VOL. 143

2016

NO. 1

A NOTE ON REPRESENTATION FUNCTIONS WITH DIFFERENT WEIGHTS

ΒY

ZHENHUA QU (Shanghai)

Abstract. For any positive integer k and any set A of nonnegative integers, let $r_{1,k}(A,n)$ denote the number of solutions (a_1, a_2) of the equation $n = a_1 + ka_2$ with $a_1, a_2 \in A$. Let $k, l \geq 2$ be two distinct integers. We prove that there exists a set $A \subseteq \mathbb{N}$ such that both $r_{1,k}(A,n) = r_{1,k}(\mathbb{N} \setminus A, n)$ and $r_{1,l}(A,n) = r_{1,l}(\mathbb{N} \setminus A, n)$ hold for all $n \geq n_0$ if and only if $\log k/\log l = a/b$ for some odd positive integers a, b, disproving a conjecture of Yang. We also show that for any set $A \subseteq \mathbb{N}$ satisfying $r_{1,k}(A,n) = r_{1,k}(\mathbb{N} \setminus A, n)$ for all $n \geq n_0$, we have $r_{1,k}(A,n) \to \infty$ as $n \to \infty$.

1. Introduction. We use \mathbb{N} to denote the set of nonnegative integers. For a set $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let $R_1(A, n)$, $R_2(A, n)$ and $R_3(A, n)$ be the number of solutions (a_1, a_2) of $n = a_1 + a_2$ with $a_1, a_2 \in A$; with $a_1, a_2 \in A$, $a_1 < a_2$; and with $a_1, a_2 \in A$, $a_1 \leq a_2$, respectively. These representation functions have been studied by many authors. The reader may refer to the excellent survey paper [SS] for many results concerning representation functions.

For i = 1, 2, 3, Sárközy asked whether there exist sets $A, B \subseteq \mathbb{N}$ with infinite symmetric difference such that $R_i(A, n) = R_i(B, n)$ for all sufficiently large integers n. Dombi [D] observed that the answer is negative for i = 1, and affirmative for i = 2. Chen and Wang [CW] constructed a set $A \subseteq \mathbb{N}$ with $R_3(A, n) = R_3(\mathbb{N} \setminus A, n)$ for all $n \ge 1$. Later Lev [L], Sándor [S] and Tang [T] characterized all sets $A \subseteq \mathbb{N}$ such that $R_i(A, n) = R_i(\mathbb{N} \setminus A, n)$ for $n \ge N$ and i = 2, 3.

One may extend these problems by considering the representation functions in a more general form. Let k_1, k_2 be positive integers. For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, denote by $r_{k_1,k_2}(A, n)$ the number of solutions (a_1, a_2) of $k_1a_1 + k_2a_2$ = n with $a_1, a_2 \in A$. Yang and Chen [YC] determined all pairs (k_1, k_2) of positive integers for which there exists a set $A \subseteq \mathbb{N}$ such that $r_{k_1,k_2}(A, n) =$ $r_{k_1,k_2}(\mathbb{N} \setminus A, n)$ for all $n \geq n_0$. Let $1 \leq k_1 < k_2$, and $(k_1, k_2) = 1$. They

Published online 3 December 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 11B34; Secondary 05A17. Key words and phrases: representation function, partition, Sárközy problem. Received 18 January 2015; revised 1 June 2015.

proved that there exists $A \subseteq \mathbb{N}$ such that $r_{k_1,k_2}(A,n) = r_{k_1,k_2}(\mathbb{N} \setminus A,n)$ for all $n \geq n_0$ if and only if $k_1 = 1$.

From now on, we denote by Ψ_k the set of all $A \subseteq \mathbb{N}$ such that $r_{1,k}(A, n) = r_{1,k}(\mathbb{N} \setminus A, n)$ for all sufficiently large integers n. Yang [Y] studied the problem of when $\Psi_k \cap \Psi_l$ is nonempty, where $k, l \geq 2$ are distinct integers.

THEOREM A ([Y]). Let $k, l \geq 2$ be two distinct integers. If k, l are multiplicatively independent (equivalently, $\log k / \log l$ is irrational), then $\Psi_k \cap \Psi_l = \emptyset$.

The proof in [Y] also works for $\log k/\log l = a/b$ with a, b positive integers of different parities. It is conjectured in [Y] that $\Psi_k \cap \Psi_l = \emptyset$ also for a, b both odd. However, this is not the case. In this paper we will prove the following theorem.

THEOREM 1.1. Let $k, l \geq 2$ be two distinct integers. Then $\Psi_k \cap \Psi_l \neq \emptyset$ if and only if $\log k / \log l = a/b$ for some odd positive integers a, b.

Theorem A proves one direction of Theorem 1.1. We provide a new proof here since an ingredient in the proof is also needed for the other direction. Motivated by [C, CT], Yang and Chen asked about the asymptotic behavior of $r_{1,k}(A, n)$ for sets $A \in \Psi_k$.

PROBLEM 1.2 ([YC]). For any set $A \in \Psi_k$, is it true that $r_{1,k}(A, n) \ge 1$ for all sufficiently large integers n? Is it true that $r_{1,k}(A, n) \to \infty$ as $n \to \infty$?

We give an affirmative answer to this problem.

THEOREM 1.3. Let $k \ge 2$ be an integer, and $A \in \Psi_k$. Then $\lim_{n \to \infty} r_{1,k}(A, n) = \infty.$

2. Proofs. For the proof of Theorem 1.1, we first obtain a criterion for $A \in \Psi_k$ in terms of generating functions. We use [x, y) to denote the set of all integers n satisfying $x \leq n < y$. Noting that both A and $\mathbb{N} \setminus A$ are infinite sets for $A \in \Psi_k$, it is convenient for us to write A in "blocks", that is,

(2.1)
$$A = \bigcup_{i=0}^{\infty} [t_{2i}, t_{2i+1}),$$

where $0 \le t_0 < t_1 < t_2 < \cdots$ is an increasing sequence of integers. Let

$$f_A(x) = \sum_{a \in A} x^a, \quad |x| < 1.$$

LEMMA 2.1. Let k > 1 be a given integer. With the notation above, $A \in \Psi_k$ if and only if there exists an odd positive integer a such that $t_{i+a} = kt_i$ for all $i \ge i_0$, and the polynomial

$$-1 + \sum_{i=0}^{i_0+a-1} (-1)^i x^{t_i} + \sum_{j=0}^{i_0-1} (-1)^j x^{kt_j}$$

is divisible by $(1-x)(1-x^k)$.

Proof. Let $B = \mathbb{N} \setminus A$. First note that

$$f_A(x)f_A(x^k) = \sum_{a_1, a_2 \in A} x^{a_1 + ka_2} = \sum_{n \ge 0} r_{1,k}(A, n)x^n.$$

Thus $A \in \Psi_k$ if and only if

(2.2) $P(x) := f_A(x)f_A(x^k) - f_B(x)f_B(x^k)$

is a polynomial. Substituting $f_B(x) = 1/(1-x) - f_A(x)$ in (2.2), we get

$$P(x) = -\frac{1}{(1-x)(1-x^k)} + \frac{f_A(x)}{1-x^k} + \frac{f_A(x^k)}{1-x},$$

hence

(2.3)
$$(1-x)(1-x^k)P(x) = -1 + f_A(x)(1-x) + f_A(x^k)(1-x^k).$$

Writing A in the form of (2.1) yields

(2.4)
$$f_A(x)(1-x) = \sum_{i=0}^{\infty} (-1)^i x^{t_i}$$

Substituting (2.4) in (2.3), we obtain

(2.5)
$$(1-x)(1-x^k)P(x) = -1 + \sum_{i=0}^{\infty} (-1)^i x^{t_i} + \sum_{j=0}^{\infty} (-1)^j x^{kt_j}.$$

Since the right hand side of (2.5) is a polynomial, there exist positive integers i_0, j_0 such that

$$(-1)^{j_0+m}x^{t_{j_0+m}} + (-1)^{i_0+m}x^{kt_{i_0+m}} = 0$$

for all $m \ge 0$. This means that $t_{j_0+m} = kt_{i_0+m}$ and $j_0 - i_0$ is odd. Set $a = j_0 - i_0$. Clearly $j_0 > i_0$, thus a is an odd positive integer, and $t_{i+a} = kt_i$ for all $i \ge i_0$. Consequently,

$$(1-x)(1-x^k)P(x) = -1 + \sum_{i=0}^{i_0+a-1} (-1)^i x^{t_i} + \sum_{j=0}^{i_0-1} (-1)^j x^{kt_j}$$

is a polynomial divisible by $(1-x)(1-x^k)$.

The other half of the statement of the lemma is now trivial.

Proof of Theorem 1.1. Suppose $A \in \Psi_k \cap \Psi_l$. By Lemma 2.1, there exist odd positive integers a, b such that $t_{i+a} = kt_i$ and $t_{i+b} = lt_i$ for all $i \ge i_0$. It follows that

$$k^b t_i = t_{i+ab} = l^a t_i$$

for all $i \ge i_0$, hence $\log k / \log l = a/b$ with a, b odd positive integers.

Assume now that $\log k/\log l = a/b$ with a, b odd and (a, b) = 1; then $k = m^a$ and $l = m^b$ for some positive integer m. Without loss of generality, we may assume that a > b. Let $t_0 = 0$, $t_1 = m^a$, $t_2 = (m+1)t_1$, and $t_{i+1} = mt_i$ for all $i \ge 2$. We prove that $A \in \Psi_k \cap \Psi_l$. In view of Lemma 2.1 (with $i_0 = 2$), it remains to show that

(2.6)
$$-x^{kt_1} + \sum_{i=0}^{a+1} (-1)^i x^{t_i}$$

is divisible by $(1-x)(1-x^k)$, and

$$-x^{lt_1} + \sum_{i=0}^{b+1} (-1)^i x^{t_i}$$

is divisible by $(1-x)(1-x^l)$. We prove the case for k, and the case for l is similar. Since

$$x^n \equiv 1 \pmod{1 - x^k}$$

for $k \mid n$, and $k \mid t_i$ for all $i \ge 0$, it follows that

$$-x^{kt_1} + \sum_{i=0}^{a+1} (-1)^i x^{t_i} \equiv -1 + \sum_{i=0}^{a+1} (-1)^i = 0 \pmod{1-x^k},$$

thus $1 - x^k$ divides (2.6). Taking derivative of (2.6) and setting x = 1, we get

$$-kt_1 + \sum_{i=0}^{a+1} (-1)^i t_i = -(k+1)t_1 + t_2 \frac{1 - (-m)^a}{1 - (-m)} = 0.$$

Thus x = 1 is a double root, hence $(1 - x)(1 - x^k)$ divides (2.6).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. Let $A \in \Psi_k$. It follows from Lemma 2.1 that A can be written in the form of (2.1) such that $t_{i+a} = kt_i$ for some odd positive integer a and all $i \ge i_0$. All we need is this condition, thus Theorem 1.3 is actually valid for a larger class of sets $A \subseteq \mathbb{N}$.

For $i \ge i_0 + a$, we have

$$t_{i+1} - t_i = k(t_{i+1-a} - t_{i-a}) \ge k.$$

By eliminating the first several blocks of A, we may assume without loss of generality that $t_{i+a} = kt_i$ and $t_{i+1} - t_i \ge k$ for all $i \ge 0$.

Let s be an arbitrary positive integer. Fix $\alpha \in (1/2, 1)$. It is clear that the sequence $\{t_{i+1}/t_i\}_{i\geq 0}$ is periodic with period a, hence

$$\liminf_{i \to \infty} \frac{t_{i+1}}{t_i} = \min_{0 \le i < a} \frac{t_{i+1}}{t_i} > 1 = \lim_{i \to \infty} 1 + \frac{t_i^{\alpha}}{t_i}.$$

It follows that

$$\frac{t_{i+1}}{t_i} > 1 + \frac{t_i^{\alpha}}{t_i}$$

for $i \geq i_1$, that is,

(2.7)
$$t_{i+1} - t_i > t_i^{\alpha}$$

for $i \geq i_1$. Since

$$\frac{t_i^{\alpha}}{\sqrt{t_{i+1}}+k} = \frac{t_i^{\alpha}}{\sqrt{kt_{i+1-a}}+k} \ge \frac{t_i^{\alpha}}{\sqrt{kt_i}+k} \to \infty$$

as $i \to \infty$, we have

(2.8)
$$t_i^{\alpha} > k^{2s+1}(\sqrt{t_{i+1}} + k)$$

for $i \geq i_2$. Finally,

(2.9)
$$t_i > k^{4s+2} t_0^2$$

for $i \ge i_3$. Let $m = \max\{i_1, i_2, i_3\} + 1$. We show that $r_{1,k}(A, n) \ge s$ for all $n \ge t_m$, which would then imply our result.

Let $I_j = [t_j, t_{j+1})$; then $I_j \subset A$ if j is even. For a set $I \subseteq \mathbb{N}$, write

$$k * I = \{kx : x \in I\}.$$

Since $t_{i+1} - t_i \ge k$, it follows that

$$I_i + k * I_j = \bigcup_{u=t_j}^{t_{j+1}-1} [t_i + ku, t_{i+1} + ku] = [t_i + kt_j, t_{i+1} + kt_{j+1} - k].$$

Let $n \ge t_m$. Assume that $n \in I_i$ for some $i \ge m$. We shall distinguish four cases.

CASE 1: *i* is even and $n - t_i \leq \sqrt{t_i}$. Since $\{t_{ai}\}_{i\geq 0}$ is a geometric progression with common ratio k, and

$$t_0 < \frac{\sqrt{t_i}}{k^{2s+1}} < \frac{t_{i-1}^{\alpha}}{k^{2s+1}}$$

by (2.9), at least 2s of the t_j 's satisfy

(2.10)
$$t_j \in (t_{i-1}^{\alpha}/k^{2s+1}, t_{i-1}^{\alpha}).$$

Indeed, let j_1 be the largest with $t_{j_1} \leq t_{i-1}^{\alpha}/k^{2s+1}$ and j_2 be the smallest with $t_{j_2} \geq t_{i-1}^{\alpha}$. Then

$$\frac{t_{j_2}}{t_{j_1}} \geq \frac{t_{i-1}^\alpha}{t_{i-1}^\alpha/k^{2s+1}} = k^{2s+1},$$

thus $j_2 \ge j_1 + (2s+1)a \ge j_1 + 2s + 1$. Hence

$$t_{j_1+1}, \ldots, t_{j_1+2s} \in (t_{i-1}^{\alpha}/k^{2s+1}, t_{i-1}^{\alpha}).$$

For each t_j satisfying (2.10) with j even (there are at least s of them), we claim that

$$n \in I_j + k * I_{i-1-a} = [t_j + t_{i-1}, t_{j+1} + t_i - k).$$

By (2.10) and (2.7), we have

$$t_j + t_{i-1} < t_{i-1}^{\alpha} + t_{i-1} < t_i - t_{i-1} + t_{i-1} = t_i \le n.$$

On the other hand, by (2.8), (2.10) and the assumption on n, we have

$$t_{j+1} + t_i - k \ge t_{j+1} + n - \sqrt{t_i} - k > t_j + n - \frac{t_{i-1}^{\alpha}}{k^{2s+1}} > n,$$

hence the claim follows.

For each t_j satisfying (2.10) with j even, the equation x + ky = n has a solution with $x \in I_j$ and $y \in I_{i-1-a}$. Noting that j and i - 1 - a are both even, we have $x, y \in A$, thus $r_{1,k}(A, n) \geq s$.

CASE 2: *i* is even and $n - t_i > \sqrt{t_i}$. Since $\sqrt{t_i}/k > k^{2s}t_0$ by (2.9), it follows that at least 2s of the t_j 's satisfy

$$(2.11) t_j \in [t_0, \sqrt{t_i}/k).$$

For each such t_j with j even (there are at least s of them), we claim that

$$n \in I_i + k * I_j = [t_i + kt_j, t_{i+1} + kt_{j+1} - k).$$

It is clear that

С

$$t_{i+1} + kt_{j+1} - k \ge t_{i+1} > n.$$

On the other hand, by (2.11) and the assumption on n,

$$t_i + kt_j < t_i + \sqrt{t_i} < n,$$

hence the claim follows.

For each t_j satisfying (2.11) with j even, the equation x + ky = n has a solution with $x \in I_i$ and $j \in I_j$. Noting that i and j are both even, we have $x, y \in A$, thus $r_{1,k}(A, n) \geq s$.

ASE 3: *i* is odd and
$$n - t_i \leq \sqrt{t_i}$$
. By (2.7)–(2.9), we have
 $t_i - t_{i-1} > t_{i-1}^{\alpha} > k^{2s+1}(\sqrt{t_i} + k) > kt_0$,

hence at least 2s of the t_j 's satisfy

(2.12)
$$t_j \in \left(\frac{\sqrt{t_i} + k}{k}, \frac{t_i - t_{i-1}}{k}\right)$$

For each such t_j with j odd (there are at least s of them), we claim that

$$n \in I_{i-1} + k * I_{j-1} = [t_{i-1} + kt_{j-1}, t_i + kt_j - k).$$

It is clear, by (2.12), that

$$t_{i-1} + kt_{j-1} < t_{i-1} + kt_j < t_{i-1} + (t_i - t_{i-1}) = t_i \le n.$$

On the other hand, by (2.12) and the assumption on n,

$$t_i + kt_j - k > t_i + (\sqrt{t_i} + k) - k = t_i + \sqrt{t_i} \ge n,$$

hence the claim follows.

For each t_j satisfying (2.12) with j odd, the equation x + ky = n has a solution with $x \in I_{i-1}$ and $j \in I_{j-1}$. Noting that i - 1 and j - 1 are both even, we have $x, y \in A$, thus $r_{1,k}(A, n) \geq s$.

CASE 4: *i* is odd and $n - t_i > \sqrt{t_i}$. Since $\sqrt{t_i} > k^{2s+1}t_0$ by (2.9), at least 2s of the t_i 's satisfy

$$(2.13) t_j \in [t_0, \sqrt{t_i})$$

For each such t_j with j even (there are at least s of them), we claim that

$$n \in I_j + k * I_{i-a} = [t_j + t_i, t_{j+1} + t_{i+1} - k).$$

It is clear that

$$t_{j+1} + t_{i+1} - k \ge t_{i+1} > n.$$

On the other hand, by (2.13) and the assumption on n,

 $t_j + t_i < t_i + \sqrt{t_i} < n,$

hence the claim follows.

For each t_j satisfying (2.13) with j even, the equation x + ky = n has a solution with $x \in I_j$ and $y \in I_{i-a}$. Noting that j and i - a are both even, we have $x, y \in A$, thus $r_{1,k}(A, n) \ge s$.

This completes the proof of Theorem 1.3. \blacksquare

Acknowledgements. This research was supported by the National Natural Science Foundation of China, Grant No. 11101152. The author is grateful to the referee for his/her helpful comments.

References

- [C] Y.-G. Chen, On the values of representation functions, Sci. China Math. 54 (2011), 1317–1331.
- [CT] Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 2689–2695.
- [CW] Y.-G. Chen and B. Wang, On additive properties of two special sequences, Acta Arith. 110 (2003), 299–303.
- [D] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137–146.
- [L] V. F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), no. 1, R78.
- [S] C. Sándor, Partitions of natural numbers and their representation functions, Integers 4 (2004), A18.
- [SS] A. Sárközy and V. T. Sós, On additive representation functions, in: The Mathematics of Paul Erdős I, R. Graham et al. (eds.), Springer, Berlin, 1997, 129–150.

112	Z. H. QU
[T]	M. Tang, Partitions of the set of natural numbers and their representation func- tions, Discrete Math. 308 (2008), 2614–2616.
[Y]	QH. Yang, Representation functions with different weights, Colloq. Math. 137 (2014), 1–6.
[YC]	QH. Yang and YG. Chen, <i>Partitions of natural numbers with the same weighted representation functions</i> , J. Number Theory 132 (2012), 3047–3055.
Zhenhu	ıa Qu
Depart	ment of Mathematics
Shangh	ai Key Laboratory of PMMP
East C	hina Normal University
500 Do	ngchuan Rd.
Shangh	nai 200241, China
E-mail:	zhqu@math.ecnu.edu.cn