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SHIFTED VALUES OF THE LARGEST
PRIME FACTOR FUNCTION
AND ITS AVERAGE VALUE IN SHORT INTERVALS

BY

JEAN-MARIE DE KONINCK (Québec) and IMRE KATAI (Budapest)

Abstract. We obtain estimates for the average value of the largest prime factor
P(n) in short intervals [z, z +y] and of h(P(n)+ 1), where h is a complex-valued additive
function or multiplicative function satisfying certain conditions. Letting sq(n) stand for
the sum of the digits of n in base ¢ > 2, we show that if « is an irrational number, then
the sequence (asq(P(n)))nen is uniformly distributed modulo 1.

1. Introduction and notation. Let P(n) stand for the largest prime
factor of an integer n > 2 and set P(1) = 1. This function has been exten-
sively studied over the past decades, in particular its average value, sums
involving the reciprocals of its values, as well as its most frequent value in
the interval [2, z].

Here, we obtain estimates for »° ., ., P(n) when y = 27/12+¢ for any
0 < e < 5/12. Given an integer a # 0, we also obtain estimates for the
average value of h(P(n) + a) for various arithmetic functions h satisfying
certain regularity conditions. Letting s4(n) stand for the sum of the digits
of n in base ¢ > 2, we show that if & € R\ Q, the sequence (asq(P(n)))neN
is uniformly distributed modulo 1.

Before we state these results more explicitly, we provide some background
results.

In 1984, De Koninck and Ivié¢ [4] proved that, for every positive integer m,

there exist computable constants dy = 72/12,ds, ..., d,, such that
dy da dm 1
L) Y pm=a( By B +0<>).
(1.1) % (n) <log r  logz log™ x log™*

Recently, Naslund [21] improved (1.1) by showing that, given any ¢ > 0,
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there exists a positive constant ¢ such that

Z P(n) = zlig(x) + Oc(2? exp{—c(log z)3/°7¢Y),

n<x
where
T
) t |z/t] co cx Cm—1(m — 1)z x
1 == —_ dt = ... . A— O -
ig () § x logt log = * log? = et log™ x + log™*

(for any given m € N) with the constants ¢; defined by

L 2 (10¢0@)
“ = 5 Z j! ’
j=0

where ( stands for the Riemann Zeta Function.
In 1986, Erdés, Ivié and Pomerance [I1] proved that

% =010y )

where §(x) is some continuous function which decreases to 0 very slowly as
x — oo and in fact satisfies

d(z) = exp{—(1+4+o0(1))y/2logzloglogz} asz — oc.

On the other hand, it is known (see De Koninck and Luca [5, Problem
9.33]) that

(1.2) Z log P(n) = kxlogz + O(xloglog x),
2<n<zx
where
IR O
(1.3) = S -

with p(v) standing for the Dickman function.
In 1987, De Koninck and Sitaramachandrarao [6] proved that

1
———— =¢7logl O(1
> niog Pl — ¢ loslogx+ O(1),
2<n<zx

where ~ stands for the Euler—Mascheroni constant.

In 1994, the first author [3], and later De Koninck and Sweeney [7],
studied the function

(1.4) f(x,p) == #{n <x: P(n) = p}
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and proved in particular that the maximum value of f(x,p), as p runs over
the interval [2, z], is reached at

1 1
p= exp{\/Qlogxloglogx<l + A=) +O<10glogz>)} (x — 00),

where \(z) = 3 108l0glog® 4 which case f(x,p) is equal to

2 logloga
A 2 +log?2 1
zexp{ —y/2logzloglogz [ 1+ (:):)_ +log2 + o(1) (r — 00).
2 2loglogx

Some improvements of this result have been obtained by McNew [20].
From now on, we shall write 7(x) for the number of primes p < z, and
7(x; k, £) for the number of primes p = ¢ (mod k) not exceeding z. Moreover,
we let g stand for the set of all primes.
Now, given a real-valued additive function g such that the set {g(p) :
p € p} is bounded, let

A, ::Zggf) and B2 ::Zgzm,

p<z p<zx
and further set

g(n) — An L —
kpi="—"—"——— (neN) and @(u):=— e dw (u € R).
5 (meN) ()= —— | (ueRr)
According to the Erdés-Kac Theorem (see Elliott [9, Theorem 12.3]), if
B, — o0 as x — oo, then

—00

1
lim —#{n <z:k, <u} =b(u) for every real u.
T—00 I

Given a positive integer N, let pny := {p < N : p € p}. We shall say
that py : pn — [0,1) is a prime weight function if it satisfies the following
four conditions:

(1) Doy PN(P) =1+0(1) as N — oo;
(ii) for every non-increasing sequence (Ay)nen tending to 0 as N — oo,

> pv(p) =0 and > o) =0 (N = o0);
p<NAN N1=AN<p<N
PEPN PEPN

(iii) with (An)nen as in (ii),

max pn(p1) —1’ —0 as N — o0;
NAN <py<pa<2p1 <N | PN (p2)
P1,P2€EPN
(iv) sup Z pN(p)‘ —0as N — oo.

H=N H<p<2H,pepn
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An example of a weight function is

o log N T, dv !
pn(p) == — expq — ,  where ¢ = S eV — )
p logp

Indeed, in this case,

log N Ny
ZPN( = Cp Z fex { & }:CO(1+0(1)) S __— —logN/logt 14

s s P logp 5 tlogt

log N/log 2 dv
=c(l+o(1) | e —

= co(1+ o(1)) (OSO e % + O<J\Hc}gl\7>>

— co(1 +o(1)) (CO + o(Nl;gN» — 14 0(1),

so that (i) is satisfied. Conditions (ii)—(iv) are also easily verified.
It is known (see |9 Theorem 12.4]) that, under the conditions of the
Erdés—Kac Theorem, for every a € Z\ {0},

lim #{p € pn : Kpta < u} =P(u) for every real u
N—00

and
lim pn(p) = P(u) for every real u.

N—oo
Kp4a<U

According to the Erdés-Wintner Theorem (see Elliott [8, Theorem 5.1]),
in order for a real-valued additive function g to have a limiting distribution,
it is both sufficient and necessary that it satisfies the three-series condition

(1.5) Z ! < 00, Z 9(p) converges Z 92].@ < 00

lg(p)|>1 p lg(p)|<1 lg(p)|<1

In 1968, the second author [16] proved that if ¢ is a real-valued additive
function and

F.(y) == .1 Z 1, where li(z) ::S dt ,
2

li(z) = logt
g(p+1)<y
and if moreover g satisfies (L.5)), then the distribution function F,(y) tends
to a limiting distribution function F(y) as x — oo at all points of continuity
of F(y). The same holds for g(p + a) for any a € Z \ {0}).

Erdés and Kubilius asked whether the three-series condition is necessary

or not in the case of shifted primes. In fact, partial results were achieved by
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Elliott [10], Kétai [17] and Timofeev [24]. In the end, Hildebrand [13] proved
the necessity of the three-series condition for shifted primes.
Now, letting

1
(1.6) Qp(x) = ——<sup#{p<z:g(p+a)€[hh+1]},
(%) her
going back to an idea of Ruzsa [23], Timofeev [24] proved that
log?(2 + W ()
1.7 r(7) < ¢ ,
(1.7) Qpr(2) o)
where
. 2 1 . 2
(1.8) W(x) := m/\1n<)\ + Z —min(1, (g(p) — Alogp) )>
p<z

Later, Elliott [I0] refined (1.7]) to
Qpr(x) < W (z)~ /2.

Let 7(n) be the number of positive divisors of n. Using his dispersion
method, Linnik [I8] proved in 1963 that there exists a constant dy > 0 such
that

(1.9) S rp-1) :doa:+o(lo§cx),

p<z

where ¢ = 0.999. Later, in 1986, Bombieri, Friedlander and Iwaniec [I], and
independently Fouvry [12], improved (1.9) by showing that, given any A > 0
and any integer a # 0,

1.10 +a) = Dy + 2B, li(x) + O — >
110 e =250 + 0
where
_ C(2)<B) I
(1.11) Da_q&g(l p2—p—|—1)’
_ log p p*logp
Ea—Da<’y—§p:pa_p+1+§ (p—1)(@p?*—p+ 1)>'

On the other hand, if 7(n) is the number of representations of the positive
integer n as a sum of two squares, it was proved by Hooley [15] that, given
any a € Z \ {0} and assuming the General Riemann Hypothesis (GRH),

(1.12) Y rlp+a) = (Ry +o(1)li(z) (¢ = o0)

p<zm

for a certain positive constant R,. Later Bredikhin [2] proved ((1.12]) without
assuming GRH; he used the Linnik dispersion method.
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Given an integer ¢ > 2, let s4(n) be the sum of the digits of n in base q.
Mauduit and Rivat [I9] proved that:

(i) there exists a constant aq(a) > 0 such that
> An)e(asy(n)) = Ogala'=o1@),
n<lz

where A stands for the von Mangoldt function;
(ii) given an integer m > 2 and setting d = (¢ — 1,m), there exists a
constant o, ,, > 0 such that for every a € Z\ {0}, we have

#{p <z :s4(p) =a (mod m)} = %W(m; d,a) + Oqﬂn(l.lfo'q,m);

(iii) the sequence (asq(p))pey is uniformly distributed modulo 1 if and
only if « € R\ Q.

In what follows, the letters ¢ and C stand for positive constants, not
necessarily the same at each occurrence.

2. Main results

THEOREM 1. Let f : p — C be a bounded function. Assume that for
some constant n € C,

(2.1) Zf = +o(l))r(x) (z— o00).

Then
> fen(p) =n (N = o0).

p<N

THEOREM 2. Let g be a real-valued additive function. Then the function
g(P(n)+1) has a limiting distribution if and only if g satisfies the three-series

condition (|1.5).
THEOREM 3. Let a € Z \ {0}. Then

Z T(P(n) +a) = (kDg +o(1))xlogz  (x — o0),

n<x
where K and D, are the constants defined in (L.3]) and (1.11)), respectively.
THEOREM 4. Let a € Z\ {0}. Then

> r(P(n)+a) = (kRa+o(1))z  (x— o0),

n<x

where R, is the constant appearing in (1.12)).
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THEOREM 5. Let y = x7/127¢ where 0 < ¢ < 5/12 is a fized number.
Then, for every M € N,

1 Mg, 1
o P=X. k+133+0< M+2x)’

Y e<n<zty k=0 ‘08 log
where
0 k
log" v
(2.2) &= R
v=1

THEOREM 6. Let a € Z\ {0}. Then

xlglgo % Z e(asq(P(n))) = 0.

Given an integer n > 2, write its prime factorisation as
n=PF.(n)F_1(n)--- Pi(n),

where 7 = 2(n) (here 2(n) stands for the number of prime factors of n
counting multiplicity) and P.(n) < P,_i(n) < --- < Pi(n). Thus P;(n)
is the jth largest prime factor of n, where for convenience P;j(n) = 1 if
Jj > 2(n).

THEOREM 7. Let k € N. Let fi(p),..., fx(p) be k functions defined on
primes p. Assume that each f;(p) is bounded as p runs over g, and there
exist constants C1,...,Cy for which

Si(x) =Y fi(p) = (C; + 0(1))10gx (& = 0).
Then )
k
n<lz j=1

3. Proof of Theorem Let N < H < 2H < N'"*_If pis in
[H,2H], then, by (iii),

1
S — <
'pN(P) ~(H, 2H]) > PN(Q)‘ < enpn(p);
gq€[H,2H]
qEPN
where limy_o0 ey = 0. On the other hand, since the function is bounded,
there exists an absolute constant K > 0 such that | f(p)| < K for all primes p.
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Therefore,
1
(3.1) pE%:QH] f(p)pn(p) — m p,qe%{:g[{] f(P)PN(Q)‘
PEPN DP,qEPN
< 2Ken Z pn (D).
pE[H,2H)]
Moreover, using , we have
1
(3.2) 2T p,qe%zm f(p)pn(q)
DPAEPN
1
= qGWZQH] pn(q) - W(S@H} — S(H))
qEPN
[ w(2H) —m(H) o m(2H)
=+ {=ram) L )
qEPN
= (n+o(1)) Z pn(q) as H,N — occ.
q€[H,2H)
qEPN

Consider the sequence Hy = NN, Hj; 1 = 2H; for each integer 0 < j < J
where J is such that H; < N~ < 2H;. Then, in light of (3.1) and (3.2),
as N — oo,

J—1
(33) Yo fen® =Y. Y. f®enp)
pE[Ho,H ;] J=0 pe[H},Hj 1]
PEPN PEPN

J-1
=(m+o1)Y > @

j=0 q€[H;,Hjq]
9E€EPN

=(+o(1) Y. pnla)

q€[Ho,H j]
qEPN

On the other hand, by conditions (i) and (ii) on px(p),

(3.4) Z pn(g) =1— Z pn(q) — Z pn(q)

q€[Ho,H j] q<Hp q>Hj
qEPN

=1—-0(1)—o(l) as H,N — oc.
Gathering (3.3) and (3.4)) completes the proof of Theorem
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REMARK 1. In the line of the function f(z,p) defined in (1.4)), let
1 1 N
= — <N:Pn)=pt==V|—

where ¥ (z,y) := #{n < x: P(n) < y} for 2 < y < x. Then one can easily
check that yx(p) is a prime weight function, since it satisfies (i)—(iv). More
generally, given an integer k > 1 and recalling that Py(n) is the kth largest
prime factor of n with £2(n) > k, we see that

VW) = %#{n < N : Py(n) = p}
is also a prime weight function. This follows essentially by observing that
%(\];)(p) N % Z LZ/<]91 : ']'Vpk—l ,p)
P12 2Pk—12P
and then using the properties of ¥(z,y).
As consequences of Theorem [I] we have the following results.

COROLLARY 1. Let k be a fixed positive integer and let f : o — C be a
bounded function satisfying (2.1)). Then, for some constant c,

5 S s (Vo).
n<N

COROLLARY 2. Let (pn)nen be a sequence of positive real numbers for
which the limit

1
F(u) := ]\}gnoo W#{P €PN pp <uf

exists, where F(u) is a distribution function. Assume moreover that pyn(p)
is a prime weight function. Then

Jim S px(p) = Flu).

PEPN
Pp<u

Proof. Indeed, one only needs to choose
1 if ¢, <u,
f) = { 0 otherwise,

and then to apply Theorem 1] =

4. Proof of Theorem Let pn(p) be a prime weight function and

assume that if
Fyw):= > pn(p),

PEPN
g(p+1)<u
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then the limit
(4.1) lim Fy(u) = F(u)

N—o0

exists for almost all real numbers u and F' is a distribution function. Then,
since F'(—o0) = 0 and F(00) = 1, there exists a real number b for which the
limit in (4.1]) exists for u = b and u = b+ 1 and satisfies F'(b+1) — F(b) > 0.
In this case, there exists a positive real number D such that
li =D.
Jdim oY pn(p)=D
PEPN
g(p+1)€[b,b+1)

It follows that there exists a sequence (Hpy)nen which tends to infinity
with NV and is such that 2Hy < N and, in light of condition (i),

> pN(p)>§ > on(p),

pG[HN,QHN] pE[HN,QHN]
g(p+1)€[b,b+1)

thus implying that for some positive constant ¢, we have Q. (2Hy) > ¢ for

every positive integer IV, where Q) is defined in ([1.6)). Hence (W (2HN)) nen
is a bounded sequence, where W is defined in (1.8). But this can only hold
if A =0, in which case

(4.2) ZM < 0.

> p
Next, let
(4.3) Api= 9(p) (m=1,2,...).
ps<m P
lg(p)<1

It is known that (4.3]) implies that g(p+ 1) — A, has a limiting distribution
1
th 7T(3:)#{]9 <z:g(p+1)— A, <u}:=Lu).

This implies that

lim > pn(p) = L(w).

N—oo
PEPN
g(p+1)—Ap<u

In light of (4.2)), we obtain

9(p)
Ap = Ap= Y ==
m<p<x p
lg(p)|<1
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and therefore

e — AP < 3 Zg

m<p<:): m<p<lzx
lg(p)I<1

Hence there exists A, which tends to 0 as + — oo and if m > :1:/\“”, then

\Ax—Am|2§log< ng > g as T — oo.
log /=

e <p<z

We will now prove that Ay is bounded as N — co. Assume the contrary,
that is, that there exists a sequence of positive integers N; < Na < --- such
that Ay, — oo as v — oo. Then, for every € > 0,

(4.4) Lw)=lm Y pn(p)

V—00

PEYN,
g(p+1)<Ap+u
> lim > pn,(P) = D P, (p
V—00
PEPN, p< NV

g(p+1)<An, +u—e

> lim > ) —¢

V—00
PEPN,
g(p+1)<An, +u—e

since A, — 0 as v — oo, where we have used condition (ii).
Now, since Ay, — oo as ¥ — 00, given any large number E, we have

Ay, > E provided v is sufficiently large, in which case yields
L(u) > Fy,(E4+u—e¢)—e¢,
implying that
L(u)> F(E+u—¢)—c¢,
so that, since € > 0 can be taken arbitrarily small,
(4.5) L(u) > F(E + u).

As F can be chosen arbitrarily large, yields L(u) = 1. Since this is true
for every u, L cannot be a distribution function. The case liminf y_ o Ay =
—oo can be treated similarly. We have thus established that (An)yen is
bounded.
We will now prove that (Ax)yen is convergent. Indeed, suppose that
limsup Ay =« and liminf Ay = with a > g,
N—oo N—o0

that is,

Ay, - a and Ayn, — B for two subsequences Ay, and Ay, .
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We would then have
. S
L(u) = lim E o, (p) > Fla+u—¢)

v—>00
PEOM,
g(p+1)<Ap+tu

and the above limit would also be < F'(a + u + ¢), while
L= Jim Y o) 2 F(3tu—)

v—>00
PEPN,
g(p+1)<Ap+u

with the same limit < F'(8 + u + ¢). This shows that we must have § = «
and therefore

L(u) = F(a+ u).
Since A,, is bounded, we have proved that the series Z| (p)|<1 g(p)/p is
convergent, thus completing the proof of Theorem

5. Proof of Theorem Let A, — 0 as ¢ — oo be a function to
be chosen later, and set T'(z) := > . 7(P(n)+ a). We split this sum as
follows:

n<x

Tx)= Y  7(P(n)+a)+ > 7(P(n) +a)

n<x n<x
P(n)<az?= 22 < P(n)<zl~Ae

+ ) 7(P(n)+a)

n<x
A< P(n)<z

= S1(z) + Sa(x) + Ss(z),

say. Setting M (x) := > ., 7(p+a) and using the estimate of M (z) provided
in (1.10]), we get by partial summation

T 1 M T T M
ZL?JFC‘) = | ~dM(u) = Mu) + | (QU) du
p<z P 20" ol 5
_ Dgx +2Eq.x/log x + O(x/log” x)
- x
t (D, 2F, 1
B o)
5 o\ U ulogu ulog” u
2F, 1
=D, + +0 5 + Dglogx + 2E, loglogx + O(1),
log x log“ z

from which it follows that

(5.1) ZT(p;_a) = Dylogz + 2E, loglogx + O(1).
p<z
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On the other hand, using the same technique, we get, for all Y > 2,
T(p+a) 1
5.2 ———~ =D,log2+ 0 —— |.
52 I R ()
Y <p<2Y

We also easily establish that

(5.3) ZM = D,loglogz + O(1).
i=a plogp
Using the well known estimate
11
(5.4 v(og) < ool -5 2L 25y <)

(see for instance De Koninck and Luca [5, Theorem 9.5]), we find that

S0 = X v+ ar(Zp) se 3 TEED ol ] B

p<ats p<ats 2 logp
11 T(p+a)
< cmexp{— } Z —_
2 A\ p<re p
which combined with (5.1)) and choosing
1
5.5 - -
(5:5) " loglog x
yields
T 1 xy/log x
(5.6) $1(a) = Do

1 = .
< vlog x loglog x 08T loglog x
On the other hand, using (5.1), we get
x
67 S = X rlptaw(Ly)

zl=Az <p<ax

T(p+a
.y T
zl=Az <p<ax p

= 2(Dglogx — Dglogz' ™ + O(loglog z)) < Ay log .

IN

For the evaluation of Sy(x), we proceed as follows. First, we set J, :=

(2, x17A2]. We may thus write

68 Sw= 3 T<P<n>+a>=zf<p+a>w<;,p).

n<z pEJy

P(n)eJy
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Recalling the Hildebrand [14] estimate

(5.9) U(z,y) = zp(u) (1 + o<1‘)g1(;;z1)>)

which is valid uniformly for z > 3, exp{(loglogz)®/3*¢} < y < x, and
setting u, = (logz — log p)/log p, we find that, for p € J,,

)=o)
and
(5.11) u, € [1 :\A 1 ;A}

Thus in light of (5.8]), (5.10) and (5.11)), we have
(512) Sp(a)=2 Y T(p;a)p(up) + O<x S TP ) ey + 1))

peds pes, Ploep
T(p+a T(p+a
o 30 T ) 1 0(alog(1/a) 3 TR
p plogp

=xL(z)+ O(zK(x)),

say, where we have used the fact that log(u, + 1) < log(1/);) for p € J,.
On the other hand,

Z log P(n) = Z log P(n) + Z log P(n)

n<x n<x n<x
P(n)<z?=z zrr < P(n)<zl— Az
+ Z log P(n)
n<x

P(n)>x1*/\1
= Ri(x) + Ra(x) + R3(x),
say. Since, using (5.4)) and recalling our choice (5.5 of A, we have

1 11
Ri(z) = Z logp@(i,p) <z Z inexp{— Ogl‘}

p<ate p<are 2 logp

11 1 V1
L rexpy —= — Z o8P < ? Azlogx =2 o8t
2 p log x log log x
p<zrx
and similarly

Rs(z) < x Z logp _ (14 o0(1))z(logz — (1 — Az)logz) <

1=z <p<z
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it follows that
Z log P(n) = Re(x) + o(x log x),

n<x
which implies in light of (1.2]) that
(5.13) Ry(z) = kxlogx + o(xlogx) (x — o0).
Since
x lo
Ry(z) = Z logpLP(,p) =z Z ﬁp(up) +o(zlogz) (z— 00),
pEJy p pEJy
it follows from (5.13]) that
1
(5.14) Z ngp(up) =klogz +o(logz) (xr — o0).
PEJy

As a consequence of the Prime Number Theorem,
1 1

vepeoy P 08

Using this along with estimate (5.2)) and the fact that

p(up,) .
olups)

max
AT <P <pa<2p <zl—Arz

—-0 aszxz — o0,

we obtain

(5.15)

> M) b, Y Py,

Y<p<2Y Y <p<2Y p
p(uy)
=0 Y > 2).
<1ogY> ¥=22)
Let us now define

Hy=a*, H;j=2H, forj=1,...,7,

where Hr_; < z'~* < Hz, so that Z = {%1. Hence, (/5.15]) yields
T(p+a) log p
G1o) | Y TP -pe Y )
Ho<p<Ht p Ho<p<Ht p

Since clearly

zl-Ae<p<Hr
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it follows from ([5.16]) that

T(p+a log p 1

(5.17) S T ) - Do 3 B )

PEJx p PEJy p z
Using (5.17) and (b.14), we get
(5.18) L(z) = kDglogz + O(1/),).
On the other hand, using (5.3), we deduce that
(5.19) K(x) < log(1/Az) Z Tp+a) < log(1/Az)loglog z.

e, plogp

Combining (5.18) and (5.19) in (5.12)) yields

(5.20) So(x) = kDgxlogx + o(xlogz) (z — o00).
Gathering estimates (5.6), (5.7) and (5.20) completes the proof of Theo-

rem Bl

6. Proof of Theorem [4. The proof of Theorem [4] is similar to that of
Theorem [B] and we will therefore omit it.

7. Proof of Theorem It is clear that in order to prove our result,
we may assume that y = 2*, with 7/12 < A < 11/12, say.

It follows from Corollary 1 in Ramachandra, Sankaranarayanan and
Srinivas [22] that

(7.1) Y. Aln) =y +O(yexp{—(logz)"/*}).
n<x<x+y

Now, observe that if p € [z, z + y], then
logz <logp <logx +log(1 +y/x) =logz + O(y/x)
while

> logp < (logx)(Va Ty — va) + O('/?)

r<p’<zty
= _ 2(logz)y

\/5 —|—O($1/3) < 1'1/3,
so that, using (7.1]), we get

Y (logz+0(y/x)) + O((y/x)(log ) = y + Oy exp{—(log )/}),

r<p<z+y
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which then allows us to write

> o=t +O<gy: > 1>+0(ye><p{—(logw)l/6})

:loga:
pElz,z+Y] PE[z,a+y]
y y y 1/6
= —(1 .
o+ 0( L)+ Olyexnl-(oga)'))
Consequently,
2
oy Y . 1/6
2 ¥ p—log$+o<1ogx>+0<xyexp{ (log 2)1/%})
pE[z,z+y]
= L 4 O(wyexp{—(logz)/*})
log ’

where we have used the fact that y?/logz < 2y exp{—(log z)/¢}.

Now, provided that 7/12 + €1 < logv/logu < 11/12, say, where £; > 0
is an arbitrarily small number, we have

(73) ). Pn)= > p

r<n<z+y z<vp<z+y
P)<p

=) > ot ) >

v<a®2 g/v<p<z/v+y/v z°2<v<z z/v<p<z/v+y/v

= Sl(l',y) + 82($7y)7

say. Now it is clear that

(7.4) So(z,y) < x'7c2y.
On the other hand, writing
(7.5) Si(z,y) = > A,
v<xe2
. 1 log(y/v) _ 1 . o
say, and assuming that lzgz < lgg(g /Z) < lggg + & (which holds if in (}
v runs from 1 to 22 for some positive e sufficiently small), we deduce from
(7.2) that
Ty Ty 1/6
76 AV e — O 7 _ 1 ,
(7. i+ O G exp (1o v )

where we have used the fact that log(z/v) > log+/z.
It follows from ([7.5) and (7.6|) that, for some positive constant c,

(17 @)= Y Sy +Owen{=(clogn)!)),
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Now, observe that

1
(7.8) T := ZEQ Ploa(els) ~ >

- 2 k
k 0 v<xc2 v lng IOg x
logh v logM+1y
S o )

1 1

2 logv
v2logx )
<2 er 1~ logx

—Z

2
log T, — v¢log
We easily see that, for each integer £ > 0, by partial integration,
o0 o
(7.9) Te(z) = \ e dn =nf(—e )| +k | ¥ e dn
z z

= e 4 kJy 1(2)

with, in particular, Jy(z) = e *.

Setting N
log" v
Riei= ) 2

v>xc2

and using ((7.9) clearly shows that

log" ¢ T
(7.10) Ry <2 S Og dt=2 | ntedy=2Ji(e2loga).
xc2 ealogx
Assuming that M is fixed, we deduce from ((7.10)) that
(7.11) Ry, < (e3logz)kee2108% (k< M).

Recalling the definition of & given in (2.2), and using (7.11)) in (7.8]), it
follows that

1
7.12 T= .
a2 > e oty

Using (7.12) in -, and substituting the resulting estimate in ([7.3),
taking into account estimate (7.4)), completes the proof of Theorem

8. Proof of Theorem [6} Setting f(p) := e(asq(p)), it has been shown
by Mauduit and Rivat [19] that

From this and Theorem [T} Theorem [g] follows.
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9. Proof of Theorem|7} Given J C p, we set wy(n) := #{p € J : p|n}.
Let 0 be a small positive number. Given a large number z and setting J =
Jp = [0, 2], it follows from the Turan-Kubilius inequality that

Z(w(n) —2119)2 <cr Y

n<x peJ 9 <p<z
Since
S Y 1<a Y f<aflog— to(1)) <26,
< > = s <
n<e pln al=0<p<a
1 =9<p<a

provided x is large enough, and since

1 1
Z - = logg +o(1) (z— o0),
d<p<z

it follows that there exists an absolute constant ¢ > 0 and a number x( such
that if x > xg, then

20 < Py(n) <--- < Py(n) <xt?
for every integer n € [2, 2| with the exception of at most cdzx integers.

Now let A be a small positive number such that Alog1/6 < ¢, and let us

consider the set D, of those positive integers n < x which have two prime
divisors p, g such that 2% < p < ¢ < pH)‘ It turns out that

#0.<0 3 DI

rd <p<g<pltA pq x5<p<f p<q<pltX
log(1+ A) 1
<2 ——= < 2z)Mlog — < 26x.
< Z < 2zAlog 5 < 20z
2o <p<z
Let B = B, be the set of those k-tuples of primes (pi,...,px) such that
P <pp<--<pr<a' pia<py Morj=1,... k=1, p1--pp<a'l

First observe that the size of the set of those positive integers n < z for
which the k-tuples (Pi(n),..., Px(n)) are not in B is O(dz). Thus

k
(9.1) T:= > T[]

n<lx j=1

= Hf]p] ( o ’pk>+0(5x),

(p1,..-pk)EB J=1
Then, if (p1,...,pr) € B, one can easily see that with

_ log(z/p1---pk)
log pi.
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we get
logx—z - logpj 1
log pr. 5

u =

so that
log(u+1)  log(u+1) < log(1/9)

log y logpr, ~— Odlogx ~
We thus obtain, using (5.9),

X
w( 7pk>
P11 Pk
1 log(1 1
oz p(og(iv/pl pk)>+0< x_ log(1/9) >
D1 Dk log pi pr--pr O logw

Hence, it follows from ((9.1]) that

log(z/p1 -+ )
(pl,%)eBgl_{ ) p1- P log py,
x  log(1/90)
+O< 2 HfJ p] ~pr dloga >

(P1,--pr)EB J=1

Since the above error term is, as x — oo,
log(1/5) 1\"
< Sloga Z H fied > —

wd<pj<al—9 P
log(l/é) 1-6\*
_— 1 _— =
< dlogx %5 ofx),

it follows, in light of (9.2)), that estimate (9.1)) can be replaced by

93) T=z > Hfa Ps) (10g$1{)1;1pk )>

(P1,.-spk)EBI=1

+O0(0x)+o(x) (z— 00).

Now, given any k primes ¢; < --- < g with 1/2 < ¢;/p; < 2 for
j=1,...,k and setting

g(r) == max max

jesDR)EB  dLslk lo
(P1,--Pk)E 0 /pse(1/2.2) g dk

p(logm - Z;?:l log qj>

)

B p<logx - E?:l logpj>

log p.
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it follows from the continuity of p that ¢(z) — 0 as  — oco. We can then
use this in the estimate of the main term in (9.3 so that, arguing as in the
proof of Theorem (1|, we deduce that | can be replaced by

T=C1---Cy Z :J:H <10gx/p1)>+0((5x)+0(x)

(propr)eB =17 o8 Pk
— O Cy (z 4+ O(62)) + O((Sm) +o(z) = Cy -+ Cpa 4 O(62).

Since & can be chosen arbitrarily small, the proof of Theorem [7]is complete.

10. Final remarks. Given a real-valued additive function g and a €
Z\ {0}, let

Fuy) =~ #Hp €N oo+ a) <y} mnd Fy) = im Fy(y)

We then have the following results.

THEOREM 8. Given arbitrary real numbers yi, ..., Yk,
k
lim < N : g(P; Li=1... k=[] F)
Ngnooﬁ#{n_ g( ](n)+a)<y]7]* Yt - y]-

THEOREM 9. Given any real number z, set G(z) :== " F(y+2z) dF(y).
Then

lim f#{n <N :g(Pi(n) +a) = g(Pa(n) +a) < 2} = G(2).

N—ooo N

THEOREM 10. Let ay,...,ax be non-zero integers and let g1,...,gx be
real-valued additive functions each satisfying the three-series condition (1.5).

Set
Fuvj(y) == W(IN)#{p <N :gi(p+a;) <yl

Then, for each j € {1,...,k}, we have imy_. Fn,;(y) = F;(y). Moreover,
given any real numbers y1, ..., Y, the limit

. 1 .
A #{n < N wgi(Pi(n) +a5) <yj, j=1,....k}

exists and is equal to H§:1 F;(y;).

THEOREM 11. Let ay,...,ar be non-zero integers and let g1,..., g, be
real-valued additive functions each satisfying g;j(p) = O(1) for p € p. Let

L R D

p<x p<z
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and assume Bj(x) — 0o as x — oo. Then, for any real numbers yi, ..., y,
k
. 1 gi(Pj(n)+a;)—A;(N) )
lim — <N Lt vi=1 k=] 2y
NE)HOON#{TL_ B](N) <y]7] ) ) ]1:[1 (yJ)

The above theorems are essentially consequences of Theorem [7] For in-
stance, to prove Theorem one can proceed as follows. First define

1 ifgi(p+a;) <y, )
filp) = J(. i) <Y (G=1,...,k).
0 otherwise

Then
lim H0) = Fily;) (=1 k),
N, T & i) = Bl
implying that
. 1 .
]&gle%fj(ﬂ(n)) =Fi(y;)) (G=1,....k).

It follows that, using Theorem [7, we get
k

k
Jim 5 S T (B m) -7,

which is precisely the conclusion of Theorem [I0}

To prove Theorem[J] we first observe that g(Pi(n)+a) and g(P2(n)+a)
are independent. Then, applying the result of Theorem [§] the conclusion of
Theorem [9] follows.

The proof of Theorem [I1] requires more attention. First we let
hy(p) = 9i(p + aj) — Aj(p)

Bj(p)

and define

0 otherwise

fi(p) = {1 hie) <vi Gy, k.

Now, it is known that

lim #{p§ N gj(“;jz];)Aj(N) < yj} —o(y;) (G=1,....k).

1
N—oo 7T(N)

On the other hand, it is clear that, for every € > 0,

gi(p+a;)—A;(N)  gj(p+a;)—Aj(p) _
BN B ‘”}‘O'

lim

1
N—o0 7T<N)

#{pSN:




SHIFTED VALUES OF THE LARGEST PRIME FACTOR 61

From this,

ngnm(lmgfj(p):@(yj) (=1 h).

On the other hand, it is a consequence of Theorem [8| that, for every € > 0,

N—o0

1
lim N#{n < N: max

9;(Pj(n) + a;) — A;(Pj(n))
B;(Pj(n))
B gj(Pj(n);rjzljj\z)— Aj(N)‘ - 6} _0

j=1,....k

Combining the above estimates completes the proof of Theorem
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