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MELKERSSON CONDITION ON SERRE SUBCATEGORIES

BY

REZA SAZEEDEH (Urmia and Tehran) and RASUL RASULI (Tehran)

Abstract. Let R be a commutative noetherian ring, let a be an ideal of R, and let S
be a subcategory of the category of R-modules. The condition Ca, defined for R-modules,
was introduced by Aghapournahr and Melkersson (2008) in order to study when the local
cohomology modules relative to a belong to S. In this paper, we define and study the class
Sa consisting of all modules satisfying Ca. If a and b are ideals of R, we get a necessary
and sufficient condition for S to satisfy Ca and Cb simultaneously. We also find some
sufficient conditions under which S satisfies Ca. As an application, we investigate when
local cohomology modules lie in a Serre subcategory.

1. Introduction. Throughout this paper, R is a commutative noethe-
rian ring and a is an arbitrary ideal of R. We denote by R-Mod the category
of R-modules and R-homomorphisms, and by R-mod the full subcategory
of finitely generated R-modules. All subcategories of R-Mod considered in
this paper are full. A subcategory S of R-Mod is called Serre if it is closed
under taking submodules, quotients and extensions of modules and every
R-module isomorphic to an R-module in S is in S. For every module M , we
recall from [BS] the submodule Γa(M) of M consisting of all elements of M
annihilated by some powers of a.

We say that a class S satisfies the condition Ca if for every module M ,
the following implication holds:

If Γa(M) = M and (0 :M a) is in S, then M is in S.

The condition Ca is called the Melkersson condition as it was first introduced
by Melkersson [M] for the class S consisting of all artinian modules.

Let M be an R-module and fix n ∈ N. It is a natural question to ask
when the local cohomology modules H i

a(M) belong to S for all i < n (or for
all i > n). The same question can be asked for the graded local cohomology
modules H i

R+
(M), where R is a graded ring, R+ is the irrelevant ideal and

M is a graded module. Some examples for S are R-mod and R-art, the
subcategory of artinian R-modules. It is worth pointing out that in the
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case of graded local cohomology, the affirmative solution for these questions
allows us to assess the number of minimal generators of the components of
graded local cohomology modules (cf. [BFT, BRS, S]).

An affirmative answer was presented by M. Aghapournahr and L. Mel-
kersson [AM] when S satisfies the condition Ca. Many examples demonstrate
that Serre subcategories do not satisfy Ca in general. The aim of this paper
is to define and study the class Sa consisting of all modules satisfying the
above implication for a class S of R-modules. Clearly if S satisfies Ca, then
Sa = R-Mod.

In Section 2, for any class S of modules, we introduce the class Sa of
modules containing S and satisfying Cα. We show that if a subcategory S is
closed under taking submodules, then S√a ⊆ Sa. Moreover S√a = Sa if S is
Serre. Let b be another ideal of R. We show that if Sb ⊆ Sa, then Sb ⊆ Sa+b.
When S is Serre we find a relation between Sa, Sb, Sa+b, Sab. As a conclusion,
S satisfies Ca and Cb if and only if it satisfies Ca+b and Cab. When R is
artinian, we show that every Serre subcategory satisfies Ca. Also, Sa is closed
under taking extensions of modules for any Serre subcategory S. We prove
that if S is closed under taking submodules and arbitrary direct sums, then
Sa is closed under arbitrary direct sums. We find some sufficient conditions
for S to satisfy Ca (cf. Theorem 2.20). We also show that the condition Ca

can be transferred via ring homomorphisms (cf. Theorem 2.21). For a class
S of R-modules, we define SuppR(S), and we prove that if SuppR(M) ⊆
SuppR(Sa) for a finitely generated R-module M and a Serre subcategory S
of R-modules, then M ∈ Sa.

In Section 3, as an application of our results, we show when local coho-
mology modules can lie in a Serre subcategory.

2. Melkersson condition on subcategories. Throughout this section
a is an ideal of R.

Definitions 2.1. Let S be a class of R-modules and let M be an R-
module. Then S is said to satisfy the condition Ca on M if the following
implication holds:

If Γa(M) = M and (0 :M a) ∈ S, then M ∈ S.

Let D be a class of R-modules. Then S is said to satisfy the condition Ca

on D if S satisfies Ca on M for every M in D.

We denote by Sa the largest class of R-modules such that S satisfies Ca

on Sa. Clearly, S ⊆ Sa.
The class S is said to satisfy the condition Ca whenever Sa = R-Mod,

and S is said to be closed under the condition Ca whenever Sa = S.

In order to illustrate the above definitions, we give some examples.
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Examples 2.2. (i) Let R be a domain and let Stf be the class of torsion-
free modules. Then Stf satisfies Ca for each ideal a of R. Indeed, the case a=0
is clear. For each non-zero ideal a of R, if Γa(M) = M and (0 :M a) ∈ S,
then (0 :M a) = Γa(M) = 0. Furthermore, let Stors be the class of torsion
modules. Then Stors satisfies Ca for each ideal a of R.

(ii) Let S be a Serre subcategory of R-mod. It follows from [Y, Proposi-
tion 4.3] that R-mod ⊆ Sa for every ideal a of R.

(iii) Let (R,m) be a local ring and let S = R-mod. Then E(R/m) is in
Sm if and only if R is artinian. To be more precise, suppose E(R/m) ∈ Sm.
Since Γm(E(R/m)) = E(R/m) and HomR(R/m, E(R/m)) ∼= R/m ∈ S, it
follows that E(R/m) is finitely generated and so R is artinian. Conversely,
if R is artinian, then E(R/m) ∈ S ⊆ Sm.

(iv) Let (R,m) be a local ring and let S be a Serre subcategory of
R-Mod. Then R-art ∩ Sm is a subclass of S where R-art is the subcategory
of artinian modules. To be more precise, for every M ∈ R-art ∩ Sm, the
module (0 :M m) has finite length and so is in S. Now, since M is in Sm, it
is in S.

(v) For each class S of R-modules, all modules annihilated by an ideal a
belong to Sa.

The following proposition provides some basic properties of the condition
Ca on classes of modules.

Proposition 2.3. Let S and T be classes of R-modules. Then:

(i) If S ⊆ T ⊆ Sa, then Ta ⊆ Sa.
(ii) (Sa)a = Sa.

Proof. (i) Suppose that M is an R-module in Ta with M = Γa(M) and
(0 :M a) ∈ S. Then (0 :M a) ∈ T , and hence M ∈ T because M ∈ Ta. Now,
since T ⊆ Sa, we deduce that M ∈ Sa.

(ii) The other inclusion follows from (i), by setting T = Sa.

Proposition 2.4. Assume S is a subclass of R-Mod closed under taking
submodules. Then S√a ⊆ Sa. Furthermore, if S is a Serre subcategory, then
S√a = Sa.

Proof. Assume that M ∈ S√a with Γa(M) = M and (0 :M a) ∈ S.

Then Γ√a(M) = M , and since (0 :M
√
a) ⊂ (0 :M a), by assumption

(0 :M
√
a) ∈ S. Therefore the assumption on M forces that M ∈ S. To

prove the equality, for convenience, we set b =
√
a. As R is noetherian, there

exists a non-negative integer n such that bn ⊆ a. Assume that M ∈ Sa with
Γb(M) = M and (0 :M b) ∈ S. We notice that b/b2 is a finitely generated
R/b-module, and so for some m ∈ N there exists an exact sequence of
R-modules

0→ K → (R/b)m → b/b2 → 0.
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Applying the functor HomR(−,M), we deduce that HomR(b/b2,M) ∈ S.
Moreover, taking HomR(−,M) of the exact sequence

0→ b/b2 → R/b2 → R/b→ 0

we find that (0 :M b2) ∼= HomR(R/b2,M) ∈ S. Continuing this way and
using an easy induction on n, we conclude that (0 :M bn) ∈ S. Application
of HomR(−,M) to the exact sequence 0 → a/bn → R/bn → R/a → 0
implies that (0 :M a) ∈ S. Now, since M ∈ Sa, we conclude that M ∈ S.

Proposition 2.5. Let a and b be ideals of R and let S be a subclass of
R-Mod. If Sb ⊆ Sa, then Sb ⊆ Sa+b.

Proof. Assume that M ∈ Sb with Γa+b(M) = M and (0 :M a + b) ∈ S.
Clearly Γa(M) = Γb(M) = M and the isomorphisms

(0 :M a + b) ∼= Hom(R/a + b,M)
∼= Hom(R/a,Hom(R/b,M)) ∼= (0 :(0:Mb) a)

imply that (0 :(0:Mb) a) ∈ S. Moreover,

Γa((0 :M b)) = (0 :M b).

In view of Example 2.2(v), the module (0 :M b) belongs to Sb and so by
assumption it belongs to Sa. Therefore the preceding argument implies that
(0 :M b) ∈ S. Now, since M ∈ Sb, we deduce that M ∈ S.

Corollary 2.6. Let a and b be ideals of R and let S be a subcategory of
R-Mod satisfying the condition Ca. Then Sb is a subclass of Sa+b. Moreover,
if S satisfies Cb, then S satisfies Ca+b.

The same proof as in Proposition 2.5 still works for the following result.

Proposition 2.7. Let a and b be ideals of R and let S be a class of
R-Mod. If Sa is closed under taking submodules, then Sb ∩ Sa ⊆ Sa+b.

The following well-known fact is used in the proof of the next theorem.

Lemma 2.8. If S is a Serre subcategory of R-Mod and M is in S, then
ExtiR(R/a,M) is in S for each i ≥ 0.

Proof. Let · · · → F1 → F0 → 0 be a free resolution of R/a such that each
Fi is finitely generated. As S is Serre, HomR(Fi,M) ∈ S for each i. Since
ExtiR(R/a,M) is a quotient of submodules of HomR(Fi,M), we deduce that

ExtiR(R/a,M) ∈ S.

Now we are in a position to state one of the main results of this paper.

Theorem 2.9. Let a and b be two ideals of R and let S be a Serre
subcategory of R-Mod. Then:

(i) Sab = Sa∩b.
(ii) If Sa+b is closed under taking submodules, then Sa+b∩Sab ⊆ Sa∩Sb.
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(iii) If Sa is closed under taking submodules and Sb is closed under tak-
ing quotients, then Sa ∩ Sb ⊆ Sa+b ∩ Sab.

Proof. Part (i) follows from
√
a ∩ b =

√
ab and Proposition 2.4.

(ii) It suffices by symmetry to show that Sa+b ∩Sa∩b ⊆ Sa. Assume that
M ∈ Sa+b ∩ Sa∩b with M = Γa(M) and that (0 :M a) ∈ S. The inclusion
(0 :M a + b) ⊆ (0 :M a) implies that (0 :M a + b) ∈ S. Since M ∈ Sa+b,
it follows from the hypothesis that Γa+b(M) = Γb(M) ∈ Sa+b. Therefore
Γb(M) ∈ S. We now consider the following exact sequence of modules:

(†) 0→ Γb(M)→M →M/Γb(M)→ 0.

Applying HomR(R/a,−) and using Lemma 2.8, we conclude (0 :M/Γb(M) a)
∈ S. We now prove that (0 :M/Γb(M) a) = (0 :M/Γb(M) ab). The in-
clusion (0 :M/Γb(M) a) ⊆ (0 :M/Γb(M) ab) is obvious. Conversely, let
m + Γb(M) ∈ (0 :M/Γb(M) ab). Then abm ⊆ Γb(M) and so there exists
n ∈ N such that bn(abm) = 0. This implies that am ⊆ Γb(M), and hence
m+ Γb(M) ∈ (0 :M/Γb(M) a). Therefore (0 :M/Γb(M) ab) ∈ S. Application of
HomR(R/ab,−) to (†) shows that (0 :M ab) ∈ S. Now, since Γab(M) = M
and M ∈ Sab, we deduce that M ∈ S.

(iii) That Sa ∩ Sb ⊆ Sa+b follows from Proposition 2.7. Assume that
M ∈ Sa ∩ Sb with Γab(M) = M and that (0 :M ab) ∈ S. The inclusions
(0 :Γa(M) a) ⊆ (0 :M a) ⊆ (0 :M ab) force that (0 :Γa(M) a) ∈ S. Furthermore,
since by assumption Γa(M) is in Sa, it lies in S, and so in view of the exact
sequence

0→ Γa(M)→M →M/Γa(M)→ 0

it suffices to show that M/Γa(M)∈ S. Application of HomR(R/b,−) induces
the exact sequence

HomR(R/b,M)→ HomR(R/b,M/Γa(M))→ Ext1R(R/b, Γa(M)).

As (0 :M b) ⊆ (0 :M ab), we deduce that HomR(R/b,M) ∼= (0 :M b) ∈ S;
moreover, Lemma 2.8 implies that Ext1R(R/b, Γa(M)) ∈ S. Therefore, since
S is Serre, (0 :M/Γa(M) b) ∼= HomR(R/b,M/Γa(M)) ∈ S. We now show that
Γb(M/Γa(M)) = M/Γa(M). Let m + Γa(M) ∈ M/Γa(M). Since Γab(M)
= M , there exists a positive integer n such that (ab)nm = 0. Thus bnm ⊆
Γa(M) so that m+ Γa(M) ∈ Γb(M/Γa(M)). On the other hand, since Sb is
closed under quotients, M/Γa(M) is in Sb and hence in S.

The following corollary can be obtained immediately from the above
theorem.

Corollary 2.10. Let a and b be ideals of R and let S be a Serre sub-
category of R-Mod. Then S satisfies the conditions Ca and Cb if and only
if it satisfies Ca+b and Ca∩b.
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Corollary 2.11. Let S be a Serre subcategory of R-Mod. If S satisfies
Cp for every minimal prime ideal p of a, then S satisfies Ca.

Proof. In view of Proposition 2.4, it suffices to show that S satisfies C√a.

Let p1, . . . , pn be the minimal prime ideals of a. Then
√
a =

⋂n
i=1 pi. As S

satisfies Cpi for each i, using Corollary 2.10 and applying an easy induction,
we deduce that S satisfies C√a.

Corollary 2.12. Let S be a Serre subcategory of R-Mod and m1, . . . ,mn

be maximal ideals. If S satisfies the condition C∏n
i=1 mi

, then it satisfies Cmi

for each i.

Proof. Clearly S satisfies CR. For each i, we have
∏n
j=1, j 6=imj +mi = R.

The assertion now follows from Corollary 2.10.

The next corollary shows that over an artinian ring, every Serre subcat-
egory of R-Mod satisfies Ca.

Corollary 2.13. Let R be an artinian ring and let S be a Serre sub-
category of R-Mod. Then S satisfies the condition Ca for each ideal a of R.

Proof. Assuming MaxR = {m1, . . . ,mn}, we have
√

0 =
∏n
i=1mi. Obvi-

ously S satisfies C0, and hence in view of Proposition 2.4 it satisfies C∏n
i=1 mi

.
Thus Corollary 2.12 implies that S satisfies the condition Cmi for each i.
Consequently, according to Corollary 2.11, S satisfies Ca for each ideal a
of R.

Let S1 and S2 be two subcategories of R-Mod. Let 〈S1,S2〉 be the sub-
class of R-Mod consisting of all modules M such that there exists an exact
sequence of modules 0 → M1 → M → M2 → 0 with Mi ∈ Si for i = 1, 2.
We can also refer to 〈S1,S2〉 as the class of extension modules of S1 by S2.
An example is the class of minimax modules M = 〈R-mod, R-art〉.

Theorem 2.14. Let S1 and S2 be Serre subcategories of R-Mod and let
〈S1,S2〉 and S1 ∩ S2 satisfy the condition Ca. Then S1 and S2 satisfy Ca.

Proof. We prove the claim for S1; the proof for S2 is similar. Suppose
that M is an R-module with M = Γa(M) and (0 :M a) ∈ S1. As S1 is a
subclass of 〈S1,S2〉 and 〈S1,S2〉 satisfies Ca, we deduce that M ∈ 〈S1,S2〉.
Then there is an exact sequence of R-modules 0 → M1 → M → M2 → 0
such that M1 ∈ S1 and M2 ∈ S2. Since S1 is Serre, it suffices to verify
that M2 ∈ S1. Taking HomR(R/a,−) of the above short exact sequence, we
obtain the exact sequence

HomR(R/a,M)→ HomR(R/a,M2)→ Ext1R(R/a,M1).

It follows from Lemma 2.8 that Ext1R(R/a,M1) ∈ S1, and since S1 and S2
are Serre, (0 :M2 a) ∼= HomR(R/a,M2) is in S1 ∩ S2. On the other hand,
since Γa(M2) = M2 and S1 ∩ S2 satisfies Ca, we conclude that M2 ∈ S1.
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Corollary 2.15. Let M and F be the classes of all minimax modules
and all modules of finite length, respectively. If M and F satisfy Ca, then
so does R-mod.

Proof. Set S1 = R-mod and S2 = R-art. Then it is evident that S1
and S2 are Serre, 〈S1,S2〉 = M and S1 ∩ S2 = F . Now, the result follows
immediately from the previous theorem.

Proposition 2.16. Let S, S1 and S2 be subcategories of R-Mod such
that S is Serre. If S satisfies Ca on S1 and S2, then it satisfies Ca on 〈S1,S2〉.

Proof. Assume that M ∈ 〈S1,S2〉 with M = Γa(M) and (0 :M a) ∈ S.
Then there is an exact sequence 0 → M1 → M → M2 → 0 such that
Mi ∈ Si for i = 1, 2. Since Γa(Mi) = Mi for i = 1, 2 and S is Serre, (0 :M1 a)
is in S. Now, since S satisfies Ca on S1, we deduce that M1 ∈ S. Applying
the functor HomR(R/a,−) to the above exact sequence and using Lemma
2.8 we find that (0 :M2 a) ∈ S. Since S satisfies the condition Ca on S2, we
deduce that M2 is in S and so, by the fact that S is Serre, M is in S.

Corollary 2.17. Let S be a Serre subcategory of R-Mod. If S satisfies
Ca on R-art, then it satisfies Ca onM, whereM is the class of all minimax
modules.

Proof. Observe that S ∩R-mod is a Serre subcategory of R-mod, and it
follows from [Y, Proposition 4.3] that S∩R-mod satisfies Ca on R-mod. Thus
S satisfies Ca on R-mod. Now the result is a consequence of Proposition 2.16
because M = 〈R-mod, R-art〉.

For each subcategory S of R-Mod, we set S0 = {0} and Sn+1 = 〈Sn,S〉
for n ∈ N. Moreover, we set 〈S〉ext =

⋃
Sn. According to [K, Proposition

2.4] the subcategory 〈S〉ext is closed under taking extensions of modules.

Theorem 2.18. Let S be a Serre subcategory of R-Mod. Then Sa is
closed under taking extensions of modules.

Proof. As S satisfies Ca on Sa, Proposition 2.16 shows that S satisfies
Ca on S2a . Repeating this argument, we deduce that S satisfies Ca on Sna for
each n ∈ N. Therefore S satisfies the condition Ca on 〈Sa〉ext. On the other
hand, S ⊆ Sa ⊆ 〈Sa〉ext, and by the definition Sa is the largest subcategory
of R-Mod such that S satisfies Ca on Sa; hence Sa = 〈Sa〉ext.

We recall from [St] that a Serre subcategory S of R-Mod is a torsion
subcategory if it is closed under taking arbitrary direct sums of modules. As
the direct limit of a direct system of modules is a quotient of a direct sum
of modules, every torsion subcategory is closed under taking direct limits.
A well-known example of a torsion subcategory has been given in [AM,
Example 2.4(e)]. Namely, let Z ⊆ SpecR be closed under specialization, that
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is, if q ⊇ p ∈ Z, then q ∈ Z. The class of all R-modules with AssR(M) ⊆ Z
(equivalently, SuppR(M) ⊆ Z) is a torsion subcategory of R-Mod.

The following theorem shows that every torsion subcategory S satisfies
the condition Ca for each ideal a of R.

Theorem 2.19. Assume S is a subcategory of R-Mod closed under tak-
ing submodules. Then:

(i) If S is closed under taking arbitrary direct sums, then so is Sa.
(ii) If S is a torsion subcategory, then S satisfies Ca.

Proof. (i) Given {Mi} a family of modules in Sa, we prove that
∐
Mi ∈ Sa.

Suppose that
∐
Mi = Γa(

∐
Mi) and (0 :∐Mi

a) ∈ S. Since S is closed under
taking submodules, (0 :Mi a) ∈ S for each i; and moreover Mi = Γa(Mi)
for each i. Thus Mi ∈ S because Mi ∈ Sa for each i. Now, according to the
hypothesis,

∐
Mi ∈ S so that

∐
Mi ∈ Sa.

(ii) Suppose M = Γa(M) and (0 :M a) ∈ S. For every finitely generated
submodule N of M , we have Γa(N) = N and (0 :N a) ∈ S ∩ R-mod. Now,
since S ∩R-mod satisfies Ca on R-mod by [Y, Proposition 4.3], we conclude
that N ∈ S. Finally, since M is the direct limit of its finitely generated
submodules, the assumption implies that M ∈ S.

Theorem 2.20. Let S be a Serre subcategory of R-Mod such that Sa is
closed under taking submodules. Then S satisfies Ca if one of the following
conditions holds:

(i) Sa is closed under taking direct unions;
(ii) Sa is closed under taking injective hulls.

Proof. (i) Let M be an R-module. If Γa(M) = 0, then it is evident that
M ∈ Sa. Now, suppose Γa(M) 6= 0, and so there is an exact sequence

0→ Γa(M)→M →M/Γa(M)→ 0.

Using Theorem 2.18 and the first case, it suffices to prove that Γa(M) ∈ S.
Since Γa(M) =

⋃
n∈N(0 :M an), by hypothesis we should prove that each

(0 :M an) is in Sa. We can proceed by induction on n. The case n = 1 is clear.
Assume that n > 1 and that the result has been proved for all values smaller
than n. Consider the exact sequence 0→ an−1/an → R/an → R/an−1 → 0.
Using the induction hypothesis, the fact that Sa is closed under taking sub-
modules, and Theorem 2.18, it is enough to show that HomR(an−1/an,M)
is in Sa. As an−1/an is an R/a-module, there exists a positive integer t and
an exact sequence 0 → X → (R/a)t → an−1/an → 0. Now the claim is
obtained by applying HomR(−,M) and the fact that S is Serre.

(ii) Assume that M is a module with Γa(M) = M and (0 :M a) ∈ S.
Then M and (0 :M a) have the same injective hull E, and so by hypothesis,
E ∈ Sa. Now the assumption implies that M is in Sa, and hence in S.
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Let φ : R → S be a ring homomorphism. Let φ? : S-Mod → R-Mod
and φ? : R-Mod → S-Mod be two functors defined as φ?(N) = N and
φ?(M) = M ⊗R S for every S-module N and R-module M . We notice
that φ? is a left adjoint of φ?. For any subcategory S of S-Mod, we set
φ?(S) = {N = φ?(N) | N is in S}. Clearly, if φ?(S) is a Serre subcategory
of R-Mod, then S is a Serre subcategory of S-Mod. For any subcategory T
of R-Mod, we set φ?(T ) = {M ⊗R S | M ∈ T }. The next theorem shows
that the condition Ca can be transferred via ring homomorphisms.

Theorem 2.21. Let φ : R → S be a ring homomorphism, let a be an
ideal of R, let S be a subcategory of S-Mod, and let T be a subcategory of
R-mod closed under isomorphisms. Then the following implications hold:

(i) φ?(SaS) ⊆ φ?(S)a. Moreover, if φ?(S) satisfies the condition Ca, then
S satisfies CaS.

(ii) If φ is faithfully flat, then φ?(Ta) ⊆ φ?(T )aS. Moreover, if φ?(T )
satisfies CaS, then T satisfies Ca.

Proof. (i) Assume M ∈ φ?(SaS) with Γa(M) = M and (0 :M a) ∈ φ?(S).
Clearly, ΓaS(M) = Γa(M) = M and (0 :M a) = (0 :M aS) ∈ S. Now since
M ∈ SaS , we see that M is in S, hence in φ?(S). To prove the second claim,
assume that M is an S-module with M = ΓaS(M) and (0 :M aS) ∈ S. Then
M = Γa(M) and (0 :M aS) = (0 :M a) ∈ φ?(S). Since φ?(S) satisfies Ca, we
find that M is in φ?(S), hence in S.

(ii) Assume that M ⊗R S ∈ φ?(Ta) with ΓaS(M ⊗R S) = M ⊗R S
and (0 :M⊗RS aS) ∈ φ?(T ). Then there exists an R-module N in T such
that (0 :M⊗RS aS) = N ⊗R S. As S is a faithfully flat R-module, we
have Γa(M) = M and the isomorphism HomS((0 :M⊗RS aS), N ⊗R S) ∼=
HomR((0 :M a), N)⊗RS implies that (0 :M a) ∼= N . Therefore (0 :M a) ∈ T .
Now since M ∈ Ta, we deduce that M ∈ T so that M ⊗R S ∈ φ?(T ). To
prove the second claim, assume that M is an R-module with M = Γa(M)
and (0 :M a) ∈ T . Thus

M ⊗R S = ΓaS(M ⊗R S) and (0 :M⊗RS aS) ∈ φ?(T ).

Now, since φ?(T ) satisfies CaS , we see that M ⊗R S ∈ φ?(T ) and so there
exists N ∈ T such that M ⊗R S = N ⊗R S. Using an analogous proof to the
first part, we deduce M ∼= N and so M ∈ T .

Given a class S of R-modules, we define the support of S to be

SuppR(S) = {p ∈ SpecR | R/p is in S}.

Proposition 2.22. Let S be a Serre subcategory of R-Mod. If M is a
finitely generated R-module with SuppR(M) ⊆ SuppR(Sa), then M ∈ Sa. In
particular, if V (a) ⊆ SuppR(Sa), then R-mod is a subclass of Sa.
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Proof. There exists a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that Mi/Mi−1 ∼= R/pi where pi ∈ SuppR(M) for i = 1, . . . , n. By
hypothesis, each R/pi is in Sa. Since, by Theorem 2.18, Sa is closed under
extension of modules, M is in Sa. In order to prove the second claim, suppose
that M is a finitely generated R-module with M = Γa(M) and (0 :M a) ∈ S.
Since SuppR(M) ⊆ V (a), according to the first part, M is in Sa.

3. Applications to local cohomology modules. In [SR], we inves-
tigated when local cohomology modules lie in a Serre subcategory of R-
modules. In this section we show that the Melkersson condition plays a key
role in this material. Throughout this section S is a Serre subcategory of R-
Mod containing a non-zero module, a is an ideal of R and n is a non-negative
integer.

Theorem 3.1. Let M be a finitely generated R-module and let H i
a(M)

be in Sa with AssR(H i
a(M)) ⊆ SuppR(S) for each i ≤ n. Then H i

a(M) ∈ S
for each i ≤ n.

Proof. We proceed by induction on n. If n = 0, then AssR(Γa(M)) ⊆
SuppR(S). Hence SuppR(Γa(M)) ⊆ SuppR(S), so Γa(M) is in S by using a
finite filtration of Γa(M) as in the proof of Proposition 2.22. Let n > 0 and
suppose inductively that the result has been proved for all values smaller
than n and all finitely generated R-modules. As H i

a(M) ∼= H i
a(M/Γa(M))

for each i > 0, without loss of generality we may assume that Γa(M) = 0.

Then there exists x ∈ a \ Z(M) and an exact sequence 0 → M
x.→ M →

M/xM → 0. Fix i < n. Applying H i
a(−) yields the exact sequence

H i
a(M)

x.→ H i
a(M)→ H i

a(M/xM)→ H i+1
a (M)

x.→ H i+1
a (M).

By the induction hypothesis, H i
a(M) is in S. Then the above exact sequence

implies that H i
a(M)/xH i

a(M) is in S; therefore AssR(H i
a(M)/xH i

a(M)) ⊆
SuppR(S). Moreover, since

AssR((0 :Hi+1
a (M) x)) ⊆ AssR(H i+1

a (M)) ⊆ SuppR(S),

the exact sequence 0 → H i
a(M)/xH i

a(M) → H i
a(M/xM) → (0 :Hi+1

a (M) x)

→ 0 implies that AssR(H i
a(M/xM)) ⊆ SuppR(S). On the other hand, since

(0 :(0:
Hi+1
a (M)

x) a) = (0 :Hi+1
a (M) a) and H i+1

a (M) ∈ Sa, we deduce that

(0 :Hi+1
a (M) x)∈Sa. Now, it follows from Theorem 2.18 that H i

a(M/xM)∈Sa.
Thus the induction hypothesis implies that H i

a(M/xM) ∈ S for each i < n,
and so (0 :Hi

a(M) x) ∈ S for each i ≤ n. Therefore (0 :Hi
a(M) a) ∈ S for each

i ≤ n, and since S satisfies Ca on H i
a(M), the module H i

a(M) is in S for
each i ≤ n.
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Corollary 3.2. Let (R,m) be a local ring and let M be a finitely gen-
erated R-module. If H i

m(M) ∈ Sm for each i ≤ n, then H i
m(M) ∈ S for each

i ≤ n.

Proof. The result follows immediately by the previous theorem.

Theorem 3.3. Let (R,m) be a local ring, let M be a finitely generated
R-module and assume that S satisfies Cm. If H i

a(M) ∈ S for all i < n, then
Γm(Hn

a (M)) ∈ S.

Proof. The case n = 0 is clear, and so we assume that n > 0. Since
Hn

a (M) ∼= Hn
a (M/Γa(M)), we may assume that Γa(M) = 0 so that the ideal

a contains a non-zerodivisor x on M . We proceed by induction on n. If n = 1,
then Γm(Γa(M/xM)) = Γm(M/xM) is of finite length, and hence it lies in S.
Thus Γm(M/xM) ∼= (0 :Γm(H1

a (M)) x) ∈ S so that (0 :Γm(H1
a (M)) m) ∈ S.

Now, since S satisfies Cm, we see that Γm(Hn
a (M)) ∈ S. Let n > 1 and

suppose that the result has been proved for all values smaller than n. Clearly
H i

a(M/xM) ∈ S for all i < n−1. For the convenience of the reader, we write
A = Hn−1

a (M)/xHn−1
a (M) and B = (0 :Hn

a (M) x). Thus, the exact sequence

Hn−1
a (M)

x.→ Hn−1
a (M)→ Hn−1

a (M/xM)→ Hn
a (M)

x.→ Hn
a (M)

induces the exact sequence

0→ A→ Hn−1
a (M/xM)→ B → 0.

Since Hn−1
a (M) ∈ S, the module A is in S, and hence [AM, Theorem 2.9]

shows that H i
m(A) ∈ S for each i. We note that the induction hypothesis

implies that Γm(Hn−1
a (M/xM)) ∈ S. Now applying Γm(−) gives the exact

sequence

Γm(Hn−1
a (M/xM))→ Γm(B)→ H1

m(A),

which forces that Γm(B) ∈ S. Therefore Γm(B) = Γm((0 :Hn
a (M) x)) =

(0 :Γm(Hn
a (M)) x) ∈ S, which in turn implies that (0 :Γm(Hn

a (M)) m) ∈ S.
Consequently, since S satisfies Cm, we deduce that Hn

m(M) ∈ S.

Proposition 3.4. Let (R,m) be a local ring, and let M be a finitely gen-
erated R-module such that H i

a(M) is minimax for each i < n. If Γm(Hn
a (M))

is in Sa, then it is in S.

Proof. According to [BN, Theorem 2.3], the R-module (0 :Hn
a (M) a) is

finitely generated so that Γm((0 :Hn
a (M) a)) = (0 :Γm(Hn

a (M)) a) has finite
length. Then (0 :Γm(Hn

a (M)) a) ∈ S, and since Γm(Hn
a (M)) is in Sa, it is

in S.

Proposition 3.5. Let (R,m) be a local ring and let M be a finitely
generated R-module of dimension n. If S satisfies Ca, then Hn

a (M) ∈ S.

Proof. The proof is similar to that of Theorem 3.3.
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