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Abstract. For any positive integer k and any set A of nonnegative integers, let
r1,k(A,n) denote the number of solutions (a1, a2) of the equation n = a1 + ka2 with
a1, a2 ∈ A. Let k, l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ N
such that both r1,k(A,n) = r1,k(N\A,n) and r1,l(A,n) = r1,l(N\A,n) hold for all n ≥ n0

if and only if log k/log l = a/b for some odd positive integers a, b, disproving a conjecture
of Yang. We also show that for any set A ⊆ N satisfying r1,k(A,n) = r1,k(N \A,n) for all
n ≥ n0, we have r1,k(A,n)→∞ as n→∞.

1. Introduction. We use N to denote the set of nonnegative integers.
For a set A ⊆ N and n ∈ N, let R1(A,n), R2(A,n) and R3(A,n) be the
number of solutions (a1, a2) of n = a1 + a2 with a1, a2 ∈ A; with a1, a2 ∈ A,
a1 < a2; and with a1, a2 ∈ A, a1 ≤ a2, respectively. These representation
functions have been studied by many authors. The reader may refer to the
excellent survey paper [SS] for many results concerning representation func-
tions.

For i = 1, 2, 3, Sárközy asked whether there exist sets A,B ⊆ N with in-
finite symmetric difference such that Ri(A,n) = Ri(B,n) for all sufficiently
large integers n. Dombi [D] observed that the answer is negative for i = 1,
and affirmative for i = 2. Chen and Wang [CW] constructed a set A ⊆ N
with R3(A,n) = R3(N \ A,n) for all n ≥ 1. Later Lev [L], Sándor [S] and
Tang [T] characterized all sets A ⊆ N such that Ri(A,n) = Ri(N \A,n) for
n ≥ N and i = 2, 3.

One may extend these problems by considering the representation func-
tions in a more general form. Let k1, k2 be positive integers. For A ⊆ N and
n ∈ N, denote by rk1,k2(A,n) the number of solutions (a1, a2) of k1a1 +k2a2
= n with a1, a2 ∈ A. Yang and Chen [YC] determined all pairs (k1, k2) of
positive integers for which there exists a set A ⊆ N such that rk1,k2(A,n) =
rk1,k2(N \ A,n) for all n ≥ n0. Let 1 ≤ k1 < k2, and (k1, k2) = 1. They
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proved that there exists A ⊆ N such that rk1,k2(A,n) = rk1,k2(N \ A,n) for
all n ≥ n0 if and only if k1 = 1.

From now on, we denote by Ψk the set of all A ⊆ N such that r1,k(A,n) =
r1,k(N\A,n) for all sufficiently large integers n. Yang [Y] studied the problem
of when Ψk ∩ Ψl is nonempty, where k, l ≥ 2 are distinct integers.

Theorem A ([Y]). Let k, l ≥ 2 be two distinct integers. If k, l are
multiplicatively independent (equivalently, log k/log l is irrational), then
Ψk ∩ Ψl = ∅.

The proof in [Y] also works for log k/log l = a/b with a, b positive integers
of different parities. It is conjectured in [Y] that Ψk∩Ψl = ∅ also for a, b both
odd. However, this is not the case. In this paper we will prove the following
theorem.

Theorem 1.1. Let k, l ≥ 2 be two distinct integers. Then Ψk ∩ Ψl 6= ∅ if
and only if log k/log l = a/b for some odd positive integers a, b.

Theorem A proves one direction of Theorem 1.1. We provide a new proof
here since an ingredient in the proof is also needed for the other direction.
Motivated by [C, CT], Yang and Chen asked about the asymptotic behavior
of r1,k(A,n) for sets A ∈ Ψk.

Problem 1.2 ([YC]). For any set A ∈ Ψk, is it true that r1,k(A,n) ≥ 1
for all sufficiently large integers n? Is it true that r1,k(A,n)→∞ as n→∞?

We give an affirmative answer to this problem.

Theorem 1.3. Let k ≥ 2 be an integer, and A ∈ Ψk. Then

lim
n→∞

r1,k(A,n) =∞.

2. Proofs. For the proof of Theorem 1.1, we first obtain a criterion for
A ∈ Ψk in terms of generating functions. We use [x, y) to denote the set of
all integers n satisfying x ≤ n < y. Noting that both A and N\A are infinite
sets for A ∈ Ψk, it is convenient for us to write A in “blocks”, that is,

(2.1) A =

∞⋃
i=0

[t2i, t2i+1),

where 0 ≤ t0 < t1 < t2 < · · · is an increasing sequence of integers. Let

fA(x) =
∑
a∈A

xa, |x| < 1.

Lemma 2.1. Let k > 1 be a given integer. With the notation above,
A ∈ Ψk if and only if there exists an odd positive integer a such that
ti+a = kti for all i ≥ i0, and the polynomial
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−1 +

i0+a−1∑
i=0

(−1)ixti +

i0−1∑
j=0

(−1)jxktj

is divisible by (1− x)(1− xk).
Proof. Let B = N \A. First note that

fA(x)fA(xk) =
∑

a1,a2∈A
xa1+ka2 =

∑
n≥0

r1,k(A,n)xn.

Thus A ∈ Ψk if and only if

(2.2) P (x) := fA(x)fA(xk)− fB(x)fB(xk)

is a polynomial. Substituting fB(x) = 1/(1− x)− fA(x) in (2.2), we get

P (x) = − 1

(1− x)(1− xk)
+
fA(x)

1− xk
+
fA(xk)

1− x
,

hence

(2.3) (1− x)(1− xk)P (x) = −1 + fA(x)(1− x) + fA(xk)(1− xk).
Writing A in the form of (2.1) yields

(2.4) fA(x)(1− x) =
∞∑
i=0

(−1)ixti .

Substituting (2.4) in (2.3), we obtain

(2.5) (1− x)(1− xk)P (x) = −1 +
∞∑
i=0

(−1)ixti +
∞∑
j=0

(−1)jxktj .

Since the right hand side of (2.5) is a polynomial, there exist positive integers
i0, j0 such that

(−1)j0+mxtj0+m + (−1)i0+mxkti0+m = 0

for all m ≥ 0. This means that tj0+m = kti0+m and j0 − i0 is odd. Set
a = j0− i0. Clearly j0 > i0, thus a is an odd positive integer, and ti+a = kti
for all i ≥ i0. Consequently,

(1− x)(1− xk)P (x) = −1 +

i0+a−1∑
i=0

(−1)ixti +

i0−1∑
j=0

(−1)jxktj

is a polynomial divisible by (1− x)(1− xk).
The other half of the statement of the lemma is now trivial.

Proof of Theorem 1.1. Suppose A ∈ Ψk ∩ Ψl. By Lemma 2.1, there exist
odd positive integers a, b such that ti+a = kti and ti+b = lti for all i ≥ i0. It
follows that

kbti = ti+ab = lati

for all i ≥ i0, hence log k/log l = a/b with a, b odd positive integers.
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Assume now that log k/log l = a/b with a, b odd and (a, b) = 1; then
k = ma and l = mb for some positive integer m. Without loss of generality,
we may assume that a > b. Let t0 = 0, t1 = ma, t2 = (m + 1)t1, and
ti+1 = mti for all i ≥ 2. We prove that A ∈ Ψk ∩ Ψl. In view of Lemma 2.1
(with i0 = 2), it remains to show that

(2.6) −xkt1 +

a+1∑
i=0

(−1)ixti

is divisible by (1− x)(1− xk), and

−xlt1 +

b+1∑
i=0

(−1)ixti

is divisible by (1− x)(1− xl). We prove the case for k, and the case for l is
similar. Since

xn ≡ 1 (mod 1− xk)

for k |n, and k | ti for all i ≥ 0, it follows that

−xkt1 +
a+1∑
i=0

(−1)ixti ≡ −1 +
a+1∑
i=0

(−1)i = 0 (mod 1− xk),

thus 1 − xk divides (2.6). Taking derivative of (2.6) and setting x = 1, we
get

−kt1 +

a+1∑
i=0

(−1)iti = −(k + 1)t1 + t2
1− (−m)a

1− (−m)
= 0.

Thus x = 1 is a double root, hence (1− x)(1− xk) divides (2.6).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. Let A ∈ Ψk. It follows from Lemma 2.1 that A
can be written in the form of (2.1) such that ti+a = kti for some odd positive
integer a and all i ≥ i0. All we need is this condition, thus Theorem 1.3 is
actually valid for a larger class of sets A ⊆ N.

For i ≥ i0 + a, we have

ti+1 − ti = k(ti+1−a − ti−a) ≥ k.

By eliminating the first several blocks of A, we may assume without loss of
generality that ti+a = kti and ti+1 − ti ≥ k for all i ≥ 0.

Let s be an arbitrary positive integer. Fix α ∈ (1/2, 1). It is clear that
the sequence {ti+1/ti}i≥0 is periodic with period a, hence

lim inf
i→∞

ti+1

ti
= min

0≤i<a

ti+1

ti
> 1 = lim

i→∞
1 +

tαi
ti
.
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It follows that
ti+1

ti
> 1 +

tαi
ti

for i ≥ i1, that is,

(2.7) ti+1 − ti > tαi

for i ≥ i1. Since

tαi√
ti+1 + k

=
tαi√

kti+1−a + k
≥ tαi√

kti + k
→∞

as i→∞, we have

(2.8) tαi > k2s+1(
√
ti+1 + k)

for i ≥ i2. Finally,

(2.9) ti > k4s+2t20

for i ≥ i3. Let m = max{i1, i2, i3} + 1. We show that r1,k(A,n) ≥ s for all
n ≥ tm, which would then imply our result.

Let Ij = [tj , tj+1); then Ij ⊂ A if j is even. For a set I ⊆ N, write

k ∗ I = {kx : x ∈ I}.
Since ti+1 − ti ≥ k, it follows that

Ii + k ∗ Ij =

tj+1−1⋃
u=tj

[ti + ku, ti+1 + ku) = [ti + ktj , ti+1 + ktj+1 − k).

Let n ≥ tm. Assume that n ∈ Ii for some i ≥ m. We shall distinguish
four cases.

Case 1: i is even and n − ti ≤
√
ti. Since {tai}i≥0 is a geometric pro-

gression with common ratio k, and

t0 <

√
ti

k2s+1
<

tαi−1
k2s+1

by (2.9), at least 2s of the tj ’s satisfy

(2.10) tj ∈ (tαi−1/k
2s+1, tαi−1).

Indeed, let j1 be the largest with tj1 ≤ tαi−1/k
2s+1 and j2 be the smallest

with tj2 ≥ tαi−1. Then

tj2
tj1
≥

tαi−1
tαi−1/k

2s+1
= k2s+1,

thus j2 ≥ j1 + (2s+ 1)a ≥ j1 + 2s+ 1. Hence

tj1+1, . . . , tj1+2s ∈ (tαi−1/k
2s+1, tαi−1).
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For each tj satisfying (2.10) with j even (there are at least s of them), we
claim that

n ∈ Ij + k ∗ Ii−1−a = [tj + ti−1, tj+1 + ti − k).

By (2.10) and (2.7), we have

tj + ti−1 < tαi−1 + ti−1 < ti − ti−1 + ti−1 = ti ≤ n.
On the other hand, by (2.8), (2.10) and the assumption on n, we have

tj+1 + ti − k ≥ tj+1 + n−
√
ti − k > tj + n−

tαi−1
k2s+1

> n,

hence the claim follows.
For each tj satisfying (2.10) with j even, the equation x+ ky = n has a

solution with x ∈ Ij and y ∈ Ii−1−a. Noting that j and i − 1 − a are both
even, we have x, y ∈ A, thus r1,k(A,n) ≥ s.

Case 2: i is even and n − ti >
√
ti. Since

√
ti/k > k2st0 by (2.9), it

follows that at least 2s of the tj ’s satisfy

(2.11) tj ∈ [t0,
√
ti/k).

For each such tj with j even (there are at least s of them), we claim that

n ∈ Ii + k ∗ Ij = [ti + ktj , ti+1 + ktj+1 − k).

It is clear that

ti+1 + ktj+1 − k ≥ ti+1 > n.

On the other hand, by (2.11) and the assumption on n,

ti + ktj < ti +
√
ti < n,

hence the claim follows.
For each tj satisfying (2.11) with j even, the equation x+ ky = n has a

solution with x ∈ Ii and j ∈ Ij . Noting that i and j are both even, we have
x, y ∈ A, thus r1,k(A,n) ≥ s.

Case 3: i is odd and n− ti ≤
√
ti. By (2.7)–(2.9), we have

ti − ti−1 > tαi−1 > k2s+1(
√
ti + k) > kt0,

hence at least 2s of the tj ’s satisfy

(2.12) tj ∈
(√

ti + k

k
,
ti − ti−1

k

)
.

For each such tj with j odd (there are at least s of them), we claim that

n ∈ Ii−1 + k ∗ Ij−1 = [ti−1 + ktj−1, ti + ktj − k).

It is clear, by (2.12), that

ti−1 + ktj−1 < ti−1 + ktj < ti−1 + (ti − ti−1) = ti ≤ n.
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On the other hand, by (2.12) and the assumption on n,

ti + ktj − k > ti + (
√
ti + k)− k = ti +

√
ti ≥ n,

hence the claim follows.
For each tj satisfying (2.12) with j odd, the equation x + ky = n has a

solution with x ∈ Ii−1 and j ∈ Ij−1. Noting that i − 1 and j − 1 are both
even, we have x, y ∈ A, thus r1,k(A,n) ≥ s.

Case 4: i is odd and n− ti >
√
ti. Since

√
ti > k2s+1t0 by (2.9), at least

2s of the tj ’s satisfy

(2.13) tj ∈ [t0,
√
ti).

For each such tj with j even (there are at least s of them), we claim that

n ∈ Ij + k ∗ Ii−a = [tj + ti, tj+1 + ti+1 − k).

It is clear that

tj+1 + ti+1 − k ≥ ti+1 > n.

On the other hand, by (2.13) and the assumption on n,

tj + ti < ti +
√
ti < n,

hence the claim follows.
For each tj satisfying (2.13) with j even, the equation x+ ky = n has a

solution with x ∈ Ij and y ∈ Ii−a. Noting that j and i − a are both even,
we have x, y ∈ A, thus r1,k(A,n) ≥ s.

This completes the proof of Theorem 1.3.
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