in M.(R) and the sequence (ji,)
of the Markov—Krein transforms: for z € C\ R,

S(l — 2t) 7" py (dt) = exp(s —log(1 — zu) Vn(du)),
R R

where k, = v,(R). We will study the convergence of (u,) assuming that
Kn = Un(R) goes to infinity.

First consider a simple example. Recall that M, (a1,...,an;T1,...,7s) iS
the Markov—Krein transform of the discrete measure v =Y 7" | 7,dq,.

PROPOSITION 6.1. Fiz & € R* and 7 > 0. For the tight topology we have

lim M, <0, Z;n,T) =&, 7).

n—oo

Proof. Assume £ > 0. For a bounded continuous function f on R,

A N 3 e B SN2 A
V) M2<0, g,n,r,dt) BT (S) f(t)(f —t> Tl at

R
n/§ n—1
£ t€ -
= —Fare Sf()(l—n> tTLdt.

Hence

nh_g)loxf(t) My (O, Z_;n,T) dt = Fé(:') (S)f(t)e_gtf_l dt. m

More generally:

PROPOSITION 6.2. Fiz &y,...,& € R* and 1, ...,7, > 0. For the tight
topology we have

. n n
nl;n;oMk+1<0,£1,...,fk,n,n,...,rk> =&y &R TLy ey TR)-
Proof. Let
i n n
un=n50+zn5(n/&), un:Mk+1(O,,...,;n,Tl,...,Tn>.
P & &k
By Theorem 2.1,
k
(dt) "
e @ = e

=1
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with k, = 71 + - - - + 7 + n. This relation can also be written as

Hi(l—ti/nw““dt) :ﬁ<5€—>

i=1

The first two moments of v, are given by
(n) y n P (n) b n\? LN
A =Yon(g) =g -2 (E) - 2(E)-
i1 i i=1 St i=1 i=1 >
Therefore the second moment of u,, given by
2 n n
m((pg ))2 +p; ))7

is bounded. It follows that the sequence (u,) is relatively compact.

hY =

LEMMA 6.3 (see [Cu, Lemma 3, p. 92]). Let (un) be a sequence in M(R)
which converges for the tight topology to a measure p, and let (k) be a
sequence of positive numbers going to infinity. Then, for y € R,

lim | <1 - zyt> () = [ )

n—0o00 Kn, R
uniformly on compact sets.

We continue the proof of Proposition 6.2. Let ug be the limit of a con-
verging subsequence (,unj). Then, by Lemma 6.3, for z € iR,

| et po(dt) = ﬁ(glg_l Z)ﬂ'.

R i=1

It follows that g = v(&1,...,&k; 71, .., 7k), and it is the only possible limit
for a converging subsequence. This proves that (u,) converges with the limit

7(617” . 7§k;T17" . 7Tk)' u
PROPOSITION 6.4. Assume that lim,_oc kn, = 00, and that (p,) con-
verges to a probability measure p in the tight topology. Then u is a Thorin—

Bondesson distribution. Moreover, every Thorin—Bondesson distribution is
obtained in that way.

Proof. Define

Then, by Lemma 6.3,

I
ey
)

=
<
=
—~
IS8
~
~

lim F,(iy) = F(iy) :
n—oo
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uniformly on compact sets in R. On the other hand,

Fo(z) = exp(g - log<1 - Z) un(dt)> - exp(g ~log(1 — zu) Dn(du)>,

R R

where 7, is the image of v, by the dilation of ratio 1/k,. By Theorem 5.1
there are Thorin—Bondesson distributions fi, such that, for z € iR,

Fo(z) = | e fin(dt).
R
By the Lévy—Cramer Theorem,

lim f, = p
n—oo
in the tight topology. Since the set 7. of Thorin-Bondesson distributions
is closed in the tight topology, it follows that p is a Thorin—-Bondesson
distribution.
The set of such limits is closed. On the other hand, by Proposition 6.2,

this set contains the gamma convolutions v(&1, ..., &k; 71, - . ., 7). Hence this
set is dense in 7.. Being closed and dense it is equal to 7¢. =

The following theorem describes a representation for the Fourier—Laplace
transform of the Thorin—Bondesson distribution p, the limit of (uy,). Define
B = S U,  on(du) = u? o, (du),

R
where 7, is, as before, the image of v, by the dilation of ratio 1/k,,.
THEOREM 6.5. Assume that 3, and o, have limits,
lim 3, = 8, lim o, =0
n—oo n—oo
(in the tight topology). Then u, has a limit p whose Fourier—Laplace trans-
form is given by

S e u(dt) = exp <Bz — S
R R
Observe that

log(1 — zu) + zu

a(du)>.

u

. log(1—zu) + zu z
lim 5 =——.
u—0 U 2

Therefore the function

log(1 —
= og( z2u) + zu

U
has a continuous extension to R, and the formula in the theorem can be
written

1
S e pu(dt) = exp (ﬁz + 5722 - S (log(1 — zu) + zu) ao(du)>,
R R*
with v = ¢({0}), and o is the measure on R* given by o¢(du) = u=20(du).
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Proof of Theorem 6.5. Let us prove that the sequence () is relatively
compact. For this we will show that the second moments hgn) of the measures
U are bounded. We know that

2

(n) _
hy” = Fn(Kn + 1)

(( (n )) +p( ))’
(n)

where p;,” are the moments of order m of the measures v,. Since

Pg ") = KnBn, pg ") = H%0'7’L(R)7

we get

(”): 2'%” 2 R
) = 252 4 o (B))

The sequences (o,(R)) and (B,) are converging, and hence the sequence

(hgn)) is bounded. Therefore (p,,) is relatively compact. Let pp be the limit
of a converging subsequence of (u,). We get

S e po(dt) = exp <Bz - S log(1 _UZQU) e a(du)).

R R

This shows that there exists only one possible limit for a converging subse-
quence. Therefore the whole sequence (u,) converges. m

Let us consider the case where

where (™ = (agn) e ,a;n)) and 7™ = (Tl(n), .. ,Tén)) are n-tuples of real
numbers. Then p,, = M, (7"";a(™), and

Kn = zn: Ti(n)7 Bn = zn: Ti(n)agn)y Z T(n n 5 (n)a
=1 =1

with agn) = lflagn).
THEOREM 6.6. Assume that the numbers 7'2-(") satisfy T,L-(n) > 7 > 0.

Assume that the measures o, converge to a measure o in the tight topology.
(i) Then o has the form

o0
2
o= ZTjOéj(Saj + ~do,
j=1
where v > 0, (o ) is a sequence of real numbers, 7; > 7, and

o

2
g TjQ < Q.
Jj=1
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(ii) Assume moreover that lim,_,o B, = 5. Then the measure p, =
M, (7™ ™) converges to a Thorin-Bondesson distribution p such

that
[o.¢] —iz Tj
zt 1.2 Bz e 7
dt) = e2” .
Se pldt) = e © H(l—zaj>
R j=1

LEMMA 6.7. Let (un) be a sequence of discrete measures of the form

W, = Z Ti(n)6a<n),
i=1 ’
(n)

Z(-n) and 1; are real numbers. Assume that Ti(n) >7>0 foralln

and i, and p, converges to p in the vague topology. Then p is of the form

o
:u = Z Tjdajw
j=1

where (o) is a sequence of real numbers, and T; > T.

where o

Proof. Let A denote the set of atoms of the measure p. Then A is count-
able. Let a < b be real numbers not in A. Then u([a,b]) = p(]a,b]), hence
lim;, 00 pin(Ja, b[) = p([a,b]), therefore either p(la,b]) = 0 or u([a,b]) > 7.
For an atom a of p, there are two sequences (ay,) and (b,,) such that for every
n we have a, < a < by, and ay, b, ¢ A, with limit a. Hence p([an,b,)) > T,
and since {a} = (o"o[an, bnl,

u({a}) = 1 p(laby]) > 7.

It follows that every bounded interval contains only a finite number of atoms.
Hence A is discrete.

Let a < b be two consecutive atoms of u. Let ag and by be such that
a < ag < bp < b. There are a finite number of intervals [a;, b;] such that

[ao, bo] C | Jlai, b and ([, b)) < 7.

Therefore u([agp,bp]) = 0 and wu(]a,b[) = 0. This shows that there is an
increasing sequence (a;), possibly finite, and real numbers 7; > 7 such that

o0
W= ZTj(Saj. "
j=1

Proof of Theorem 6.6. For (i) consider the sequence of measures p,
defined on R\ {0} by j,(du) = v 20y,

n)
i,al™ 0
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Then p,, converges to i = u~ 20 on R\ {0} in the vague topology. By Lemma
6.7 the measure p has the form

o
W= Z Tj0a,; -
j=1

Hence o restricted to R\ {0} is equal to u?u, therefore there exists v > 0
such that o = u?u + vdo.

Part (ii) follows from Theorem 6.5. m

For a; < --- < ap and m; = --- = 7, = 1, the probability measure
M, (ay,...,ap;1,...,1) is a spline distribution. In that special case one ob-
tains the following theorem, originally established by Schoenberg and Curry:

THEOREM 6.8 ([Cu, Theorem 6, p. 93]). Assume that the sequence i, =
Mn(agn), - ,aﬁ”); 1,...,1) converges to a measure . Then p is a Pdlya
distribution: its Fourier—Laplace transform is a Polya function,

B(2) = | u(d) = e [

Jj=1

e—O{jZ

1—zaj’
with
oo
v>0, BER, o;€R, > af <o
j=1

Conversely, every Polya distribution is the limit of such a sequence of spline
distributions.
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