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ON SEQUENCES OVER A FINITE ABELIAN GROUP WITH
ZERO-SUM SUBSEQUENCES OF FORBIDDEN LENGTHS
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Abstract. Let G be an additive finite abelian group. For every positive integer `,
let disc`(G) be the smallest positive integer t such that each sequence S over G of length
|S| ≥ t has a nonempty zero-sum subsequence of length not equal to `. In this paper, we
determine disc`(G) for certain finite groups, including cyclic groups, the groups G = C2⊕
C2m and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest
positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum
subsequences of distinct lengths. We shall prove that disc(G) = max{disc`(G) | ` ≥ 1} and
determine disc(G) for finite abelian p-groups G, where p ≥ r(G) and r(G) is the rank
of G.

1. Introduction. Throughout this paper, let G be an additive finite
abelian group, Cn denote a cyclic group of n elements, and Ckn denote the
direct sum of k copies of Cn. It is well known that either |G| = 1, or G =
Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr, where r = r(G) is the rank of G and
nr = exp(G) is the exponent of G. Set

D∗(G) = 1 +

r∑
i=1

(ni − 1).

Let p be a sufficiently large prime. In 1976, Erdős and Szemerédi [ES] proved
that if S is a sequence of length |S| = p over Cp whose support contains
at least three distinct terms, then S has nonempty zero-sum subsequences
of distinct lengths, confirming a conjecture of Graham for sufficiently large
primes. In 2010, Gao, Hamidoune and Wang [GHW] extended the above
result to all positive integers n. A different proof was given by Grynkiewicz
[Gry] in 2011. In 2012 Girard [Gir] posed a natural problem of determining
the smallest positive integer t, denoted by disc(G), such that every sequence
S over G of length |S| ≥ t has nonempty zero-sum subsequences of distinct
lengths. Recently, Gao, Zhao and Zhuang [GZZ] determined disc(G) for all
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elementary abelian 2-groups, all groups of rank at most two, and some other
groups with large exponents. Around 2000, a similar invariant Ek(G) was
introduced by the first author and studied successfully by Schmid [S]. The
invariant Ek(G) is the smallest positive integer t such that every sequence S
over G of length |S| ≥ t has a zero-sum subsequence T with k - |T |. In this
paper we determine disc(G) for finite abelian p-groups G with p ≥ r(G),
and conduct a further detailed investigation of this problem by introducing
the following constant.

Definition 1.1. For every positive integer `, define disc`(G) to be the
smallest positive integer t such that every sequence S over G of length |S| ≥ t
has a nonempty zero-sum subsequence T with |T | 6= `.

It is easy to see that disc(G) = max{disc`(G) | ` ≥ 1} (see Proposition
2.1). Let D(G) denote the Davenport constant of G, which is defined as the
smallest positive integer d such that every sequence over G of length at least
d has a nonempty zero-sum subsequence. Our main results are as follows.

Theorem 1.2. Let G be a finite abelian group. Then

(1) disc`(G) = D(G) + 1 if ` = 1.

(2) disc`(G) =

{
D(G) + 1, G is not cyclic

2D(G), G is cyclic
if ` = D(G).

(3) disc`(G) = D(G) if ` ≥ D(G) + 1.

According to the above theorem, it would be sufficient to consider the
case ` ∈ [2,D(G)− 1] when studying disc`(G). We derive the precise values
of disc`(G) for certain groups.

Theorem 1.3. Let ` ∈ [2,D(G)− 1] and m,n be positive integers. Then

(1) disc`(G) = n+ 1 if G is a cyclic group of order n ≥ 3.

(2) disc`(G) =


2m+ 3, ` ∈ [2, 2m− 2], ` is even

2m+ 2, ` ∈ [3, 2m− 1], ` is odd

4m+ 1, ` = 2m

if G = C2 ⊕ C2m.

Theorem 1.4. Let G = Cr2 with r ≥ 2, and let ` ∈ [2, r]. Then

disc`(G) = r + u1 + 1,

where u1 = max
{
u | 2u−1 | `, ` · 2u−1

2u−1 − u ≤ r
}

.

Theorem 1.5. Let p be a prime and G be a finite abelian p-group with
r(G) ≥ 3. If p ≥ r(G), then disc(G) = D(G) + exp(G).

The paper is organized in the following way. In Section 2 we recall some
basic notions, provide several preliminary results and give a proof of The-
orem 1.2. In Sections 3 and 4 we determine disc`(G) on cyclic groups Cn,
the groups G = C2 ⊕ C2m and elementary abelian 2-groups, and prove our
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two main results: Theorems 1.3 and 1.4. Finally, in Section 5 both constants
disc(G) and disc`(G) for finite abelian p-groups are investigated.

2. Preliminaries. Throughout the paper, N denotes the set of positive
integers. For real numbers a ≤ b, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. By a
sequence over G we mean a finite sequence of terms from G where the order
is disregarded and repetition is allowed. We consider sequences as elements
of the free abelian monoid F(G) over G, and our notation and terminology

coincides with that of [GG, GH, Gryn]. A sequence S = g1 · . . . ·gl =
∏l
i=1 gi

over G is called a zero-sum sequence if
∑l

i=1 gi = 0 ∈ G. S is called zero-sum
free if it contains no nonempty zero-sum subsequence. If S is a zero-sum
sequence and each proper subsequence is zero-sum free, then S is called a
minimal zero-sum sequence.

Let S be a sequence over G. We denote by supp(S) the subset of G
consisting of all elements which occur in S. The sum of the elements in S
is denoted by σ(S), and the maximal number of repetitions of a term in
S is denoted by h(S). If T is a subsequence of S, we denote by ST−1 the
sequence obtained from S by deleting T . Let∑

(S) = {σ(T ) | 1 6= T |S},

where T |S means T is a subsequence of S, and 1 denotes the empty se-
quence.

Now we recall some well-known results on the Davenport constant, which
assert that D(G) = D∗(G) if G satisfies any one of the following conditions
(see [GG], [O], [Ol]):

1. G has rank at most two,
2. G is an abelian p-group,
3. G = C2 ⊕ Cm ⊕ Cn with 2 |m |n.

We first give several easy observations on disc`(G) and disc(G).

Proposition 2.1. disc(G) = max{disc`(G) | ` ≥ 1}.

Proof. By the definition of disc(G), every sequence S over G of length
disc(G) has nonempty zero-sum subsequences of distinct lengths, and thus,
for every ` ≥ 1, S has a nonempty zero-sum subsequence of length not equal
to `, whence disc(G) ≥ disc`(G), so disc(G) ≥ max{disc`(G) | ` ≥ 1}. On
the other hand, let T be a sequence over G of length disc(G)− 1 such that
T has no two nonempty zero-sum subsequences of distinct lengths. Note
the obvious fact that disc(G) − 1 ≥ D(G), so all nonempty zero-sum sub-
sequences of T have the same length, say `1. Hence, max{disc`(G) | ` ≥ 1}
≥ disc`1(G) ≥ disc(G). Therefore, disc(G) = max{disc`(G) | ` ≥ 1}.
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Lemma 2.2. Let G = Cn1 ⊕ · · · ⊕ Cnr (1 < n1 | · · · | nr). Then

max{D(G),D∗(G) + 1} ≤ disc`(G) ≤ min{D(G) + `,disc(G)},
where ` ∈ [2,D(G)− 1].

Proof. To prove the right-hand inequality, we first show disc`(G) ≤
D(G) + `. In fact, let S be any sequence over G of length D(G) + `, and
S1 be a nonempty zero-sum subsequence of S. If |S1| 6= `, we are done.
If |S1| = `, we can obtain a nonempty zero-sum subsequence S2 of SS−11

since |SS−11 | = D(G). Thus S1S2 is a nonempty zero-sum subsequence of
length |S1S2| 6= `, implying disc`(G) ≤ D(G) + `. In addition, by Propo-
sition 2.1, disc`(G) ≤ disc(G) for every ` ≥ 1. Therefore, disc`(G) ≤
min{D(G) + `,disc(G)}.

We now handle the left-hand inequality. Let e1, . . . , er be a basis of G
with ord(ei) = ni for each i ∈ [1, r], and S = (−σ(

∏r
i=1 e

`i
i ))

∏r
i=1 e

ni−1
i be

a sequence over G of length D∗(G), where 0 ≤ `i ≤ ni−1 and
∑r

i=1 `i = `−1.
Then each nonempty zero-sum subsequence of S is of the form
(−σ(

∏r
i=1 e

`i
i ))

∏r
i=1 e

`i
i with length `, implying disc`(G) ≥ D∗(G) + 1. Ob-

viously, disc`(G) ≥ D(G). Therefore, disc`(G) ≥ max{D(G),D∗(G) + 1}.

Lemma 2.3. Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr. If D(G) =
D∗(G), then

discni(G) = D(G) + ni for each i ∈ [1, r].

Proof. Let e1, . . . , er be a basis of G, ord(ej) = nj for each j ∈ [1, r]. Let

i ∈ [1, r] and S = enii
∏r
j=1 e

nj−1
j be a sequence over G of length

∑r
j=1(nj−1)

+ ni = D(G) + ni − 1. Then all nonempty zero-sum subsequences of S have
the same length ni, implying discni(G) ≥ D(G) +ni. On the other hand, by
Lemma 2.2, discni(G) ≤ D(G) + ni. Therefore, discni(G) = D(G) + ni.

Proof of Theorem 1.2. 1) Let T be a zero-sum free sequence over G of
length D(G)− 1. Then S = T0 is a sequence of length D(G) and {0} is the
only nonempty zero-sum subsequence of S. Hence disc1(G) ≥ D(G) + 1. On
the other hand, every sequence of length D(G)+1 has at least one nonempty
zero-sum subsequence of length k ≥ 2, and thus disc1(G) ≤ D(G) + 1.
Therefore, disc1(G) = D(G) + 1.

2) If G is cyclic, then the result follows from Lemma 2.3. Next assume
that G is not cyclic. Then D(G) ≥ D∗(G) > exp(G). Let S be a sequence over
G of length D(G)+1. If all nonempty zero-sum subsequences of S have length
D(G), then |supp(S)| = 1. So we have a nonempty zero-sum subsequence of
S of length exp(G) < D(G), a contradiction. Hence, discD(G)(G) ≤ D(G)+1.
On the other hand, by the definition of D(G), there is a minimal zero-sum
sequence over G of length D(G), hence discD(G)(G) ≥ D(G) + 1. Therefore,
discD(G)(G) = D(G) + 1.



SEQUENCES WITH ZERO-SUM SUBSEQUENCES 35

3) Let ` ≥ D(G)+1. By the definition of D(G), every sequence S over G of
length D(G) has a nonempty zero-sum subsequence S1 with |S1| ≤ D(G) < `.
Therefore, disc`(G) ≤ D(G). Clearly, disc`(G) ≥ D(G). Hence, we have the
desired result.

3. disc`(G) on abelian groups G with r(G) ≤ 2. In this section, we
determine disc`(G) for cyclic groups G and for groups G ∼= C2⊕C2m for all
`,m ∈ N. We first list a few useful lemmas.

Lemma 3.1 ([GHW, Theorem 1.1]). Let G be a cyclic group of order
|G| = n ≥ 2 and S a sequence over G of length n. If |supp(S)| ≥ 3, then S
has nonempty zero-sum subsequences of distinct lengths.

Lemma 3.2. Let G be a cyclic group of order |G| = n ≥ 3 and S a
zero-sum free sequence over G of length |S| = ` ≥ (n+ 1)/2. Then there is
a g ∈ G with ord(g) = n such that S = (n1g) · . . . · (n`g) where 1 = n1 ≤
· · · ≤ n`, n1 + · · ·+ n` < n and

∑
(S) = {g, 2g, 3g, . . . , (n1 + · · ·+ n`)g}.

Proof. This was first proved by Savchev and Chen [SCh], and Yuan [Y]
independently, and one can also find a proof in [GR, Theorem 5.1.8].

Lemma 3.3. Let G be a cyclic group of order |G| = n ≥ 2 and S a
sequence over G of length |S| = n. Then S has a nonempty zero-sum subse-
quence T such that |T | ≤ h(S).

Proof. See [GH, Theorem 5.7.3].

Lemma 3.4. Let G be a cyclic group of order |G| = n ≥ 2 and S a
sequence over G of length n + 1 and with |supp(S)| = 2. Then there exist
nonempty zero-sum subsequences of S of distinct lengths.

Proof. Let g ∈ G with ord(g) = n and S = (ag)s(cg)t, where a, c ∈
[0, n− 1] are distinct, and s, t ∈ [1, n] with t ≤ s and s+ t = n+ 1. If t = 1,
then S = (ag)n(cg). If ord(ag) 6= n, then S1 = (ag)n and S2 = (ag)ord(ag)

are nonempty zero-sum subsequences of distinct lengths. If ord(ag) = n,
then

∑
((ag)n) = G. We conclude that there is a subsequence S3 of (ag)n

such that σ(S3) = −(cg), so S3(cg) is a nonempty zero-sum subsequence of
length not equal to n. Next, suppose that t ≥ 2. Then t ≤ s ≤ n−1. Assume
to the contrary that all the nonempty zero-sum subsequences of S have the
same length r. We distinguish two cases.

Case 1: r ≤ (n+ 1)/2. Choose a nonempty zero-sum subsequence T
of S. Then |T | = r and ST−1 is a zero-sum free sequence with |ST−1| ≥
(n+ 1)/2. By Lemma 3.2, there is an h ∈ G with ord(h) = n such that
ST−1 = hu(xh)v, where x ≥ 2 and u + xv ≤ n − 1. We set T = hτ (xh)w.
Clearly, u,w ≥ 1. We first note that

(3.1) x ≥ u+ 1.
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Otherwise, hτ+x(xh)w−1 is a nonempty zero-sum subsequence of S of length
greater than r, a contradiction. We claim that v ≥ 1. Otherwise, u =
|ST−1| ≥ (n+ 1)/2, and by (3.1) we have x ≥ u + 1 ≥ n − u + 2 > n − u,
so n − x < u. Therefore, hn−x(xh) is a nonempty zero-sum subsequence of
length n− x+ 1 ≤ n− u = τ +w− 1 = r− 1, a contradiction. Now we have
u+ vx ≥ u+ v(u+ 1) = 2(u+ v) + (u− 1)(v − 1)− 1 ≥ n, a contradiction.

Case 2: r > (n+ 1)/2, i.e.

(3.2) r ≥ dn/2e+ 1.

By Lemma 3.3, we have

(3.3) r ≤ s.
We first assert that (a, n) = 1. If (a, n) ≥ 2, then (ag)n/(a,n) is a nonempty
zero-sum subsequence of S of length n/(a, n) < (n+ 1)/2 < r, a contradic-
tion. Hence, ord(ag) = ord(g)/(ord(g), a) = n and there is a b ∈ [2, n − 1]
such that cg = b(ag).

Subcase 2.1: n − b ≤ s. Clearly, (ag)n−b(cg) is a nonempty zero-sum
subsequence of S of length n − b + 1 = r. By (3.2) and (3.3), we have
dn/2e+ 1 ≤ r = n− b+ 1 ≤ s, so n− s+ 1 ≤ b ≤ bn/2c. Thus 0 ≤ n− 2b <
n− b ≤ s. Now, (ag)n−2b(cg)2 is a nonempty zero-sum subsequence of S of
length n− 2b+ 2 6= n− b+ 1, a contradiction.

Subcase 2.2: n − b ≥ s + 1. Note that b ≤ n − s − 1 ≤ bn/2c − 2 < s
(since s ≥ r ≥ dn/2e+ 1).

If tb < n, we have 0 < n− tb = t− 1− tb+ s < s and 0 < n− tb+ b =
t−1−b(t−1)+s < s. Thus (ag)n−tb(cg)t and (ag)n−tb+b(cg)t−1 are nonempty
zero-sum subsequences of S of distinct lengths, a contradiction.

If tb ≥ n, then there is t1 ∈ [1, t− 1] such that t1b < n and (t1 + 1)b ≥ n,
so 0 < n − t1b ≤ b < s. Therefore, (ag)n−t1b(cg)t1 is a nonempty zero-sum
subsequence of S of length r = n− t1b+ t1. Since 2b < n, we have t1 ≥ 2. By
(3.2) we have 2b−2 ≤ t1b−t1 = n−r ≤ n−dn/2e−1, so 2b ≤ bn/2c+1 ≤ s
and 0 < n−t1b+b ≤ b+b ≤ s. Therefore, (ag)n−t1b+b(cg)t1−1 is a nonempty
zero-sum subsequence of S of length n−t1b+b+t1−1 6= n−t1b+t1, yielding
a contradiction. Therefore, S must have nonempty zero-sum subsequences
of distinct lengths.

Lemma 3.5. Let G = Cm ⊕ Cn with 2 |m |n. Then

disc`(G) =


2m+ n− 1, ` = m,

m+ n, ` ∈ [2,D(G)− 1] and ` is odd,

m+ 2n− 1, ` = n.

Proof. Note that D(G) = m+ n− 1 = D∗(G). If ` = m or n, by Lemma
2.3 we derive the desired results.
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If ` ∈ [2,D(G)− 1] and ` is odd, by Lemma 2.2 we find that disc`(G) ≥
D∗(G) + 1 = m+n. We now prove disc`(G) ≤ m+n. Let S =

∏m+n
i=1 gi be a

sequence over G and assume that all the nonempty zero-sum subsequences
of S have length `. We consider another finite abelian group G′ = C2⊕G and
a new sequence S′ =

∏m+n
i=1 (x, gi) over G′ with ord(x) = 2. Since D(G′) =

m+n = |S′|, we obtain a nonempty zero-sum subsequence T ′ =
∏|T ′|
k=1 (x, gik)

of S′ with ord(x) | |T ′|. Clearly, the corresponding sequence T =
∏|T ′|
k=1 gik

is a nonempty zero-sum subsequence of S with |T | = |T ′| and 2 | |T |. Thus
|T | 6= ` as ` is odd, a contradiction. Hence, disc`(G) ≤ m + n and we are
done.

The Erdős–Ginzburg–Ziv constant s(G) is defined as the smallest positive
integer t ∈ N such that every sequence S over G of length |S| ≥ t has a
nonempty zero-sum subsequence T of length exp(G). The precise value of
s(G) is known for groups G of rank r(G) ≤ 2 (see [GH, Theorem 5.8.3]);
for progress on groups of higher rank we refer to [FGZ]. Here we need this
constant for elementary 2-groups.

Lemma 3.6 ([GH, Corollary 5.7.6]). For every r ∈ N, we have s(Cr2) =
2r + 1.

Proof of Theorem 1.3. (1) Let G be a cyclic group of order n. By Lemma
2.2, we have disc`(G) ≥ n+ 1.

We next show that disc`(G) ≤ n + 1. Let S be a sequence over G of
length n + 1. We show that S has a nonempty zero-sum subsequence of
length not equal to `. We may always assume that 0 /∈ S. If |supp(S)| = 1,
set S = gn+1; then gn is a nonempty zero-sum subsequence of length n 6= `.
If |supp(S)| ≥ 2, by Lemmas 3.1 and 3.4, we can obtain two nonempty zero-
sum subsequences of S of distinct lengths, hence there must be a nonempty
zero-sum subsequence of length not equal to `.

(2) The results follow from Lemma 3.5 except when ` ∈ [4, 2m−2] and `
is even, so we consider this case. Let e1, e2 be a basis of G with ord(e1) = 2
and ord(e2) = 2m. Consider the sequence S0 = e2m−12 ·(e1+(m+1−`/2)e2)

3

over G of length 2m + 2. Clearly, all nonempty zero-sum subsequences of
S0 have `. Hence, disc`(G) ≥ 2m + 3. To show equality, it is sufficient to
prove that any sequence S over G of length 2m+3 has a nonempty zero-sum
subsequence of length not equal to `.

Let φ : G = C2 ⊕ C2m → C2 ⊕ C2 be the natural homomorphism with
ker(φ) = Cm (up to isomorphism). Let S be a sequence over G of length
2m + 3. Applying Lemma 3.6 to φ(S) repeatedly, we get a decomposition
S = S1 · . . . · Sm · S′ with |Si| = 2, σ(Si) ∈ ker(φ) for i ∈ [1,m], and |S′| = 3
(= D(C2

2 )), so we can find a subsequence Sm+1 of S′ such that σ(φ(Sm+1))
= 0, i.e. σ(Sm+1) ∈ ker(φ) and |Sm+1| ∈ [1, 3]. Set T =

∏m+1
i=1 (σ(Si)). Then
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T is a sequence over ker(φ) = Cm. For `/2 ∈ [2,m − 1], by (1), there is a
nonempty zero-sum subsequence T1 =

∏t
j=1(σ(Sij )) of T over Cm of length

t 6= `/2. If |Sij | = 2 for all j ∈ [1, t], then
∏t
j=1 Sij is a nonempty zero-sum

subsequence of S of length not equal to `; otherwise, σ(Sm+1) |T1 and |Sm+1|
is 1 or 3, so

∏t
j=1 Sij is a nonempty zero-sum subsequence of S of odd length

(not equal to `).

Therefore, disc`(G) = 2m + 3, where ` ∈ [4, 2m − 2] and ` is even, and
we are done.

4. disc`(G) on elementary abelian 2-groups. In this section we de-
termine disc`(G) for elementary abelian 2-groups. A method similar to that
used in [GZZ] will be adopted to derive the main result.

Lemma 4.1 ([GZZ, Lemma 4.2]). Let t and r be positive integers with
t ≥ 2, and let S = e1 · . . . · erx1 · . . . · xt be a sequence of nonzero terms over
Cr2 of length r+ t, where e1, . . . , er form a basis of Cr2 . For each i ∈ [1, t], let
Ai ⊂ [1, r] be a nonempty subset such that xi =

∑
j∈Ai ej. If every nonempty

zero-sum subsequence of S has the same length `, then |Ai| = `− 1 and∣∣∣⋂
i∈I

Ai

∣∣∣ =
`

2|I|−1

for every I ⊂ [1, t] of cardinality |I| ∈ [2, t]. In particular, ` ≡ 0 (mod 2t−1).

Lemma 4.2. Let G = Cr2 with r ≥ 2 and let ` ∈ [2, r]. For u ∈ N, if
2u−1 | ` and ` · 2u−1

2u−1 − u ≤ r, then there is a sequence S over G of length
r + u such that all nonempty zero-sum subsequences of S have length `.

Proof. To construct S, take a basis e1, . . . , er of Cr2 . The assumption
` · 2u−1

2u−1 − u ≤ r allows us to find 2u − 1 disjoint subsets EI of [1, r], labeled
by nonempty subsets I ⊂ [1, u], satisfying the following conditions:

1. |EI | = `/2u−1 if |I| ∈ [2, u].
2. |EI | = `/2u−1 − 1 if |I| = 1.

(We note that if l = 2u−1 there are exactly u empty subsets among the
above 2u − 1 disjoint subsets, which are denoted by E{1}, . . . , E{u}.)

We now define u subsets A1, . . . , Au of [1, r] in the following way: j ∈ [1, r]
belongs to Ak if and only if there is a subset I ⊂ [1, u] containing k such
that j ∈ EI . It follows that Ai =

⋃
i∈I⊂[1,u]EI for each i ∈ [1, u]. Therefore,

(4.1) |Ai| =
∑

i∈I⊂[1,u]

|EI | =
`

2u−1
− 1 +

∑
i∈I⊂[1,u], |I|≥2

`

2u−1
= `− 1
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for every i ∈ [1, u], and

(4.2)
∣∣∣ ⋂
i∈J

Ai

∣∣∣ =
∑

J⊂I⊂[1,u]

|EI | =
`

2u−1
· 2u−|J | = `

2|J |−1

for every J ⊂ [1, u] with |J | ≥ 2. Let

xi =
∑
j∈Ai

ej

for each i ∈ [1, u], and let

S = e1 · . . . · erx1 · . . . · xu.

If T is any nonempty zero-sum subsequence of S, then

T =
∏
i∈I

xi
∏
j∈A

ej

for some nonempty subset I of [1, u] and some subset A of [1, r].

We next show the following result.

Claim.

|A| =
|I|∑
k=1

(−2)k−1
∑

1≤i1<···<ik≤u, i1,...,ik∈I
|Ai1 ∩ · · · ∩Aik |.

In fact, let j ∈
⋃
i∈I Ai and λ(j) = |{i ∈ I | j ∈ Ai}|. Since T is zero-sum,

clearly, j ∈ A if and only if λ(j) is odd. Let rj be the number of times that
j is counted on the right side of the equality in the Claim. Then

rj =

(
λ(j)

1

)
− 2

(
λ(j)

2

)
+ 22

(
λ(j)

3

)
− · · ·+ (−2)λ(j)−1

(
λ(j)

λ(j)

)
=

1− (1− 2)λ(j)

2
.

Therefore, rj = 1 if λ(j) is odd and rj = 0 if λ(j) is even. This proves the
Claim.

By the above claim, (4.1) and (4.2), we obtain

|A| =
|I|∑
k=1

(−2)k−1
∑

1≤i1<···<ik≤u, i1,...,ik∈I
|Ai1 ∩ · · · ∩Aik |

=

(
|I|
1

)
(`− 1)− 2

(
|I|
2

)
· `

2
+ · · ·+ (−2)|I|−1 ·

(
|I|
|I|

)
`

2|I|−1

= `− |I|,
so |A| + |I| = `. Thus all the nonempty zero-sum subsequences of S have
the same length `, and we are done.
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Proof of Theorem 1.4. By Lemma 4.2, we have disc`(G) ≥ r + u1 + 1.
Next we show disc`(G) ≤ r + u1 + 1. Let S be a sequence over G of length
r + u1 + 1. We show that S contains a nonempty zero-sum subsequence of
length not equal to `. Assume to the contrary that every nonempty zero-
sum subsequence of S has length `. We may assume that 0 /∈ S. Suppose
〈supp(S)〉 = Cr12 ⊂ G. Then r1 ≤ r and |S| = r1 + t1 = r + u1 + 1, where
t1 ≥ u1 + 1 ≥ 2. Let S = e1 · . . . · er1x1 · . . . ·xt1 with e1, . . . , er1 being a basis
of Cr12 . For each i ∈ [1, t1], let Ai ⊂ [1, r1] be a nonempty subset such that
xi =

∑
j∈Ai ej . Applying Lemma 4.1 on S we obtain

r1 ≥
∣∣∣ t1⋃
i=1

Ai

∣∣∣
=

∑
1≤i≤t1

|Ai| −
∑

1≤i<j≤t1

|Ai ∩Aj |+ · · ·+ (−1)t1−1
∣∣∣ t1⋂
i=1

Ai

∣∣∣
= t1(`− 1)−

(
t1
2

)
· `

2
+ · · ·+ (−1)t1−1 · `

2t1−1
= ` · 2t1 − 1

2t1−1
− t1

and

` ≡ 0 (mod 2t1−1).

Since 2t1−1 | ` and t1 ≥ u1+1, according to the definition of u1, we get r1 > r,
a contradiction. Therefore, S contains a nonempty zero-sum subsequence
of length not equal to `. So disc`(G) ≤ r + u1 + 1, and thus disc`(G) =
r + u1 + 1.

5. disc`(G) and disc(G) on abelian p-groups. Let p be a prime, and
G be a finite abelian p-group. In this section, we investigate both disc`(G)
and disc(G).

Definition 5.1. Let S = g1 · . . . · gl ∈ F(G) be a sequence of length
|S| = l ∈ N0 and let g ∈ G.

(a) For every k ∈ N0 let

Nk
g(S) =

∣∣∣{I ⊂ [1, l]
∣∣∣ ∑
i∈I

gi = g and |I| = k
}∣∣∣

denote the number of subsequences T of S having sum σ(T ) = g and length
|T | = k (counted with the multiplicity of their appearance in S).

(b) We define

Ng(S) =
∑
k≥0

Nk
g(S), N+

g (S) =
∑
k≥0

N2k
g (S), N−g (S) =

∑
k≥0

N2k+1
g (S).

Thus Ng(S) denotes the number of subsequences T of S with σ(T ) = g,
N+
g (S) denotes the number of such subsequences of even length, and N−g (S)
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denotes the number of such subsequences of odd length (each counted with
the multiplicity of its appearance in S).

Lemma 5.2 ([O, Theorem 1]). Let G be a finite abelian p-group for some
prime p, and let S be a sequence over G with |S| ≥ D(G). Then N+

g (S) ≡
N−g (S) (mod p) for all g ∈ G.

Proof. See [GH, Proposition 5.5.8].

The following congruence was first used by Lucas [L]; we give a proof for
the convenience of the reader.

Lemma 5.3. Let p be a prime, and let a, b be positive integers with p-adic
expansions a = anp

n + · · ·+ a1p+ a0 and b = bnp
n + · · ·+ b1p+ b0. Define(

k
0

)
= 1 for k ≥ 0. Then(

a

b

)
≡
(
an
bn

)(
an−1
bn−1

)
· . . . ·

(
a0
b0

)
(mod p).

Proof. We have

(1 + x)a = (1 + x)anp
n+···+a1p+a0

≡ (1 + xp
n
)an · . . . · (1 + xp)a1(1 + x)a0 (mod p).

Since 0 ≤ ai ≤ p− 1, by equating the coefficients of xb on both sides of the
above equation, we obtain the desired result.

Proof of Theorem 1.5. Let G = Cpn1 ⊕ · · · ⊕ Cpnr , where 1 ≤ n1 ≤ · · ·
≤ nr. Then D(G) =

∑r
i=1(p

ni − 1) + 1. By Proposition 2.1 and Lemma 2.3
we have disc(G) ≥ D(G) + exp(G). So, it suffices to show that disc(G) ≤
D(G) + exp(G).

Let S be a sequence over G of length D(G) + exp(G). We need to
show that S contains nonempty zero-sum subsequences of distinct lengths.
Assume to the contrary that every nonempty zero-sum subsequence has
length `. By Theorem 1.2 we have ` ≤ D(G)−1. Therefore, |S|−D(G)+1 ≤
` ≤ D(G)− 1, i.e. pnr + 1 ≤ ` ≤

∑r
i=1(p

ni − 1).
Let φ : G → G ⊕ 〈e〉 ∼= G ⊕ Cpnr , where ord(e) = pnr , be defined by

φ(g) = g + e. Since |φ(S)| = |S| > D∗(G⊕ Cpnr ) = D(G⊕ Cpnr ), there is a
subsequence S1 of S such that 0 = σ(φ(S1)) = σ(S1) + |S1|e. Hence S1 is a
nonempty zero-sum subsequence of S with length divisible by ord(e) = pnr ,
so ` = kpnr for some k ∈ [2, t], where t = b

∑r
i=1(p

ni − 1)/pnrc ≤ r − 1.
Let T be a subsequence of S with |T | ≥

∑r
i=1(p

ni − 1) + 1 = D(G). By

Lemma 5.2, 1 + (−1)kNkpnr

0 (T ) = N+
0 (T )−N−0 (T ) ≡ 0 (mod p). Therefore,

Nkpnr

0 (T ) ≡ (−1)k+1 (mod p)

for every T |S with |T | ≥
∑r

i=1(p
ni − 1) + 1, and in particular

Nkpnr

0 (S) ≡ (−1)k+1 (mod p).
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Hence, by Lemma 5.3,∑
T |S, |T |=

∑r
i=1(p

ni−1)+1

Nkpnr

0 (T ) ≡
∑

T |S, |T |=
∑r
i=1(p

ni−1)+1

(−1)k+1

=

(∑r
i=1(p

ni − 1) + pnr + 1∑r
i=1(p

ni − 1) + 1

)
(−1)k+1

≡ (t+ 1)(−1)k+1 (mod p).

Note that for every nonempty zero-sum subsequence W of S of length |W | =
kpnr , there exist

(∑r
i=1(p

ni−1)+1+pnr−kpnr∑r
i=1(p

ni−1)+1−kpnr
)

subsequences T of S such that

W |T |S and |T | =
∑r

i=1(p
ni − 1) + 1. Thus, by Lemma 5.3,∑

T |S, |T |=
∑r
i=1(p

ni−1)+1

Nkpnr

0 (T ) =

(∑r
i=1(p

ni − 1) + 1 + pnr − kpnr∑r
i=1(p

ni − 1) + 1− kpnr

)
Nkpnr

0 (S)

≡ (t+ 1− k)(−1)k+1 (mod p).

Therefore,

(t+ 1− k)(−1)k+1 ≡ (t+ 1) · (−1)k+1 (mod p).

Thus k ≡ 0 (mod p), contradicting k ∈ [2, t] and p ≥ r(G) = r > t.

We next present some results on disc`(G) for finite abelian p-groups.

Lemma 5.4 ([Gir, Corollary 2.4]). Let G be a finite abelian p-group, and
let S be a sequence over G with |S| = D(G)+ i−1, where i ≥ 1. If i ≥ 2 and
S contains a zero-sum subsequence S′ with p - |S′|, then S has nonempty
zero-sum subsequences of distinct lengths.

Theorem 5.5. Let p be a prime, G be a finite abelian p-group and let
` ∈ [2,D(G)− 1] with p - `. Then disc`(G) = D(G) + 1.

Proof. The result follows from Lemma 2.2 and Lemma 5.4 with i = 2.

Theorem 5.6. Let α ≥ 1 and r ≥ 3 be integers, and let p be a prime
such that p ≥ r. Then

(r + 1)(pα − 1) + 1 ≤ disckpα(Crpα) ≤ (r + 1)(pα − 1) + 2,

where k ∈ [2, dr/2e].

Proof. Let G = Crpα and let e1, . . . , er be a basis of G with ord(ei) =
pα for every i ∈ [1, r]. Since k ≤ dr/2e, we have 2k − 1 ≤ r. Let S =∏r
i=1 e

pα−1
i · (

∑k
j=1 ej +

∑2k−1
t=k+1(p

α − 1)et)
pα−1 be a sequence over G of

length (r + 1)(pα − 1). It is easy to show that all the nonempty zero-sum
subsequences of S have length kpα. Hence, disckpα(G) ≥ (r+1)(pα−1)+1. It
follows from Theorem 1.5 and Lemma 2.2 that disckpα(G) ≤ (r+1)(pα−1)+2
as desired.
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We close the paper by making the following conjecture together with a
remark on disc(G) for finite abelian p-groups.

Conjecture 5.7. For any finite abelian group G, there is an integer
t = t(G) depending only on G such that, if S is a sequence over G of length
disc(G) − 1 and every nonempty zero-sum subsequence of S has the same
length `, then ` = t(G).

Remark 5.8. In terms of the results of [GZZ] we know that the above
conjecture holds true for finite elementary abelian 2-groups, finite abelian
groups of rank at most two, and some finite abelian groups with large expo-
nent. It seems that it might be very difficult to determine the precise value
of disc(G) for a general finite abelian p-group with p < r(G). Even if p = 2
and G = Cr2α with r ≥ 3, the invariant disc(G) has only recently been de-
termined for the special case of α = 1 (with a somewhat complicated proof
[GZZ]).
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