VOL. 144

2016

NO. 2

MELKERSSON CONDITION ON SERRE SUBCATEGORIES

ΒY

REZA SAZEEDEH (Urmia and Tehran) and RASUL RASULI (Tehran)

Abstract. Let R be a commutative noetherian ring, let \mathfrak{a} be an ideal of R, and let S be a subcategory of the category of R-modules. The condition $C_{\mathfrak{a}}$, defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to \mathfrak{a} belong to S. In this paper, we define and study the class $S_{\mathfrak{a}}$ consisting of all modules satisfying $C_{\mathfrak{a}}$. If \mathfrak{a} and \mathfrak{b} are ideals of R, we get a necessary and sufficient condition for S to satisfy $C_{\mathfrak{a}}$ and $C_{\mathfrak{b}}$ simultaneously. We also find some sufficient conditions under which S satisfies $C_{\mathfrak{a}}$. As an application, we investigate when local cohomology modules lie in a Serre subcategory.

1. Introduction. Throughout this paper, R is a commutative noetherian ring and \mathfrak{a} is an arbitrary ideal of R. We denote by R-Mod the category of R-modules and R-homomorphisms, and by R-mod the full subcategory of finitely generated R-modules. All subcategories of R-Mod considered in this paper are full. A subcategory S of R-Mod is called *Serre* if it is closed under taking submodules, quotients and extensions of modules and every R-module isomorphic to an R-module in S is in S. For every module M, we recall from [BS] the submodule $\Gamma_{\mathfrak{a}}(M)$ of M consisting of all elements of Mannihilated by some powers of \mathfrak{a} .

We say that a class S satisfies the *condition* $C_{\mathfrak{a}}$ if for every module M, the following implication holds:

If $\Gamma_{\mathfrak{a}}(M) = M$ and $(0:_M \mathfrak{a})$ is in \mathcal{S} , then M is in \mathcal{S} .

The condition $C_{\mathfrak{a}}$ is called the *Melkersson condition* as it was first introduced by Melkersson [M] for the class \mathcal{S} consisting of all artinian modules.

Let M be an R-module and fix $n \in \mathbb{N}$. It is a natural question to ask when the local cohomology modules $H^i_{\mathfrak{a}}(M)$ belong to S for all i < n (or for all i > n). The same question can be asked for the graded local cohomology modules $H^i_{R_+}(M)$, where R is a graded ring, R_+ is the irrelevant ideal and M is a graded module. Some examples for S are R-mod and R-art, the subcategory of artinian R-modules. It is worth pointing out that in the

Key words and phrases: Serre subcategory, Melkersson condition, local cohomology. Received 28 September 2014; revised 5 August 2015.

Published online 14 April 2016.

²⁰¹⁰ Mathematics Subject Classification: 13C60, 13D45.

case of graded local cohomology, the affirmative solution for these questions allows us to assess the number of minimal generators of the components of graded local cohomology modules (cf. [BFT, BRS, S]).

An affirmative answer was presented by M. Aghapournahr and L. Melkersson [AM] when S satisfies the condition $C_{\mathfrak{a}}$. Many examples demonstrate that Serre subcategories do not satisfy $C_{\mathfrak{a}}$ in general. The aim of this paper is to define and study the class $S_{\mathfrak{a}}$ consisting of all modules satisfying the above implication for a class S of R-modules. Clearly if S satisfies $C_{\mathfrak{a}}$, then $S_{\mathfrak{a}} = R$ -Mod.

In Section 2, for any class S of modules, we introduce the class $S_{\mathfrak{a}}$ of modules containing S and satisfying C_{α} . We show that if a subcategory S is closed under taking submodules, then $S_{\sqrt{\mathfrak{a}}} \subseteq S_{\mathfrak{a}}$. Moreover $S_{\sqrt{\mathfrak{a}}} = S_{\mathfrak{a}}$ if S is Serre. Let \mathfrak{b} be another ideal of R. We show that if $S_{\mathfrak{b}} \subseteq S_{\mathfrak{a}}$, then $S_{\mathfrak{b}} \subseteq S_{\mathfrak{a}+\mathfrak{b}}$. When S is Serre we find a relation between $S_{\mathfrak{a}}, S_{\mathfrak{b}}, S_{\mathfrak{a}+\mathfrak{b}}, S_{\mathfrak{a}\mathfrak{b}}$. As a conclusion, S satisfies $C_{\mathfrak{a}}$ and $C_{\mathfrak{b}}$ if and only if it satisfies $C_{\mathfrak{a}+\mathfrak{b}}$ and $C_{\mathfrak{a}\mathfrak{b}}$. When R is artinian, we show that every Serre subcategory satisfies $C_{\mathfrak{a}}$. Also, $S_{\mathfrak{a}}$ is closed under taking extensions of modules for any Serre subcategory S. We prove that if S is closed under taking submodules and arbitrary direct sums, then $S_{\mathfrak{a}}$ is closed under taking submodules and arbitrary direct sums, then $S_{\mathfrak{a}}$ is closed under arbitrary direct sums. We find some sufficient conditions for S to satisfy $C_{\mathfrak{a}}$ (cf. Theorem 2.20). We also show that the condition $C_{\mathfrak{a}}$ can be transferred via ring homomorphisms (cf. Theorem 2.21). For a class S of R-modules, we define $\operatorname{Supp}_R(S)$, and we prove that if $\operatorname{Supp}_R(M) \subseteq$ $\operatorname{Supp}_R(S_{\mathfrak{a}})$ for a finitely generated R-module M and a Serre subcategory Sof R-modules, then $M \in S_{\mathfrak{a}}$.

In Section 3, as an application of our results, we show when local cohomology modules can lie in a Serre subcategory.

2. Melkersson condition on subcategories. Throughout this section \mathfrak{a} is an ideal of R.

DEFINITIONS 2.1. Let S be a class of R-modules and let M be an R-module. Then S is said to satisfy the *condition* $C_{\mathfrak{a}}$ on M if the following implication holds:

If $\Gamma_{\mathfrak{a}}(M) = M$ and $(0:_M \mathfrak{a}) \in \mathcal{S}$, then $M \in \mathcal{S}$.

Let \mathcal{D} be a class of *R*-modules. Then \mathcal{S} is said to satisfy the *condition* $C_{\mathfrak{a}}$ on \mathcal{D} if \mathcal{S} satisfies $C_{\mathfrak{a}}$ on M for every M in \mathcal{D} .

We denote by $S_{\mathfrak{a}}$ the largest class of *R*-modules such that S satisfies $C_{\mathfrak{a}}$ on $S_{\mathfrak{a}}$. Clearly, $S \subseteq S_{\mathfrak{a}}$.

The class S is said to satisfy the condition $C_{\mathfrak{a}}$ whenever $S_{\mathfrak{a}} = R$ -Mod, and S is said to be closed under the condition $C_{\mathfrak{a}}$ whenever $S_{\mathfrak{a}} = S$.

In order to illustrate the above definitions, we give some examples.

EXAMPLES 2.2. (i) Let R be a domain and let S_{tf} be the class of torsionfree modules. Then S_{tf} satisfies $C_{\mathfrak{a}}$ for each ideal \mathfrak{a} of R. Indeed, the case $\mathfrak{a}=0$ is clear. For each non-zero ideal \mathfrak{a} of R, if $\Gamma_{\mathfrak{a}}(M) = M$ and $(0:_M \mathfrak{a}) \in S$, then $(0:_M \mathfrak{a}) = \Gamma_{\mathfrak{a}}(M) = 0$. Furthermore, let S_{tors} be the class of torsion modules. Then S_{tors} satisfies $C_{\mathfrak{a}}$ for each ideal \mathfrak{a} of R.

(ii) Let S be a Serre subcategory of R-mod. It follows from [Y, Proposition 4.3] that R-mod $\subseteq S_{\mathfrak{a}}$ for every ideal \mathfrak{a} of R.

(iii) Let (R, \mathfrak{m}) be a local ring and let S = R-mod. Then $E(R/\mathfrak{m})$ is in $S_{\mathfrak{m}}$ if and only if R is artinian. To be more precise, suppose $E(R/\mathfrak{m}) \in S_{\mathfrak{m}}$. Since $\Gamma_{\mathfrak{m}}(E(R/\mathfrak{m})) = E(R/\mathfrak{m})$ and $\operatorname{Hom}_{R}(R/\mathfrak{m}, E(R/\mathfrak{m})) \cong R/\mathfrak{m} \in S$, it follows that $E(R/\mathfrak{m})$ is finitely generated and so R is artinian. Conversely, if R is artinian, then $E(R/\mathfrak{m}) \in S \subseteq S_{\mathfrak{m}}$.

(iv) Let (R, \mathfrak{m}) be a local ring and let S be a Serre subcategory of R-Mod. Then R-art $\cap S_{\mathfrak{m}}$ is a subclass of S where R-art is the subcategory of artinian modules. To be more precise, for every $M \in R$ -art $\cap S_{\mathfrak{m}}$, the module $(0:_M \mathfrak{m})$ has finite length and so is in S. Now, since M is in $S_{\mathfrak{m}}$, it is in S.

(v) For each class S of R-modules, all modules annihilated by an ideal \mathfrak{a} belong to $S_{\mathfrak{a}}$.

The following proposition provides some basic properties of the condition $C_{\mathfrak{a}}$ on classes of modules.

PROPOSITION 2.3. Let S and T be classes of R-modules. Then:

- (i) If $\mathcal{S} \subseteq \mathcal{T} \subseteq \mathcal{S}_{\mathfrak{a}}$, then $\mathcal{T}_{\mathfrak{a}} \subseteq \mathcal{S}_{\mathfrak{a}}$.
- (ii) $(\mathcal{S}_{\mathfrak{a}})_{\mathfrak{a}} = \mathcal{S}_{\mathfrak{a}}.$

Proof. (i) Suppose that M is an R-module in $\mathcal{T}_{\mathfrak{a}}$ with $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in \mathcal{S}$. Then $(0:_M \mathfrak{a}) \in \mathcal{T}$, and hence $M \in \mathcal{T}$ because $M \in \mathcal{T}_{\mathfrak{a}}$. Now, since $\mathcal{T} \subseteq \mathcal{S}_{\mathfrak{a}}$, we deduce that $M \in \mathcal{S}_{\mathfrak{a}}$.

(ii) The other inclusion follows from (i), by setting $T = S_{\mathfrak{a}}$.

PROPOSITION 2.4. Assume S is a subclass of R-Mod closed under taking submodules. Then $S_{\sqrt{\mathfrak{a}}} \subseteq S_{\mathfrak{a}}$. Furthermore, if S is a Serre subcategory, then $S_{\sqrt{\mathfrak{a}}} = S_{\mathfrak{a}}$.

Proof. Assume that $M \in S_{\sqrt{\mathfrak{a}}}$ with $\Gamma_a(M) = M$ and $(0 :_M \mathfrak{a}) \in S$. Then $\Gamma_{\sqrt{a}}(M) = M$, and since $(0 :_M \sqrt{a}) \subset (0 :_M \mathfrak{a})$, by assumption $(0 :_M \sqrt{a}) \in S$. Therefore the assumption on M forces that $M \in S$. To prove the equality, for convenience, we set $\mathfrak{b} = \sqrt{\mathfrak{a}}$. As R is noetherian, there exists a non-negative integer n such that $\mathfrak{b}^n \subseteq \mathfrak{a}$. Assume that $M \in S_{\mathfrak{a}}$ with $\Gamma_{\mathfrak{b}}(M) = M$ and $(0 :_M \mathfrak{b}) \in S$. We notice that $\mathfrak{b}/\mathfrak{b}^2$ is a finitely generated R/\mathfrak{b} -module, and so for some $m \in \mathbb{N}$ there exists an exact sequence of R-modules

$$0 \to K \to (R/\mathfrak{b})^m \to \mathfrak{b}/\mathfrak{b}^2 \to 0.$$

Applying the functor $\operatorname{Hom}_R(-, M)$, we deduce that $\operatorname{Hom}_R(\mathfrak{b}/\mathfrak{b}^2, M) \in \mathcal{S}$. Moreover, taking $\operatorname{Hom}_R(-, M)$ of the exact sequence

$$0 \to \mathfrak{b}/\mathfrak{b}^2 \to R/\mathfrak{b}^2 \to R/\mathfrak{b} \to 0$$

we find that $(0:_M \mathfrak{b}^2) \cong \operatorname{Hom}_R(R/\mathfrak{b}^2, M) \in \mathcal{S}$. Continuing this way and using an easy induction on n, we conclude that $(0:_M \mathfrak{b}^n) \in \mathcal{S}$. Application of $\operatorname{Hom}_R(-, M)$ to the exact sequence $0 \to \mathfrak{a}/\mathfrak{b}^n \to R/\mathfrak{b}^n \to R/\mathfrak{a} \to 0$ implies that $(0:_M \mathfrak{a}) \in \mathcal{S}$. Now, since $M \in \mathcal{S}_{\mathfrak{a}}$, we conclude that $M \in \mathcal{S}$.

PROPOSITION 2.5. Let \mathfrak{a} and \mathfrak{b} be ideals of R and let S be a subclass of R-Mod. If $S_{\mathfrak{b}} \subseteq S_{\mathfrak{a}}$, then $S_{\mathfrak{b}} \subseteq S_{\mathfrak{a}+\mathfrak{b}}$.

Proof. Assume that $M \in S_{\mathfrak{b}}$ with $\Gamma_{\mathfrak{a}+\mathfrak{b}}(M) = M$ and $(0:_M \mathfrak{a}+\mathfrak{b}) \in S$. Clearly $\Gamma_{\mathfrak{a}}(M) = \Gamma_{\mathfrak{b}}(M) = M$ and the isomorphisms

$$(0:_{M} \mathfrak{a} + \mathfrak{b}) \cong \operatorname{Hom}(R/\mathfrak{a} + \mathfrak{b}, M)$$
$$\cong \operatorname{Hom}(R/\mathfrak{a}, \operatorname{Hom}(R/\mathfrak{b}, M)) \cong (0:_{(0:_{M}\mathfrak{b})} \mathfrak{a})$$

imply that $(0:_{(0:M\mathfrak{b})}\mathfrak{a}) \in \mathcal{S}$. Moreover,

$$\Gamma_{\mathfrak{a}}((0:_M\mathfrak{b})) = (0:_M\mathfrak{b}).$$

In view of Example 2.2(v), the module $(0:_M \mathfrak{b})$ belongs to $S_{\mathfrak{b}}$ and so by assumption it belongs to $S_{\mathfrak{a}}$. Therefore the preceding argument implies that $(0:_M \mathfrak{b}) \in S$. Now, since $M \in S_{\mathfrak{b}}$, we deduce that $M \in S$.

COROLLARY 2.6. Let \mathfrak{a} and \mathfrak{b} be ideals of R and let S be a subcategory of R-Mod satisfying the condition $C_{\mathfrak{a}}$. Then $S_{\mathfrak{b}}$ is a subclass of $S_{\mathfrak{a}+\mathfrak{b}}$. Moreover, if S satisfies $C_{\mathfrak{b}}$, then S satisfies $C_{\mathfrak{a}+\mathfrak{b}}$.

The same proof as in Proposition 2.5 still works for the following result.

PROPOSITION 2.7. Let \mathfrak{a} and \mathfrak{b} be ideals of R and let S be a class of R-Mod. If $S_{\mathfrak{a}}$ is closed under taking submodules, then $S_{\mathfrak{b}} \cap S_{\mathfrak{a}} \subseteq S_{\mathfrak{a}+\mathfrak{b}}$.

The following well-known fact is used in the proof of the next theorem.

LEMMA 2.8. If S is a Serre subcategory of R-Mod and M is in S, then $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M)$ is in S for each $i \geq 0$.

Proof. Let $\dots \to F_1 \to F_0 \to 0$ be a free resolution of R/\mathfrak{a} such that each F_i is finitely generated. As S is Serre, $\operatorname{Hom}_R(F_i, M) \in S$ for each i. Since $\operatorname{Ext}^i_R(R/\mathfrak{a}, M)$ is a quotient of submodules of $\operatorname{Hom}_R(F_i, M)$, we deduce that $\operatorname{Ext}^i_R(R/\mathfrak{a}, M) \in S$.

Now we are in a position to state one of the main results of this paper.

THEOREM 2.9. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and let S be a Serre subcategory of R-Mod. Then:

(i) $\mathcal{S}_{\mathfrak{a}\mathfrak{b}} = \mathcal{S}_{\mathfrak{a}\cap\mathfrak{b}}.$

(ii) If $S_{\mathfrak{a}+\mathfrak{b}}$ is closed under taking submodules, then $S_{\mathfrak{a}+\mathfrak{b}} \cap S_{\mathfrak{a}\mathfrak{b}} \subseteq S_{\mathfrak{a}} \cap S_{\mathfrak{b}}$.

(iii) If S_a is closed under taking submodules and S_b is closed under taking quotients, then S_a ∩ S_b ⊆ S_{a+b} ∩ S_{ab}.

Proof. Part (i) follows from $\sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}\mathfrak{b}}$ and Proposition 2.4.

(ii) It suffices by symmetry to show that $S_{\mathfrak{a}+\mathfrak{b}} \cap S_{\mathfrak{a}\cap\mathfrak{b}} \subseteq S_{\mathfrak{a}}$. Assume that $M \in S_{\mathfrak{a}+\mathfrak{b}} \cap S_{\mathfrak{a}\cap\mathfrak{b}}$ with $M = \Gamma_{\mathfrak{a}}(M)$ and that $(0:_M \mathfrak{a}) \in S$. The inclusion $(0:_M \mathfrak{a}+\mathfrak{b}) \subseteq (0:_M \mathfrak{a})$ implies that $(0:_M \mathfrak{a}+\mathfrak{b}) \in S$. Since $M \in S_{\mathfrak{a}+\mathfrak{b}}$, it follows from the hypothesis that $\Gamma_{\mathfrak{a}+\mathfrak{b}}(M) = \Gamma_{\mathfrak{b}}(M) \in S_{\mathfrak{a}+\mathfrak{b}}$. Therefore $\Gamma_{\mathfrak{b}}(M) \in S$. We now consider the following exact sequence of modules:

$$(\dagger) \qquad \qquad 0 \to \Gamma_{\mathfrak{b}}(M) \to M \to M/\Gamma_{\mathfrak{b}}(M) \to 0.$$

Applying $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ and using Lemma 2.8, we conclude $(0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}) \in \mathcal{S}$. We now prove that $(0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}) = (0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}\mathfrak{b})$. The inclusion $(0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}) \subseteq (0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}\mathfrak{b})$ is obvious. Conversely, let $m + \Gamma_{\mathfrak{b}}(M) \in (0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}\mathfrak{b})$. Then $\mathfrak{ab}m \subseteq \Gamma_{\mathfrak{b}}(M)$ and so there exists $n \in \mathbb{N}$ such that $\mathfrak{b}^n(\mathfrak{ab}m) = 0$. This implies that $\mathfrak{a}m \subseteq \Gamma_{\mathfrak{b}}(M)$, and hence $m + \Gamma_{\mathfrak{b}}(M) \in (0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a})$. Therefore $(0:_{M/\Gamma_{\mathfrak{b}}(M)}\mathfrak{a}\mathfrak{b}) \in \mathcal{S}$. Application of $\operatorname{Hom}_R(R/\mathfrak{ab}, -)$ to (\dagger) shows that $(0:_M\mathfrak{ab}) \in \mathcal{S}$. Now, since $\Gamma_{\mathfrak{ab}}(M) = M$ and $M \in \mathcal{S}_{\mathfrak{ab}}$, we deduce that $M \in S$.

(iii) That $\mathcal{S}_{\mathfrak{a}} \cap \mathcal{S}_{\mathfrak{b}} \subseteq \mathcal{S}_{\mathfrak{a}+\mathfrak{b}}$ follows from Proposition 2.7. Assume that $M \in \mathcal{S}_{\mathfrak{a}} \cap \mathcal{S}_{\mathfrak{b}}$ with $\Gamma_{\mathfrak{a}\mathfrak{b}}(M) = M$ and that $(0:_M \mathfrak{a}\mathfrak{b}) \in \mathcal{S}$. The inclusions $(0:_{\Gamma_{\mathfrak{a}}(M)}\mathfrak{a}) \subseteq (0:_M \mathfrak{a}) \subseteq (0:_M \mathfrak{a}\mathfrak{b})$ force that $(0:_{\Gamma_{\mathfrak{a}}(M)}\mathfrak{a}) \in \mathcal{S}$. Furthermore, since by assumption $\Gamma_{\mathfrak{a}}(M)$ is in $\mathcal{S}_{\mathfrak{a}}$, it lies in \mathcal{S} , and so in view of the exact sequence

$$0 \to \Gamma_{\mathfrak{a}}(M) \to M \to M/\Gamma_{\mathfrak{a}}(M) \to 0$$

it suffices to show that $M/\Gamma_{\mathfrak{a}}(M) \in \mathcal{S}$. Application of $\operatorname{Hom}_{R}(R/\mathfrak{b}, -)$ induces the exact sequence

$$\operatorname{Hom}_R(R/\mathfrak{b}, M) \to \operatorname{Hom}_R(R/\mathfrak{b}, M/\Gamma_\mathfrak{a}(M)) \to \operatorname{Ext}^1_R(R/\mathfrak{b}, \Gamma_\mathfrak{a}(M)).$$

As $(0:_M \mathfrak{b}) \subseteq (0:_M \mathfrak{ab})$, we deduce that $\operatorname{Hom}_R(R/\mathfrak{b}, M) \cong (0:_M \mathfrak{b}) \in S$; moreover, Lemma 2.8 implies that $\operatorname{Ext}^1_R(R/\mathfrak{b}, \Gamma_\mathfrak{a}(M)) \in S$. Therefore, since S is Serre, $(0:_{M/\Gamma_\mathfrak{a}(M)} \mathfrak{b}) \cong \operatorname{Hom}_R(R/\mathfrak{b}, M/\Gamma_\mathfrak{a}(M)) \in S$. We now show that $\Gamma_{\mathfrak{b}}(M/\Gamma_\mathfrak{a}(M)) = M/\Gamma_\mathfrak{a}(M)$. Let $m + \Gamma_\mathfrak{a}(M) \in M/\Gamma_\mathfrak{a}(M)$. Since $\Gamma_{\mathfrak{ab}}(M)$ = M, there exists a positive integer n such that $(\mathfrak{ab})^n m = 0$. Thus $\mathfrak{b}^n m \subseteq$ $\Gamma_\mathfrak{a}(M)$ so that $m + \Gamma_\mathfrak{a}(M) \in \Gamma_\mathfrak{b}(M/\Gamma_\mathfrak{a}(M))$. On the other hand, since $S_\mathfrak{b}$ is closed under quotients, $M/\Gamma_\mathfrak{a}(M)$ is in $S_\mathfrak{b}$ and hence in S.

The following corollary can be obtained immediately from the above theorem.

COROLLARY 2.10. Let \mathfrak{a} and \mathfrak{b} be ideals of R and let S be a Serre subcategory of R-Mod. Then S satisfies the conditions $C_{\mathfrak{a}}$ and $C_{\mathfrak{b}}$ if and only if it satisfies $C_{\mathfrak{a}+\mathfrak{b}}$ and $C_{\mathfrak{a}\cap\mathfrak{b}}$. COROLLARY 2.11. Let S be a Serre subcategory of R-Mod. If S satisfies $C_{\mathfrak{p}}$ for every minimal prime ideal \mathfrak{p} of \mathfrak{a} , then S satisfies $C_{\mathfrak{a}}$.

Proof. In view of Proposition 2.4, it suffices to show that S satisfies $C_{\sqrt{\mathfrak{a}}}$. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the minimal prime ideals of \mathfrak{a} . Then $\sqrt{\mathfrak{a}} = \bigcap_{i=1}^n \mathfrak{p}_i$. As S satisfies $C_{\mathfrak{p}_i}$ for each i, using Corollary 2.10 and applying an easy induction, we deduce that S satisfies $C_{\sqrt{\mathfrak{a}}}$.

COROLLARY 2.12. Let S be a Serre subcategory of R-Mod and $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be maximal ideals. If S satisfies the condition $C_{\prod_{i=1}^n \mathfrak{m}_i}$, then it satisfies $C_{\mathfrak{m}_i}$ for each *i*.

Proof. Clearly S satisfies C_R . For each i, we have $\prod_{j=1, j\neq i}^n \mathfrak{m}_j + \mathfrak{m}_i = R$. The assertion now follows from Corollary 2.10. \blacksquare

The next corollary shows that over an artinian ring, every Serre subcategory of R-Mod satisfies $C_{\mathfrak{a}}$.

COROLLARY 2.13. Let R be an artinian ring and let S be a Serre subcategory of R-Mod. Then S satisfies the condition $C_{\mathfrak{a}}$ for each ideal \mathfrak{a} of R.

Proof. Assuming $\operatorname{Max} R = \{\mathfrak{m}_1, \ldots, \mathfrak{m}_n\}$, we have $\sqrt{0} = \prod_{i=1}^n \mathfrak{m}_i$. Obviously S satisfies C_0 , and hence in view of Proposition 2.4 it satisfies $C_{\prod_{i=1}^n \mathfrak{m}_i}$. Thus Corollary 2.12 implies that S satisfies the condition $C_{\mathfrak{m}_i}$ for each i. Consequently, according to Corollary 2.11, S satisfies $C_{\mathfrak{a}}$ for each ideal \mathfrak{a} of R.

Let S_1 and S_2 be two subcategories of R-Mod. Let $\langle S_1, S_2 \rangle$ be the subclass of R-Mod consisting of all modules M such that there exists an exact sequence of modules $0 \to M_1 \to M \to M_2 \to 0$ with $M_i \in S_i$ for i = 1, 2. We can also refer to $\langle S_1, S_2 \rangle$ as the class of extension modules of S_1 by S_2 . An example is the class of minimax modules $\mathcal{M} = \langle R$ -mod, R-art \rangle .

THEOREM 2.14. Let S_1 and S_2 be Serre subcategories of R-Mod and let $\langle S_1, S_2 \rangle$ and $S_1 \cap S_2$ satisfy the condition $C_{\mathfrak{a}}$. Then S_1 and S_2 satisfy $C_{\mathfrak{a}}$.

Proof. We prove the claim for S_1 ; the proof for S_2 is similar. Suppose that M is an R-module with $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in S_1$. As S_1 is a subclass of $\langle S_1, S_2 \rangle$ and $\langle S_1, S_2 \rangle$ satisfies $C_{\mathfrak{a}}$, we deduce that $M \in \langle S_1, S_2 \rangle$. Then there is an exact sequence of R-modules $0 \to M_1 \to M \to M_2 \to 0$ such that $M_1 \in S_1$ and $M_2 \in S_2$. Since S_1 is Serre, it suffices to verify that $M_2 \in S_1$. Taking $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ of the above short exact sequence, we obtain the exact sequence

 $\operatorname{Hom}_R(R/\mathfrak{a}, M) \to \operatorname{Hom}_R(R/\mathfrak{a}, M_2) \to \operatorname{Ext}^1_R(R/\mathfrak{a}, M_1).$

It follows from Lemma 2.8 that $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}, M_{1}) \in S_{1}$, and since S_{1} and S_{2} are Serre, $(0:_{M_{2}}\mathfrak{a}) \cong \operatorname{Hom}_{R}(R/\mathfrak{a}, M_{2})$ is in $S_{1} \cap S_{2}$. On the other hand, since $\Gamma_{\mathfrak{a}}(M_{2}) = M_{2}$ and $S_{1} \cap S_{2}$ satisfies $C_{\mathfrak{a}}$, we conclude that $M_{2} \in S_{1}$.

COROLLARY 2.15. Let \mathcal{M} and \mathcal{F} be the classes of all minimax modules and all modules of finite length, respectively. If \mathcal{M} and \mathcal{F} satisfy $C_{\mathfrak{a}}$, then so does R-mod.

Proof. Set $S_1 = R$ -mod and $S_2 = R$ -art. Then it is evident that S_1 and S_2 are Serre, $\langle S_1, S_2 \rangle = \mathcal{M}$ and $S_1 \cap S_2 = \mathcal{F}$. Now, the result follows immediately from the previous theorem.

PROPOSITION 2.16. Let S, S_1 and S_2 be subcategories of R-Mod such that S is Serre. If S satisfies $C_{\mathfrak{a}}$ on S_1 and S_2 , then it satisfies $C_{\mathfrak{a}}$ on $\langle S_1, S_2 \rangle$.

Proof. Assume that $M \in \langle S_1, S_2 \rangle$ with $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in S$. Then there is an exact sequence $0 \to M_1 \to M \to M_2 \to 0$ such that $M_i \in S_i$ for i = 1, 2. Since $\Gamma_{\mathfrak{a}}(M_i) = M_i$ for i = 1, 2 and S is Serre, $(0:_{M_1} \mathfrak{a})$ is in S. Now, since S satisfies $C_{\mathfrak{a}}$ on S_1 , we deduce that $M_1 \in S$. Applying the functor $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ to the above exact sequence and using Lemma 2.8 we find that $(0:_{M_2} \mathfrak{a}) \in S$. Since S satisfies the condition $C_{\mathfrak{a}}$ on S_2 , we deduce that M_2 is in S and so, by the fact that S is Serre, M is in S.

COROLLARY 2.17. Let S be a Serre subcategory of R-Mod. If S satisfies $C_{\mathfrak{a}}$ on R-art, then it satisfies $C_{\mathfrak{a}}$ on \mathcal{M} , where \mathcal{M} is the class of all minimax modules.

Proof. Observe that $S \cap R$ -mod is a Serre subcategory of R-mod, and it follows from [Y, Proposition 4.3] that $S \cap R$ -mod satisfies $C_{\mathfrak{a}}$ on R-mod. Thus S satisfies $C_{\mathfrak{a}}$ on R-mod. Now the result is a consequence of Proposition 2.16 because $\mathcal{M} = \langle R$ -mod, R-art \rangle .

For each subcategory S of R-Mod, we set $S^0 = \{0\}$ and $S^{n+1} = \langle S^n, S \rangle$ for $n \in \mathbb{N}$. Moreover, we set $\langle S \rangle_{\text{ext}} = \bigcup S^n$. According to [K, Proposition 2.4] the subcategory $\langle S \rangle_{\text{ext}}$ is closed under taking extensions of modules.

THEOREM 2.18. Let S be a Serre subcategory of R-Mod. Then $S_{\mathfrak{a}}$ is closed under taking extensions of modules.

Proof. As S satisfies $C_{\mathfrak{a}}$ on $S_{\mathfrak{a}}$, Proposition 2.16 shows that S satisfies $C_{\mathfrak{a}}$ on $S_{\mathfrak{a}}^2$. Repeating this argument, we deduce that S satisfies $C_{\mathfrak{a}}$ on $S_{\mathfrak{a}}^n$ for each $n \in \mathbb{N}$. Therefore S satisfies the condition $C_{\mathfrak{a}}$ on $\langle S_{\mathfrak{a}} \rangle_{\text{ext}}$. On the other hand, $S \subseteq S_{\mathfrak{a}} \subseteq \langle S_{\mathfrak{a}} \rangle_{\text{ext}}$, and by the definition $S_{\mathfrak{a}}$ is the largest subcategory of R-Mod such that S satisfies $C_{\mathfrak{a}}$ on $S_{\mathfrak{a}}$; hence $S_{\mathfrak{a}} = \langle S_{\mathfrak{a}} \rangle_{\text{ext}}$.

We recall from [St] that a Serre subcategory S of R-Mod is a torsion subcategory if it is closed under taking arbitrary direct sums of modules. As the direct limit of a direct system of modules is a quotient of a direct sum of modules, every torsion subcategory is closed under taking direct limits. A well-known example of a torsion subcategory has been given in [AM, Example 2.4(e)]. Namely, let $Z \subseteq \text{Spec } R$ be closed under specialization, that

is, if $\mathfrak{q} \supseteq \mathfrak{p} \in Z$, then $\mathfrak{q} \in Z$. The class of all *R*-modules with $\operatorname{Ass}_R(M) \subseteq Z$ (equivalently, $\operatorname{Supp}_R(M) \subseteq Z$) is a torsion subcategory of *R*-Mod.

The following theorem shows that every torsion subcategory S satisfies the condition $C_{\mathfrak{a}}$ for each ideal \mathfrak{a} of R.

THEOREM 2.19. Assume S is a subcategory of R-Mod closed under taking submodules. Then:

(i) If S is closed under taking arbitrary direct sums, then so is $S_{\mathfrak{a}}$.

(ii) If S is a torsion subcategory, then S satisfies $C_{\mathfrak{a}}$.

Proof. (i) Given $\{M_i\}$ a family of modules in $\mathcal{S}_{\mathfrak{a}}$, we prove that $\coprod M_i \in \mathcal{S}_{\mathfrak{a}}$. Suppose that $\coprod M_i = \Gamma_{\mathfrak{a}}(\coprod M_i)$ and $(0:_{\coprod M_i} \mathfrak{a}) \in \mathcal{S}$. Since \mathcal{S} is closed under taking submodules, $(0:_{M_i} \mathfrak{a}) \in \mathcal{S}$ for each i; and moreover $M_i = \Gamma_{\mathfrak{a}}(M_i)$ for each i. Thus $M_i \in \mathcal{S}$ because $M_i \in \mathcal{S}_{\mathfrak{a}}$ for each i. Now, according to the hypothesis, $\coprod M_i \in \mathcal{S}$ so that $\coprod M_i \in \mathcal{S}_{\mathfrak{a}}$.

(ii) Suppose $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in S$. For every finitely generated submodule N of M, we have $\Gamma_{\mathfrak{a}}(N) = N$ and $(0:_N \mathfrak{a}) \in S \cap R$ -mod. Now, since $S \cap R$ -mod satisfies $C_{\mathfrak{a}}$ on R-mod by [Y, Proposition 4.3], we conclude that $N \in S$. Finally, since M is the direct limit of its finitely generated submodules, the assumption implies that $M \in S$.

THEOREM 2.20. Let S be a Serre subcategory of R-Mod such that $S_{\mathfrak{a}}$ is closed under taking submodules. Then S satisfies $C_{\mathfrak{a}}$ if one of the following conditions holds:

- (i) $\mathcal{S}_{\mathfrak{a}}$ is closed under taking direct unions;
- (ii) $\mathcal{S}_{\mathfrak{a}}$ is closed under taking injective hulls.

Proof. (i) Let M be an R-module. If $\Gamma_{\mathfrak{a}}(M) = 0$, then it is evident that $M \in S_{\mathfrak{a}}$. Now, suppose $\Gamma_{\mathfrak{a}}(M) \neq 0$, and so there is an exact sequence

$$0 \to \Gamma_{\mathfrak{a}}(M) \to M \to M/\Gamma_{\mathfrak{a}}(M) \to 0.$$

Using Theorem 2.18 and the first case, it suffices to prove that $\Gamma_{\mathfrak{a}}(M) \in \mathcal{S}$. Since $\Gamma_{\mathfrak{a}}(M) = \bigcup_{n \in \mathbb{N}} (0 :_M \mathfrak{a}^n)$, by hypothesis we should prove that each $(0:_M \mathfrak{a}^n)$ is in $\mathcal{S}_{\mathfrak{a}}$. We can proceed by induction on n. The case n = 1 is clear. Assume that n > 1 and that the result has been proved for all values smaller than n. Consider the exact sequence $0 \to \mathfrak{a}^{n-1}/\mathfrak{a}^n \to R/\mathfrak{a}^n \to R/\mathfrak{a}^{n-1} \to 0$. Using the induction hypothesis, the fact that $S_{\mathfrak{a}}$ is closed under taking submodules, and Theorem 2.18, it is enough to show that $\operatorname{Hom}_R(\mathfrak{a}^{n-1}/\mathfrak{a}^n, M)$ is in $\mathcal{S}_{\mathfrak{a}}$. As $\mathfrak{a}^{n-1}/\mathfrak{a}^n$ is an R/\mathfrak{a} -module, there exists a positive integer t and an exact sequence $0 \to X \to (R/\mathfrak{a})^t \to \mathfrak{a}^{n-1}/\mathfrak{a}^n \to 0$. Now the claim is obtained by applying $\operatorname{Hom}_R(-, M)$ and the fact that \mathcal{S} is Serre.

(ii) Assume that M is a module with $\Gamma_{\mathfrak{a}}(M) = M$ and $(0:_M \mathfrak{a}) \in S$. Then M and $(0:_M \mathfrak{a})$ have the same injective hull E, and so by hypothesis, $E \in S_{\mathfrak{a}}$. Now the assumption implies that M is in $S_{\mathfrak{a}}$, and hence in S. Let $\phi : R \to S$ be a ring homomorphism. Let $\phi_* : S$ -Mod $\to R$ -Mod and $\phi^* : R$ -Mod $\to S$ -Mod be two functors defined as $\phi_*(N) = N$ and $\phi^*(M) = M \otimes_R S$ for every S-module N and R-module M. We notice that ϕ^* is a left adjoint of ϕ_* . For any subcategory S of S-Mod, we set $\phi_*(S) = \{N = \phi_*(N) \mid N \text{ is in } S\}$. Clearly, if $\phi_*(S)$ is a Serre subcategory of R-Mod, then S is a Serre subcategory of S-Mod. For any subcategory \mathcal{T} of R-Mod, we set $\phi^*(\mathcal{T}) = \{M \otimes_R S \mid M \in \mathcal{T}\}$. The next theorem shows that the condition $C_{\mathfrak{a}}$ can be transferred via ring homomorphisms.

THEOREM 2.21. Let $\phi : R \to S$ be a ring homomorphism, let \mathfrak{a} be an ideal of R, let S be a subcategory of S-Mod, and let \mathcal{T} be a subcategory of R-mod closed under isomorphisms. Then the following implications hold:

- (i) φ_{*}(S_{aS}) ⊆ φ_{*}(S)_a. Moreover, if φ_{*}(S) satisfies the condition C_a, then S satisfies C_{aS}.
- (ii) If ϕ is faithfully flat, then $\phi^{\star}(\mathcal{T}_{\mathfrak{a}}) \subseteq \phi^{\star}(\mathcal{T})_{\mathfrak{a}S}$. Moreover, if $\phi^{\star}(\mathcal{T})$ satisfies $C_{\mathfrak{a}S}$, then \mathcal{T} satisfies $C_{\mathfrak{a}}$.

Proof. (i) Assume $M \in \phi_{\star}(\mathcal{S}_{\mathfrak{a}S})$ with $\Gamma_{\mathfrak{a}}(M) = M$ and $(0:_{M} \mathfrak{a}) \in \phi_{\star}(\mathcal{S})$. Clearly, $\Gamma_{\mathfrak{a}S}(M) = \Gamma_{\mathfrak{a}}(M) = M$ and $(0:_{M} \mathfrak{a}) = (0:_{M} \mathfrak{a}S) \in \mathcal{S}$. Now since $M \in \mathcal{S}_{\mathfrak{a}S}$, we see that M is in \mathcal{S} , hence in $\phi_{\star}(\mathcal{S})$. To prove the second claim, assume that M is an S-module with $M = \Gamma_{\mathfrak{a}S}(M)$ and $(0:_{M} \mathfrak{a}S) \in \mathcal{S}$. Then $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_{M} \mathfrak{a}S) = (0:_{M} \mathfrak{a}) \in \phi_{\star}(\mathcal{S})$. Since $\phi_{\star}(\mathcal{S})$ satisfies $C_{\mathfrak{a}}$, we find that M is in $\phi_{\star}(\mathcal{S})$, hence in \mathcal{S} .

(ii) Assume that $M \otimes_R S \in \phi^*(\mathcal{T}_{\mathfrak{a}})$ with $\Gamma_{\mathfrak{a}S}(M \otimes_R S) = M \otimes_R S$ and $(0:_{M \otimes_R S} \mathfrak{a}S) \in \phi^*(\mathcal{T})$. Then there exists an *R*-module *N* in \mathcal{T} such that $(0:_{M \otimes_R S} \mathfrak{a}S) = N \otimes_R S$. As *S* is a faithfully flat *R*-module, we have $\Gamma_{\mathfrak{a}}(M) = M$ and the isomorphism $\operatorname{Hom}_S((0:_{M \otimes_R S} \mathfrak{a}S), N \otimes_R S) \cong \operatorname{Hom}_R((0:_M \mathfrak{a}), N) \otimes_R S$ implies that $(0:_M \mathfrak{a}) \cong N$. Therefore $(0:_M \mathfrak{a}) \in \mathcal{T}$. Now since $M \in \mathcal{T}_{\mathfrak{a}}$, we deduce that $M \in \mathcal{T}$ so that $M \otimes_R S \in \phi^*(\mathcal{T})$. To prove the second claim, assume that *M* is an *R*-module with $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in \mathcal{T}$. Thus

$$M \otimes_R S = \Gamma_{\mathfrak{a}S}(M \otimes_R S)$$
 and $(0:_{M \otimes_R S} \mathfrak{a}S) \in \phi^*(\mathcal{T}).$

Now, since $\phi^{\star}(\mathcal{T})$ satisfies $C_{\mathfrak{a}S}$, we see that $M \otimes_R S \in \phi^{\star}(\mathcal{T})$ and so there exists $N \in \mathcal{T}$ such that $M \otimes_R S = N \otimes_R S$. Using an analogous proof to the first part, we deduce $M \cong N$ and so $M \in \mathcal{T}$.

Given a class \mathcal{S} of *R*-modules, we define the *support* of \mathcal{S} to be

$$\operatorname{Supp}_{R}(\mathcal{S}) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid R/\mathfrak{p} \text{ is in } \mathcal{S} \}.$$

PROPOSITION 2.22. Let S be a Serre subcategory of R-Mod. If M is a finitely generated R-module with $\operatorname{Supp}_R(M) \subseteq \operatorname{Supp}_R(S_{\mathfrak{a}})$, then $M \in S_{\mathfrak{a}}$. In particular, if $V(\mathfrak{a}) \subseteq \operatorname{Supp}_R(S_{\mathfrak{a}})$, then R-mod is a subclass of $S_{\mathfrak{a}}$.

Proof. There exists a finite filtration

 $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$

such that $M_i/M_{i-1} \cong R/\mathfrak{p}_i$ where $\mathfrak{p}_i \in \operatorname{Supp}_R(M)$ for $i = 1, \ldots, n$. By hypothesis, each R/\mathfrak{p}_i is in $\mathcal{S}_{\mathfrak{a}}$. Since, by Theorem 2.18, $\mathcal{S}_{\mathfrak{a}}$ is closed under extension of modules, M is in $\mathcal{S}_{\mathfrak{a}}$. In order to prove the second claim, suppose that M is a finitely generated R-module with $M = \Gamma_{\mathfrak{a}}(M)$ and $(0:_M \mathfrak{a}) \in \mathcal{S}$. Since $\operatorname{Supp}_R(M) \subseteq V(\mathfrak{a})$, according to the first part, M is in $\mathcal{S}_{\mathfrak{a}}$.

3. Applications to local cohomology modules. In [SR], we investigated when local cohomology modules lie in a Serre subcategory of R-modules. In this section we show that the Melkersson condition plays a key role in this material. Throughout this section S is a Serre subcategory of R-Mod containing a non-zero module, \mathfrak{a} is an ideal of R and n is a non-negative integer.

THEOREM 3.1. Let M be a finitely generated R-module and let $H^i_{\mathfrak{a}}(M)$ be in $S_{\mathfrak{a}}$ with $\operatorname{Ass}_R(H^i_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}_R(S)$ for each $i \leq n$. Then $H^i_{\mathfrak{a}}(M) \in S$ for each $i \leq n$.

Proof. We proceed by induction on n. If n = 0, then $\operatorname{Ass}_R(\Gamma_{\mathfrak{a}}(M)) \subseteq$ Supp_R(S). Hence $\operatorname{Supp}_R(\Gamma_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}_R(S)$, so $\Gamma_{\mathfrak{a}}(M)$ is in S by using a finite filtration of $\Gamma_{\mathfrak{a}}(M)$ as in the proof of Proposition 2.22. Let n > 0 and suppose inductively that the result has been proved for all values smaller than n and all finitely generated R-modules. As $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M))$ for each i > 0, without loss of generality we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$. Then there exists $x \in \mathfrak{a} \setminus Z(M)$ and an exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$. Fix i < n. Applying $H^i_{\mathfrak{a}}(-)$ yields the exact sequence

$$H^i_{\mathfrak{a}}(M) \xrightarrow{x_{\cdot}} H^i_{\mathfrak{a}}(M) \to H^i_{\mathfrak{a}}(M/xM) \to H^{i+1}_{\mathfrak{a}}(M) \xrightarrow{x_{\cdot}} H^{i+1}_{\mathfrak{a}}(M)$$

By the induction hypothesis, $H^i_{\mathfrak{a}}(M)$ is in \mathcal{S} . Then the above exact sequence implies that $H^i_{\mathfrak{a}}(M)/xH^i_{\mathfrak{a}}(M)$ is in \mathcal{S} ; therefore $\operatorname{Ass}_R(H^i_{\mathfrak{a}}(M)/xH^i_{\mathfrak{a}}(M)) \subseteq$ $\operatorname{Supp}_R(\mathcal{S})$. Moreover, since

$$\operatorname{Ass}_{R}((0:_{H_{\mathfrak{a}}^{i+1}(M)}x)) \subseteq \operatorname{Ass}_{R}(H_{\mathfrak{a}}^{i+1}(M)) \subseteq \operatorname{Supp}_{R}(\mathcal{S}),$$

the exact sequence $0 \to H^i_{\mathfrak{a}}(M)/xH^i_{\mathfrak{a}}(M) \to H^i_{\mathfrak{a}}(M/xM) \to (0:_{H^{i+1}_{\mathfrak{a}}(M)} x) \to 0$ implies that $\operatorname{Ass}_R(H^i_{\mathfrak{a}}(M/xM)) \subseteq \operatorname{Supp}_R(\mathcal{S})$. On the other hand, since $(0:_{(0:_{H^{i+1}_{\mathfrak{a}}(M)}x)} \mathfrak{a}) = (0:_{H^{i+1}_{\mathfrak{a}}(M)} \mathfrak{a})$ and $H^{i+1}_{\mathfrak{a}}(M) \in \mathcal{S}_{\mathfrak{a}}$, we deduce that $(0:_{H^{i+1}_{\mathfrak{a}}(M)}x) \in \mathcal{S}_{\mathfrak{a}}$. Now, it follows from Theorem 2.18 that $H^i_{\mathfrak{a}}(M/xM) \in \mathcal{S}_{\mathfrak{a}}$. Thus the induction hypothesis implies that $H^i_{\mathfrak{a}}(M/xM) \in \mathcal{S}$ for each i < n, and so $(0:_{H^i_{\mathfrak{a}}(M)}x) \in \mathcal{S}$ for each $i \leq n$. Therefore $(0:_{H^i_{\mathfrak{a}}(M)}\mathfrak{a}) \in \mathcal{S}$ for each i < n, each $i \leq n$, and since \mathcal{S} satisfies $C_{\mathfrak{a}}$ on $H^i_{\mathfrak{a}}(M)$, the module $H^i_{\mathfrak{a}}(M)$ is in \mathcal{S} for each $i \leq n$.

COROLLARY 3.2. Let (R, \mathfrak{m}) be a local ring and let M be a finitely generated R-module. If $H^i_{\mathfrak{m}}(M) \in S_{\mathfrak{m}}$ for each $i \leq n$, then $H^i_{\mathfrak{m}}(M) \in S$ for each $i \leq n$.

Proof. The result follows immediately by the previous theorem.

THEOREM 3.3. Let (R, \mathfrak{m}) be a local ring, let M be a finitely generated R-module and assume that S satisfies $C_{\mathfrak{m}}$. If $H^i_{\mathfrak{a}}(M) \in S$ for all i < n, then $\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M)) \in S$.

Proof. The case n = 0 is clear, and so we assume that n > 0. Since $H^n_{\mathfrak{a}}(M) \cong H^n_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M))$, we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$ so that the ideal \mathfrak{a} contains a non-zerodivisor x on M. We proceed by induction on n. If n = 1, then $\Gamma_{\mathfrak{m}}(\Gamma_{\mathfrak{a}}(M/xM)) = \Gamma_{\mathfrak{m}}(M/xM)$ is of finite length, and hence it lies in S. Thus $\Gamma_{\mathfrak{m}}(M/xM) \cong (0 :_{\Gamma_{\mathfrak{m}}(H^1_{\mathfrak{a}}(M))} x) \in S$ so that $(0 :_{\Gamma_{\mathfrak{m}}(H^1_{\mathfrak{a}}(M))} \mathfrak{m}) \in S$. Now, since S satisfies $C_{\mathfrak{m}}$, we see that $\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M)) \in S$. Let n > 1 and suppose that the result has been proved for all values smaller than n. Clearly $H^i_{\mathfrak{a}}(M/xM) \in S$ for all i < n-1. For the convenience of the reader, we write $A = H^{n-1}_{\mathfrak{a}}(M)/xH^{n-1}_{\mathfrak{a}}(M)$ and $B = (0 :_{H^n_{\mathfrak{a}}(M)} x)$. Thus, the exact sequence

$$H^{n-1}_{\mathfrak{a}}(M) \xrightarrow{x_{\cdot}} H^{n-1}_{\mathfrak{a}}(M) \to H^{n-1}_{\mathfrak{a}}(M/xM) \to H^{n}_{\mathfrak{a}}(M) \xrightarrow{x_{\cdot}} H^{n}_{\mathfrak{a}}(M)$$

induces the exact sequence

$$0 \to A \to H^{n-1}_{\mathfrak{a}}(M/xM) \to B \to 0.$$

Since $H^{n-1}_{\mathfrak{a}}(M) \in \mathcal{S}$, the module A is in \mathcal{S} , and hence [AM, Theorem 2.9] shows that $H^{i}_{\mathfrak{m}}(A) \in \mathcal{S}$ for each i. We note that the induction hypothesis implies that $\Gamma_{\mathfrak{m}}(H^{n-1}_{\mathfrak{a}}(M/xM)) \in \mathcal{S}$. Now applying $\Gamma_{\mathfrak{m}}(-)$ gives the exact sequence

$$\Gamma_{\mathfrak{m}}(H^{n-1}_{\mathfrak{a}}(M/xM)) \to \Gamma_{\mathfrak{m}}(B) \to H^{1}_{\mathfrak{m}}(A),$$

which forces that $\Gamma_{\mathfrak{m}}(B) \in \mathcal{S}$. Therefore $\Gamma_{\mathfrak{m}}(B) = \Gamma_{\mathfrak{m}}((0 :_{H^{n}_{\mathfrak{a}}(M)} x)) = (0 :_{\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))} x) \in \mathcal{S}$, which in turn implies that $(0 :_{\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))} \mathfrak{m}) \in \mathcal{S}$. Consequently, since \mathcal{S} satisfies $C_{\mathfrak{m}}$, we deduce that $H^{n}_{\mathfrak{m}}(M) \in \mathcal{S}$.

PROPOSITION 3.4. Let (R, \mathfrak{m}) be a local ring, and let M be a finitely generated R-module such that $H^i_{\mathfrak{a}}(M)$ is minimax for each i < n. If $\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M))$ is in $S_{\mathfrak{a}}$, then it is in S.

Proof. According to [BN, Theorem 2.3], the *R*-module $(0 :_{H^n_{\mathfrak{a}}(M)} \mathfrak{a})$ is finitely generated so that $\Gamma_{\mathfrak{m}}((0 :_{H^n_{\mathfrak{a}}(M)} \mathfrak{a})) = (0 :_{\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M))} \mathfrak{a})$ has finite length. Then $(0 :_{\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M))} \mathfrak{a}) \in S$, and since $\Gamma_{\mathfrak{m}}(H^n_{\mathfrak{a}}(M))$ is in $S_{\mathfrak{a}}$, it is in S.

PROPOSITION 3.5. Let (R, \mathfrak{m}) be a local ring and let M be a finitely generated R-module of dimension n. If S satisfies $C_{\mathfrak{a}}$, then $H^n_{\mathfrak{a}}(M) \in S$.

Proof. The proof is similar to that of Theorem 3.3.

Acknowledgments. The authors would like to thank the referee for her/his careful reading and many helpful comments and suggestions.

REFERENCES

- [AM] M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), 1275–1287.
- [BN] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), 2359–2363.
- [BFT] M. Brodmann, S. Fumasoli and R. Tajarod, Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. Amer. Math. Soc. 131 (2003), 2977–2985.
- [BRS] M. Brodmann, F. Rohrer and R. Sazeedeh, Multiplicities of graded components of local cohomology modules, J. Pure Appl. Algebra 197 (2005), 249–278.
- [BS] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math. 60, Cambridge Univ. Press, 1998.
- [K] R. Kanda, Classifying Serre subcategories via atom spectrum, Adv. Math. 231 (2012), 1572–1588.
- [M] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc. 107 (1990), 267–271.
- R. Sazeedeh, Artinianess of graded local cohomology modules, Proc. Amer. Math. Soc. 135 (2007), 2339–2345.
- [SR] R. Sazeedeh and R. Rasuli, Some results in local cohomology and Serre subcategory, Rom. J. Math. Comput. Sci. 3 (2013), 185–190.
- [St] B. Stenström, *Rings of Quotients*, Grundlehren Math. Wiss. 217, Springer, 1975.
- [Y] T. Yoshizawa, An example of Melkersson subcategory which is not closed under injective hulls, arXiv:1011.1663v2 (2010).

Reza Sazeedeh Department of Mathematics Urmia University P.O. Box 165, Urmia, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran E-mail: rsazeedeh@ipm.ir

Rasul Rasuli Mathematics Department Faculty of Science Payame Noor University (PNU) Tehran, Iran E-mail: rasulirasul@yahoo.com