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Abstract. The purpose of this paper is to present a new approach to the classifica-
tion of indecomposable pseudo-prime multiplication modules over pullback of two local
Dedekind domains. We extend the definitions and the results given by Ebrahimi Atani
and Farzalipour (2009) to more general cases.

1. Introduction. One of the aims of modern representation theory is
to solve classification problems for subcategories of modules over a unitary
ring R. The reader is referred to [1], [25], [26, Chapters 1 and 6] and [27] for
a detailed discussion of classification problems, representation types (finite,
tame, or wild), and useful computational reduction procedures. Unfortu-
nately, for the vast majority of rings, the classification of all modules is un-
feasible. For example, the classification of all indecomposable pure-injective
modules with infinite-dimensional top over R/rad(R) (for any module M
over a ring R we define its top as M/rad(R)M) over the pullback ring
formed by mapping two local Dedekind domains R1 and R2 onto a field R̄
is at least as difficult as that problem.

Modules over pullback rings have been studied by several authors (see
for example [24], [2], [16], [12], [17] and [29]). Notably, there is the monumen-
tal work of Levy [19], resulting in the classification of all finitely generated
indecomposable modules over Dedekind-like rings. Common to all these clas-
sification is the reduction to a “matrix problem” over a division ring (see [26,
Section 17.9] for background on matrix problems and their applications).

In the present paper we introduce a new class of R-modules, called
pseudo-prime multiplication modules (see Definition 3.4), and we study
them in detail from the classification point of view. We are mainly in-
terested in the case where R is either a Dedekind domain or a pullback
ring of two local Dedekind domains. The purpose of this paper is to give
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a complete description of the indecomposable pseudo-prime multiplication
modules over R. The classification is divided into two stages: we give a list
of all separated pseudo-prime multiplication R-modules, and then, using
this list, we show that nonseparated indecomposable pseudo-prime multi-
plication R-modules are factor modules of finite direct sums of separated
pseudo-prime multiplication R-modules. Then we use the classification of
separated pseudo-prime multiplication R-modules from Section 4, together
with results of Levy [19], [18] on the possibility of amalgamating finitely
generated separated modules, to classify the nonseparated indecomposable
pseudo-prime multiplication modules (see Theorem 5.8). We will see that
nonseparated modules may be represented by certain amalgamation chains
of separated pseudo-prime multiplication modules.

2. Preliminaries. For the sake of completeness, we state some defini-
tions and notation used throughout. In this paper all rings are commutative
with identity and all modules are unitary. Let v1 : R1 → R̄ and v2 : R2 → R̄
be homomorphisms of two local Dedekind domains Ri onto a common
field R̄. Denote the pullback R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) = v2(r2)}
by (R1

v1−→ R̄
v2←− R2), where R̄ = R1/J(R1) = R2/J(R2). Then R is a

ring under coordinatewise multiplication. Denote the kernel of vi, i = 1, 2,
by Pi. Then Ker(R → R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R1/P1

∼= R2/P2,
and P1P2 = P2P1 = 0 (so R is not a domain). Furthermore, for i 6= j,
0→ Pi → R→ Rj → 0 is an exact sequence of R-modules (see [20]).

Definition 2.1. An R-module S is defined to be separated if there exist
Ri-modules Si, i = 1, 2, such that S is a submodule of S1⊕S2 (the latter is
made into an R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).

Equivalently, S is separated if it is a pullback of an R1-module and an
R2-module, and then, using the same notation for pullbacks of modules as
for rings, S = (S/P2S → S/PS ← S/P1S) [20, Corollary 3.3] and S ⊆
(S/P2S) ⊕ (S/P1S). Also S is separated if and only if P1S ∩ P2S = 0 [20,
Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of
a separated R-module, indeed every R-module has a “minimal” such repre-
sentation: a separated representation of an R-module M is an epimorphism

ϕ = (S
f→ S′ → M) of R-modules where S is separated, and if ϕ admits

a factorization ϕ : S
f→ S′ → M with S′ separated, then f is one-to-one.

The module K = Ker(ϕ) is an R̄-module, since R̄ = R/P and PK = 0 [20,
Proposition 2.3]. An exact sequence 0 → K → S → M → 0 of R-modules
with S separated and K an R̄-module is a separated representation of M
if and only if PiS ∩ K = 0 for each i and K ⊆ PS [20, Proposition 2.3].
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Every module M has a separated representation, which is unique up to
isomorphism [20, Theorem 2.8]. Moreover, R-homomorphisms lift to a sep-
arated representation, preserving epimorphisms and monomorphisms [18,
Theorem 2.6].

Now, we have the following definition containing several parts which we
use throughout this paper.

Definition 2.2. (a) If R is a ring and N is a submodule of an R-module
M , then the ideal {r ∈ R : rM ⊆ N} is denoted by (N :R M). So (0 :R M)
is the annihilator of M .

(b) A proper submodule N of an R-module M is called pseudo-prime
if (N :R M) is a prime ideal of R (see [13]). The set of all pseudo-prime
submodules of M is denoted by psSpec(M). Every maximal submodule of
an R-module M is prime and every prime submodule of M is a pseudo-prime
submodule. Therefore Max(M) ⊆ Spec(M) ⊆ psSpec(M).

(c) A proper submodule N of an R-module M is semiprime if for every
ideal I of R and every submodule K of M , IkK ⊆ N for some positive
integer k implies that IK ⊆ N . The set of all semiprime submodules in an
R-module M is denoted by seSpec(M).

(d) An R-module M is defined to be a multiplication module if for each
submodule N of M , N = IM for some ideal I of R. In this case we can take
I = (N :R M).

(e) An R-module M is defined to be a semiprime multiplication module
if for every semiprime submodule N of M , N = IM for some ideal I of R
(see [8]).

(d) A submodule N of an R-module M is called pure if any finite system
of equations over N which is solvable in M is also solvable in N . A submod-
ule N of an R-module M is called relatively divisible (or an RD-submodule)
in M if rN = N ∩ rM for all r ∈ R.

(e) A module M is pure-injective if it has the injective property relative
to all pure exact sequences.

Remark 2.3. (i) An R-module M is pure-injective if and only if it is
algebraically compact (see [15] and [28]).

(ii) Let R be a Dedekind domain, M an R-module and N a submodule
of M . Then N is pure in M if and only if IN = N ∩ IM for each ideal
I of R. Moreover, N is pure in M if and only if N is an RD-submodule
of M [28].

3. Pseudo-prime multiplication modules. In this section, we collect
some basic properties concerning pseudo-prime multiplication modules. We
begin with a lemma containing several useful properties of pseudo-prime
submodules of R-modules.
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Lemma 3.1. Let N ⊆ L be submodules of an R-module M . Then the
following hold:

(i) L is a pseudo-prime submodule of M if and only if L/N is a pseudo-
prime submodule of M/N .

(ii) If L is a pseudo-prime R-submodule of M, and I an ideal of R with
I ⊆ (0 :R M), then L is a pseudo-prime submodule of M as an
R/I-module.

(iii) L is a prime submodule of M if and only if L is a primary and
pseudo-prime submodule of M .

Proof. (i) This is straightforward, since (L :R M) = (L/N :R M/N).
(ii) Assume that (L :R M) = P for some prime ideal P of R. Then

IM = 0 implies that I ⊆ P . An inspection will show that (L :R/I M) = P/I,
so L is a pseudo-prime submodule of M as an R/I-module.

(iii) Assume that L is a prime submodule of M . Clearly, L is primary
and (L :R M) = P where P is a prime ideal of R. So L is a pseudo-prime
submodule of M . Conversely, assume that L is a primary and pseudo-prime
submodule of M , and let rm ∈ L for some r ∈ R and m ∈ M \ L. Then
rn ∈ (L :R M) for some positive integer n since L is a primary submodule
of M . So r ∈ (L :R M) since L is a pseudo-prime submodule of M . Thus
L is a prime submodule of M .

We obtain some results concerning the relationship of semiprime and
pseudo-prime submodules of modules over a local Dedekind domain.

Lemma 3.2. Let R be a local Dedekind domain with maximal ideal P =
Rp and let M be an R-module. Then:

(i) Every semiprime submodule of M is a pseudo-prime submodule.
(ii) If N is a pseudo-prime submodule of M with (N :R M) 6= 0, then N

is a semiprime submodule of M .

Proof. (i) Let N be a semiprime submodule of M . If (N :R M) = 0, then
N is a pseudo-prime submodule of M . Now, suppose that (N :R M) = Pn

for some positive integer n. Then PnM ⊆ N . So PM ⊆ N , since N is a
semiprime submodule, thus (N :R M) = P . Hence N is a pseudo-prime
submodule of M .

(ii) Let K be a submodule of M . Then (N :R M) ⊆ (N :R K). So
(N :R M) = P since (N :R M) 6= 0 and N is a pseudo-prime submodule.
Thus (N :R K) = P for every submodule K of M . Now, let ImK ⊆ N for
some positive integer m. So Im ⊆ P and thus I ⊆ P = (N :R K). Therefore
IK ⊆ N and N is a semiprime submodule of M .

The following example shows that a pseudo-prime submodule of M does
not need to be a primary, prime or semiprime submodule of M .
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Example 3.3. (i) Let M = Z⊕Z as a Z-module and let N = (2, 0)Z be
the submodule of M generated by (2, 0) ∈ M . Then (N :Z M) = 0. Hence
N is a pseudo-prime submodule, but N is not a prime submodule (see [13]).

(ii) Let R = Z and M = Z(p∞) where p is a prime integer. Then M has
no prime submodule but every proper submodule of M is a pseudo-prime
submodule (see [13]).

(iii) Let R = Z. If N = 6Z, then N is a semiprime submodule of M that
is not primary and is not pseudo-prime. If N = 4Z, then N is a primary
submodule of M that is not semiprime and is not a pseudo-prime submodule
(see [8]).

(iv) If (R,P ) is a local Dedekind domain and M = E(R/P ), then
E(R/P ) has no primary submodule and no semiprime submodule by [9,
Remark 2.7] and [8, Proposition 3.6]. It is clear that (L :R E) = 0 for ev-
ery proper submodule L of E, since E is a divisible R-module. Hence every
proper submodule of E is a pseudo-prime submodule. So the converse of
Lemma 3.2(i) is not true in general.

Now we define pseudo-prime multiplication modules.

Definition 3.4. Let R be a commutative ring. An R-module M is de-
fined to be a pseudo-prime multiplication module if for every pseudo-prime
submodule N of M , N = IM for some ideal I of R.

One can easily show that if M is a pseudo-prime multiplication module,
then N = (N :R M)M for every pseudo-prime submodule N of M . It is easy
to see by Lemma 3.1 that the class of pseudo-prime multiplication modules
contains the class of weak multiplication modules defined in [11].

Lemma 3.5. Let M be a pseudo-prime multiplication module over a com-
mutative ring R. Then:

(i) If I is an ideal of R, and N a nonzero R-submodule of M with
I ⊆ (N :R M), then M/N is a pseudo-prime multiplication R/I-
module.

(ii) If N is a submodule of M , then M/N is a pseudo-prime multipli-
cation R-module.

(iii) Every direct summand of M is a pseudo-prime multiplication
R-module.

Proof. (i) Let L/N be a pseudo-prime submodule of M/N . Then L is a
pseudo-prime submodule of M by Lemma 3.1(i), so L = (L :R M)M . An
inspection will show that L/N = (L/N :R/I M/N)M/N .

(ii) Take I = 0 in case (i).

(iii) This is clear by case (ii).
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Lemma 3.6. Let M be a divisible module over an integral domain R. If
M is a pseudo-prime multiplication module, then M is a simple module.

Proof. Let M be a pseudo-prime multiplication module and let L be a
proper submodule of M , so (L :R M) = 0 since M is a divisible R-module.
Thus L = (L :R M)M = 0M = 0. Hence M has no nonzero proper sub-
module.

Corollary 3.7. Let R be a local Dedekind domain with maximal ideal
P = Rp. Then E(R/P ), the injective hull of R/P , and Q(R), the field of
fractions of R, are not pseudo-prime multiplication R-modules.

Proof. It is clear that these modules are divisible. By [6, Lemma 2.6],
E(R/P ) has nonzero proper submodules and L = {r/1 : r ∈ R} is a nonzero
proper submodule of Q(R). Thus E(R/P ) and Q(R) are not simple, and the
conclusion is clear by Lemma 3.6.

Proposition 3.8. Let M be a pseudo-prime multiplication module over
an integral domain R which is not a field. Then M is either torsion or
torsion-free.

Proof. Let T (M) be the set of all torsion elements of M and suppose
T (M) 6= M . Then T (M) is a prime submodule of M and (T (M) :R M) = 0
by [23, Lemma 3.8]. So T (M) is a pseudo-prime submodule of M . It fol-
lows that T (M) = (T (M) : M)M = 0M = 0. Thus M is a torsion-free
R-module.

We have the following result containing a complete list of indecomposable
pseudo-prime multiplication modules over local Dedekind domains.

Theorem 3.9. Let R be a local Dedekind domain with maximal ideal
P = Rp. Then the following is a complete list, up to isomorphism, of inde-
composable pseudo-prime multiplication modules:

(i) R;
(ii) R/Pn, n ≥ 1, the indecomposable torsion modules.

Proof. By [5, Proposition 1.3] these modules are indecomposable. Clearly,
R and R/Pn (n ≥ 1) are multiplication modules, so they are pseudo-prime
multiplication modules.

Now, we show that there are no more indecomposable pseudo-prime
multiplication R-modules. So let M be an indecomposable pseudo-prime
multiplication module, and choose any nonzero element a ∈M . Let h(a) =
sup{n : a ∈ PnM} (so h(a) is a nonnegative integer or ∞). Also let (0 :R a)
= {r ∈ R : ra = 0}. Then (0 :R a) is an ideal of the form Pm or 0. Because
(0 :R a) = Pm+1 implies that pma 6= 0 and ppma = 0, we can choose a such
that (0 :R a) = P or 0.

Now, we consider the various possibilities for h(a) and (0 :R a):
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If psSpec(M) = ∅, then Spec(M) = ∅ since Spec(M) ⊆ psSpec(M). It
follows from [22, Lemma 1.3, Proposition 1.4] that M is a torsion divisible
R-module with PM = M and M is not finitely generated. We may assume
that (0 :R a) = P since M is a torsion module. By an argument like that
in [4, Proposition 2.7], we have M ∼= E(R/P ), which is a contradiction by
Corollary 3.7. So we may assume that psSpec(M) 6= ∅.

Case 1: h(a) = n, (0 :R a) = P . Say a = pnb for some positive in-
teger n and b ∈ M . Then Rb ∼= R/Pn+1 is a pseudo-prime multiplication
R-module. By an argument like that in [3, Theorem 2.12, Case 1], Rb is
a pure submodule of M . Since Rb is a pure submodule of bounded order
of M , we find that Rb is a direct summand of M by [14, Theorem 5]; hence
M = Rb ∼= R/Pn+1.

Case 2: h(a) = n, (0 :R a) = 0. Assume that a = pnb for some positive
integer n and b ∈ M . Then (0 :R b) = 0. Thus Rb ∼= R. By an argument
as in Case 1, Rb is a pure submodule of M . Since (0 :R a) = 0, M is a
torsion-free module by Proposition 3.8. So Rb is a prime submodule of M
by [21, Result 2]. Therefore Rb is a pseudo-prime submodule of M , and so
R ∼= Rb = P sM for some s. Then there is an element m ∈ M such that
b = psm; so a = pnb = pn+sm, which is a contradiction, therefore s = 0 and
we have R ∼= Rb = P 0M = RM = M .

Case 3: h(a) =∞. First suppose that (0 :R a) = P . By an argument as
in [3, Theorem 2.12, Case 4] we get M ∼= E(R/P ), which is a contradiction.
Now, suppose that (0 :R a) = 0. By [14, Theorem 10], M is a torsion-free
module and (0 :R M) = 0 is faithful. So by [4, Lemma 2.3], PnM = M
(n ≥ 1). Hence by an argument as in [3, Theorem 2.12, Case 3], M ∼= Q(R),
which is a contradiction.

In view of Theorem 3.9, we have the following result.

Corollary 3.10. Let R be a local Dedekind domain with maximal ideal
P = Rp, and M be a pseudo-prime multiplication R-module. Then M is a
direct sum of copies of R/Pn (n ≥ 1). In particular, every pseudo-prime
multiplication R-module not isomorphic to R is pure-injective.

Proof. LetNi denote the indecomposable summand ofM . By Lemma 3.5,
Ni is an indecomposable pseudo-prime multiplication R-module. Then Ni

is a torsion or torsion-free module by Proposition 3.8. If Ni is torsion, then
Ni
∼= R/Pn for some n by Theorem 3.9. Now, suppose that Ni is torsion-

free. So Ni is a prime faithful module and hence Ni � R by [4, Lemma 2.5].
Then M is a direct sum of copies of R/Pn. Now, the assertion follows from
Theorem 3.9 and [5, Proposition 1.3].



70 F. ESMAEILI KHALIL SARAEI

4. The separated case. We devote this section to separated pseudo-
prime multiplication modules over a pullback of two local Dedekind domains.
Throughout we shall assume, unless otherwise stated, that

(1) R = (R1
v1−→ R̄

v2←− R2)

is the pullback of two local Dedekind domains R1, R2 with maximal ideals
P1, P2 generated respectively by p1, p2; P denotes P1 ⊕ P2; and R1/P1

∼=
R2/P2

∼= R/P ∼= R̄ is a field. In particular, R is a commutative Noetherian
local ring with unique maximal ideal P . The other prime ideals of R are
easily seen to be P1 (that is, P1 ⊕ 0) and P2 (that is, 0⊕ P2).

Remark 4.1. Let R be a pullback ring as in (1), and let T be an R-sub-

module of a separated module S = (S1
f1−→ S̄

f2←− S2) with projection maps
πi : S � Si. Set

T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some t2 ∈ S2},
T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.

Then for each i = 1, 2, Ti is an Ri-submodule of Si and T ≤ T1 ⊕ T2.
Moreover, we can define a mapping π′1 = π1|T : T � T1 by sending (t1, t2)
to t1; hence T1 ∼= T/((0⊕Ker(f2))∩T ) ∼= T/(T ∩P2S) ∼= (T +P2S)/P2S ⊆
S/P2S. So we may assume that T1 is a submodule of S1. Similarly, we
may assume that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and
Ker(f2) = P2S2).

Proposition 4.2. Let S be any separated module over a pullback ring
as in (1) and T be a nonzero proper submodule of S. Then:

(i) If (T :R S) = P1 ⊕ 0, then either (0 :R S) = 0, or (0 :R S) = Pn
1 ⊕ 0

for some positive integer n.
(ii) If (T :R S) = 0⊕P2, then either (0 :R S) = 0, or (0 :R S) = 0⊕Pm

2

for some positive integer m.

Proof. (i) Assume (T :R S) = P1 ⊕ 0. If (0 :R S) 6= 0, then (0 :R S) =
Pn
1 ⊕ Pm

2 for some positive integers m and n. So (Pn
1 ⊕ Pm

2 )S = 0 ⊆ T .
Thus Pn

1 ⊕Pm
2 ⊆ (T :R S) = P1⊕0, which is a contradiction. It follows that

m = 0.

The proof of (ii) is similar.

Proposition 4.3. Let T = (T1 → T̄ ← T2) be a nonzero proper sub-

module of a separated module S = (S1
f1−→ S̄

f2←− S2) over a pullback ring
as in (1). Then T is a pseudo-prime submodule of S if and only if Ti is a
pseudo-prime submodule of Si for every i = 1, 2.

Proof. This is clear by [8, Proposition 4.2].
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Proposition 4.4. Let S = (S1
f1−→ S̄

f2←− S2) be any separated mod-
ule over a pullback ring as in (1). Then psSpec(S) = ∅ if and only if
psSpec(Si) = ∅ for every i = 1, 2.

Proof. Assume that psSpec(S) = ∅ and let πi be the projection of R
onto Ri for every i = 1, 2. Suppose that psSpec(S1) 6= ∅ and let T1 be a
pseudo-prime submodule of S1. Then T1 is a pseudo-prime submodule of
S1 = S/(0 ⊕ P2)S. Thus psSpec(S) 6= ∅ by Lemma 3.1, which is a contra-
diction. Similarly, psSpec(S2) = ∅.

Now, suppose psSpec(Si) = ∅ for every i = 1, 2. If T is a pseudo-prime
submodule of S, then (T :R S) = I where I ∈ {P1 ⊕ P2, P1 ⊕ 0, 0⊕ P2}. So
(T1 :R1 S1) ∈ {0, P1} and (T2 :R2 S2) ∈ {0, P2} by [8, Proposition 4.2]. So
psSpec(S1) 6= ∅ or psSpec(S2) 6= ∅, which is a contradiction.

Theorem 4.5. Let S = (S/P2S = S1
f1−→ S̄ = S/PS

f2←− S2 = S/P1S)
be any separated module over a pullback ring as in (1). Then S is a pseudo-
prime multiplication R-module if and only if each Si is a pseudo-prime mul-
tiplication Ri-module for every i = 1, 2.

Proof. We may assume that psSpec(S) 6= ∅ by Proposition 4.4. Assume
that S is a separated pseudo-prime multiplication R-module. If S̄ = 0, then
S = S1 ⊕ S2 by [5, Lemma 2.7]; so Si is a pseudo-prime multiplication Ri-
module by Lemma 3.5 for every i = 1, 2. Now, we may assume that S̄ 6= 0. So
S1 ∼= S/(0⊕P2)S is a pseudo-prime multiplication R-module by Lemma 3.5,
and since 0 ⊕ P2 ⊆ (0 :R S/(0 ⊕ P2)S), it follows that S1 ∼= S/(0 ⊕ P2)S is
a pseudo-prime multiplication R/(0 ⊕ P2) ∼= R1-module. Similarly, S2 is a
pseudo-prime multiplication R2-module.

Conversely, suppose that Si is a pseudo-prime multiplication Ri-module
for each i, and let T = (T1 → T̄ ← T2) be a pseudo-prime submodule of S.
So (T :R S) = I where I ∈ {P1⊕P2, P1⊕ 0, 0⊕P2}. Now we split the proof
into two cases:

Case 1: (T :R S) = P1⊕P2. Then Ti is a pseudo-prime submodule of Si
for each i, and (T1 :R1 S1) = P1 and (T2 :R2 S2) = P2 by [8, Proposition
4.2]. So T1 = P1S1 and T2 = P2S2, since S1 and S2 are pseudo-prime
multiplication. We will show that T = (P1 ⊕ P2)S.

Since (T :R S) = P1 ⊕ P2, we have (P1 ⊕ P2)S ⊆ T . Now, suppose that
(t1, t2) ∈ T . Then t1 ∈ T1 = P1S1 and t2 ∈ T2 = P2S2. So t1 = p1s1 and
t2 = p2s2 for some s1 ∈ S1 and s2 ∈ S2. Thus (s1, s

′
2), (s

′
1, s2) ∈ S for

some s′1 ∈ S1 and s′2 ∈ S2. Therefore (t1, t2) = (p1s1, p2s2) = (p1, 0)(s1, s
′
2)

+ (0, p2)(s
′
1, s2) ∈ (P1 ⊕ P2)S. Hence T = (P1 ⊕ P2)S.

Case 2: (T :R S) = P1 ⊕ 0. Then Ti is a pseudo-prime submodule of Si
for each i, and (T1 :R1 S1) = P1 and (T2 :R2 S2) = 0 by [8, Proposition 4.2].
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So T1 = P1S1 and T2 = 0, since S1 and S2 are pseudo-prime multiplication.
It is clear that (P1⊕0)S ⊆ T . Now, suppose that (t1, t2) ∈ T . Then t1 = p1s1
and t2 = 0 for some s1 ∈ S1. There is an s2 ∈ S2 such that (s1, s2) ∈ S.
Thus (t1, t2) = (t1, 0) = (p1s1, 0) = (p1, 0)(s1, s2) ∈ (P1 ⊕ 0)S. Hence T =
(P1 ⊕ 0)S.

Similarly, if (T :R S) = 0⊕ P2, then S is a pseudo-prime multiplication
R-module.

Proposition 4.6. Let S 6= 0 be a separated pseudo-prime multiplication
module over a pullback ring as in (1). Then S̄ 6= 0 and psSpec(S) 6= ∅.

Proof. First suppose that psSpec(S) = ∅. So Spec(S) = ∅, since Spec(S)⊆
psSpec(S). Hence S = PS, S1 = P1S1, S2 = P2S2 and psSpec(Si) = ∅ for
each i by Proposition 4.4. Thus (0 :R1 S1) 6= 0 and (0 :R2 S2) 6= 0. Otherwise
0 ∈ psSpec(S1) and 0 ∈ psSpec(S2), which is a contradiction.

Now, assume (0 :R1 S1) = Pn
1 for some positive integer n. If n ≥ 2, then

Pn−1
1 S1 = Pn−1

1 (P1S1) = Pn
1 S1 = 0. This implies that Pn−1

1 ⊆ (0 :R1 S1)
= Pn

1 which is a contradiction. So n = 1, thus (0 :R1 S1) = P1 and so
S1 = P1S1 = 0. Similarly, S2 = 0. Then S = 0, which is a contradiction.
Hence psSpec(S) 6= ∅.

Now, we show that S̄ 6= 0. Let T be a pseudo-prime submodule of M .
Then T 6= S and T1 and T2 are pseudo-prime submodules by Proposition
4.3. So Ti 6= Si for each i. If (T :R S) = P1 ⊕ P2, then (P1 ⊕ P2)S ⊆ T 6= S,
so PS 6= S and S̄ 6= 0.

If (T :R S) = P1 ⊕ 0, then T = (P1 ⊕ 0)S since S is a pseudo-prime
multiplication R-module. Thus T1 = P1S1 and T2 = 0 by [8, Proposition
4.2] and Theorem 4.5. So T1 = P1S1 6= S1 and thus S̄ 6= 0. Similarly,
if (T :R S) = 0⊕ P2, then S̄ 6= 0.

In view of Theorems 4.5 and 3.9, we have the following result.

Lemma 4.7. Let R be a pullback ring as in (1). The following separated
R-modules are indecomposable and pseudo-prime multiplication modules:

(1) R = (R1 → R̄← R2);

(2) S = (R1/P
n
1 → R̄← R2/P

m
2 ).

Proof. By [5, Lemma 2.8], these modules are indecomposable, and by
Theorems 3.9 and 4.5, they are pseudo-prime multiplication modules.

Theorem 4.8. Let S = (S1 → S̄ ← S2) be a nonzero indecomposable
separated pseudo-prime multiplication module over a pullback ring as in (1).
Then S is isomorphic to one of the modules listed in Lemma 4.7. In partic-
ular, every indecomposable separated pseudo-prime multiplication R-module
not isomorphic to R is pure-injective.
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Proof. Let S 6= R be an indecomposable separated pseudo-prime mul-
tiplication R-module. Then S̄ 6= 0 and psSpec(S) 6= ∅ by Proposition 4.6.
By Theorem 4.5, Si is a pseudo-prime multiplication Ri-module for each
i = 1, 2. Note that for each i, Si is torsion and is not a divisible Ri-module
by [7, Lemma 4.3] and Corollary 3.10. There exist positive integers m, n
and k such that Pm

1 S1 = 0, Pn
2 S2 = 0 and P kS = 0. For s ∈ S, let o(s)

denote the least positive integer l such that pls = 0. Now, choose s ∈ S1∪S2
with s̄ 6= 0 and such that o(s) is maximal. There exists s = (s1, s2) such that
o(s1) = n1, o(s2) = m1 and o(s) = k1. Then Risi is pure in Si for i = 1, 2
by [5, Theorem 2.9]. Therefore, R1s1 ∼= R1/P

n1
1 (resp. R2s2 ∼= R2/P

m1
2 ) is

a direct summand of S1 (resp. S2) since for each i, Risi is pure-injective
(see [5]). Let M̄ be the R̄-subspace of S̄ generated by s̄. Then M̄ ∼= R̄. Let
M = (R1s1 = M1 → M̄ ← M2 = R2s2). Then M is an R-submodule of S
which is a pseudo-prime multiplication module by Lemma 4.7 and is a direct
summand of S; this implies that S = M and S is as in (2) of Lemma 4.7
(see [5, Theorem 2.9]).

In view of Theorem 4.8, we have the following result.

Corollary 4.9. Let R be a pullback ring as in (1), and let S 6= R
be a separated pseudo-prime multiplication R-module. Then S is a direct
sum of copies of the modules described in (2) of Lemma 4.7. In particular,
every separated pseudo-prime multiplication R-module not isomorphic to R
is pure-injective.

Proof. Apply Theorem 4.8, Corollary 3.10 and [5, Theorem 2.9].

Theorem 4.10. Let R be a pullback ring as in (1), and let S be a sepa-
rated pseudo-prime multiplication R-module. Then S has finite-dimensional
top.

Proof. Apply Corollary 4.9 and [10, Theorem 3.14].

5. The nonseparated case. In this section, we find the indecompos-
able nonseparated pseudo-prime multiplication modules. We begin with the
following proposition.

Proposition 5.1. Let R be a pullback ring as in (1). Then E(R/P ),
the injective hull of R/P , is a nonseparated pseudo-prime multiplication
R-module.

Proof. It suffices to show that psSpec(E(R/P )) = ∅. Let L be a proper
submodule of E(R/P ). Then (L :R E(R/P )) = 0 since E(R/P ) is divisible.
Since R is not an integral domain, L is not a pseudo-prime submodule of M .
Thus psSpec(E(R/P )) = ∅ as required.
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Proposition 5.2. Let R be a pullback ring as in (1) and let M be any

nonseparated R-module. Let 0 → K
i−→ S

ϕ−→ M → 0 be a separated repre-
sentation of M . Then S is a faithful R-module if and only if M is a faithful
R-module.

Proof. Let S be a faithful R-module. Then (0 :R S) = 0. Since M ∼=
S/K, it suffices to show that (K :R S) = 0. Assume that rS ⊆ K for some
r = (r1, r2) ∈ R. So rPS ⊆ PK = 0. Hence rp ∈ rP ⊆ (0 :R S). Thus
(r1p1, r2p2) = rp = (0, 0), so r1 = 0 and r2 = 0 since R1 and R2 are integral
domains.

Conversely, assume that (0 :R M) = 0. Then (0 :R S) ⊆ (K :R S) =
(0 :R M) = 0. Thus S is a faithful R-module.

The following proposition shows that if M is any nonseparated pseudo-
prime multiplication R-module, then S need not be a separated pseudo-
prime multiplication R-module.

Proposition 5.3. Let R be a pullback ring as in (1) and let M be any

nonseparated pseudo-prime multiplication R-module. Let 0 → K
i−→ S

ϕ−→
M → 0 be a separated representation of M . Then:

(i) If (T :R S) = P1 ⊕ 0 is a pseudo-prime submodule of S, then T =
(P1 ⊕ 0)S ⊕ (K ∩ T ).

(ii) If (T :R S) = 0 ⊕ P2 is a pseudo-prime submodule of S, then T =
(0⊕ P2)S ⊕ (K ∩ T ).

Proof. (i) Suppose that (T :R S) = P1 ⊕ 0. If T + K = S, then PS =
PT + PK = PT ⊆ T since PK = 0. So P ⊆ (T :R S) = P1 ⊕ 0, which is
a contradiction. One can show that (T +K :R S) = (ϕ(T ) :R M). First we
show (T +K :R S) = P1 ⊕ 0. It is clear that (P1 ⊕ 0)S ⊆ T ⊆ T +K. Now,
let rS ⊆ T+K for some r = (r1, r2) ∈ R. Thus rPS ⊆ PT+PK = PT ⊆ T .
So (r1p1, r2p2) = rp ∈ rP ⊆ P1 ⊕ 0 and p2r2 = 0. Hence r2 = 0 since R2 is
an integral domain and so r ∈ P1 ⊕ 0.

Now, we show that T + K = (P1 ⊕ 0)S ⊕ K. Since T + K 6= S, it
follows that ϕ(T ) 6= M and so ϕ(T ) = (P1 ⊕ 0)M since M is a pseudo-
prime multiplication R-module. Let t ∈ T . Then ϕ(t) = (p1, 0)m for some
m ∈ M . Since m = ϕ(s) for some s ∈ S, we have ϕ(t − (p1, 0)s) = 0. Thus
t = (p1, 0)s + k for some k ∈ K. Therefore T + K ⊆ (P1 ⊕ 0)S ⊕ K. The
converse is clear.

Now, we show that T = (P1 ⊕ 0)S ⊕ (K ∩ T ). Since PK = 0, K is a
vector space over R̄. Then K = (T ∩K)⊕L for some R-submodule L of K.
Thus T ∩L = 0. So T + (T ∩K) +L = T +K = (P1⊕ 0)S⊕ ((T ∩K) +L).
Let t ∈ T , so t = a+ b+ l for some a ∈ (P1⊕0)S, b ∈ T ∩K and l ∈ L. Thus
t− a− b = l ∈ T ∩L = 0, so t = a+ b. Therefore T ⊆ (P1 ⊕ 0)S ⊕ (K ∩ T ).
The reverse inclusion is clear. The proof of (ii) is similar.
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Our next goal is to show that M is a pseudo-prime multiplication
R-module if and only if S is one, when M is not a faithful module. Propo-
sition 5.3 shows that (0 :R M) 6= 0 is necessary.

Theorem 5.4. Let R be a pullback ring as in (1) and let M be any

nonseparated R-module with (0 :R M) 6= 0. Let 0 → K
i−→ S

ϕ−→ M → 0 be
a separated representation of M . Then S is a pseudo-prime multiplication
R-module if and only if M is a pseudo-prime multiplication R-module.

Proof. Let S be a pseudo-prime multiplication R-module. Then S̄ 6= 0
and psSpec(S) 6= ∅ by Proposition 4.6. So M̄ 6= 0 (M̄ ∼= S̄). Therefore
(PM :R M) = P and thus PM ∈ psSpec(M). Hence psSpec(M) 6= ∅.
Since M ∼= S/K and S is a pseudo-prime multiplication R-module, M is a
pseudo-prime multiplication R-module by Lemma 3.5.

Conversely, suppose that M is a pseudo-prime multiplication R-module.
If psSpec(S) = ∅, then clearly S is a pseudo-prime multiplication R-module.
Now, suppose that psSpec(S) 6= ∅. Let T be a pseudo-prime submodule of S.
We split the proof into two cases:

Case 1: (T :R S) = P = P1 ⊕ P2. Then K ⊆ PS ⊆ T . So T/K
is a pseudo-prime submodule of S/K by Lemma 3.1. Since M ∼= S/K is
a pseudo-prime multiplication module, we must have T/K = P (S/K) =
PS/K, hence T = PS.

Case 2: (T :R S) = P1 ⊕ 0. Then (0 :R S) = Pn
1 ⊕ 0 for some positive

integer n by Propositions 4.2 and 5.2. Since (Pn
1 ⊕ 0)S = 0 ⊆ (0 ⊕ P2)S,

we have Pn
1 ⊕ 0 ⊆ ((0 ⊕ P2)S :R S). On the other hand, it is clear that

0⊕ P2 ⊆ ((0⊕ P2)S :R S). Therefore ((0⊕ P2)S :R S) = Pm
1 ⊕ P2 for some

positive integer m. Then K ⊆ PmS ⊆ (Pm
1 ⊕P2)S ⊆ (0⊕P2)S by [9, Lemma

4.3]. Hence K = 0, since K ∩ (0 ⊕ P2)S = 0. So S ∼= M is a pseudo-prime
multiplication R-module.

Case 3: (T :R S) = 0⊕ P2. The proof is similar to that in Case 2.

Proposition 5.5. Let R be a pullback ring as in (1) and let M be
an indecomposable pseudo-prime multiplication nonseparated R-module with

(0 :R M) 6= 0. Let 0 → K
i−→ S → ϕM → 0 be a separated representation

of M . Then S is pure-injective.

Proof. Apply Theorem 5.4 and Corollary 4.9.

Lemma 5.6. Let R be a pullback ring as in (1) and let M be an indecom-
posable pseudo-prime multiplication nonseparated R-module with (0 :R M)

6= 0. Let 0→ K
i−→ S

ϕ−→ M → 0 be a separated representation of M . Then
R does not occur among the direct summands of S.
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Proof. Suppose S = R ⊕ L for some submodule L of S. Then K ⊆ L,
since Soc(R) = 0. Therefore M ∼= L/K ⊕R, which is a contradiction, since
M is indecomposable and nonseparated.

Let R be a pullback ring as in (1) and let M be an indecomposable
pseudo-prime multiplication nonseparated R-module. Consider the sepa-
rated representation 0 → K → S → M → 0. Then by Proposition 5.5,
S is a pure-injective R-module. So in the proofs of [5, Lemma 3.1, Propo-
sition 3.2 and Proposition 3.4] (here the pure-injectivity of M implies the
pure-injectivity of S by [5, Proposition 2.6(ii)]), we can replace the statement
“M is an indecomposable pure-injective nonseparated R-module” by “M is
an indecomposable nonseparated pseudo-prime multiplication R-module”,
because the key properties in those results are the pure-injectivity of S, the
indecomposability and the nonseparability of M . So we have the following
result.

Corollary 5.7. Let R be a pullback ring as in (1), let M be an indecom-
posable nonseparated pseudo-prime multiplication R-module with (0 :R M)
6= 0 and let 0 → K → S → M → 0 be a separated representation of M .
Then S is a direct sum of finitely many indecomposable pseudo-prime mul-
tiplication modules.

Now, we are in a position to state the main theorem of this section.

Theorem 5.8. Let R = (R1 → R̄← R2) be the pullback of two discrete
valuation domains R1, R2 with common factor field R̄. Then the indecom-
posable nonseparated pseudo-prime multiplication modules with nonzero an-
nihilator are the indecomposable modules of finite length (apart from R/P
which is separated).

Proof. We already know that every indecomposable nonseparated pseudo-
prime multiplication module has this form by Corollary 5.7, so it remains
to show that the modules obtained by this amalgamation are, indeed, inde-
composable pseudo-prime multiplication modules.

Note that every indecomposable R-module of finite length is a pseudo-
prime multiplication module since it is a quotient of a pseudo-prime mul-
tiplication R-module by Corollary 5.7. The indecomposability follows from
[18, 1.9].

Corollary 5.9. Let R be a pullback ring as in Theorem 5.8. Then every
indecomposable pseudo-prime multiplication R-module is pure-injective.

Proof. Apply [5, Theorem 3.5] and Theorem 5.8.
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