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THE FUNDAMENTAL THEOREM AND MASCHKE’S THEOREM IN
THE CATEGORY OF RELATIVE HOM-HOPF MODULES

BY

YUANYUAN CHEN, ZHONGWEI WANG and LIANGYUN ZHANG (Nanjing)

Abstract. We introduce the concept of relative Hom-Hopf modules and investi-
gate their structure in a monoidal category H̃(Mk). More particularly, the fundamental
theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-
comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is
established when there is a multiplicative total Hom-integral.

1. Introduction. The theory of algebraic deformation has become an
important branch of algebra. Multiplicative deformations were applied in
quantum modules, as well as in analysis of complex systems and processes
exhibiting complete or partial scaling invariance. Discretization of vector
fields via twisted derivations leads to Hom-Lie structures in which the Jacobi
identity is twisted by an endomorphism (see [22, 23]). The first example of
q-deformations, in which the derivations are replaced by σ-derivations, con-
cerned the Witt and Virasoro algebras [20]. Recently, Hom-Lie structures
have been further studied by many scholars [1, 2, 21, 29, 34, 36]. Notions
like Hom-Lie bialgebras, quasi-Hom-Lie algebras, Hom-Lie superalgebras,
Hom-Lie color algebras, Hom-Lie admissible Hom-algebras, Hom-Nambu–
Lie algebras and so on have been introduced. In [5], we study the construc-
tion of Hom-Lie bialgebras from Hom-Lie algebras and Hom-Lie coalgebras
respectively. Quasi-triangular Hom-Lie bialgebras were investigated further
in [6].

The ideals of tailoring associativity-like conditions by using endomor-
phisms has migrated to other algebraic structures. The concepts of Hom-
algebras, Hom-coalgebras, Hom-Hopf algebras, Hom-alternative algebras,
Hom-Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras, in-
finitesimal Hom-bialgebras, Hom-power associative algebras, quasi-triangular
Hom-bialgebras, separable and Frobenius structures of monoidal Hom-
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algebras have been introduced and developed [3, 7, 8, 9, 10, 11, 16, 17,
25, 26, 27, 28, 33, 35]. Now, the associativity of Hom-algebras (A,α) is
replaced by

α(a)(bc) = (ab)α(c),

where α ∈ Aut(A) is an algebra map. Further, some actions and coactions on
such objects with Hom-structures such as Hom-modules, Hom-comodules,
Hom-Hopf modules and Hom-module algebras have been considered, and
the structure theorem of Hom-Hopf modules in a monoidal category H̃(Mk)
(called the Hom-category) was investigated in [3]. Recently, the categories of
relative Hom-Hopf modules, Hom-Long bimodules and Hom-Yetter–Drinfeld
modules have been introduced and studied [8, 10, 18, 24].

Hopf modules are known to be important in the theory of Hopf algebras.
As a generalization of Hopf modules, relative Hopf modules were introduced
by Doi [13]. Furthermore, Doi investigated their structure in [14, 15], in-
cluding the structure theorem for relative Hopf modules over cleft comodule
algebras and Maschke’s theorem for relative Hopf modules with total inte-
grals.

In 2013, Chen, Wang and Zhang [7] introduced (total) integrals for Hom-
Hopf algebras. In a similar way, we may introduce the concept of generalized
Hom-integrals. The purpose of this paper is to investigate the structure the-
orem and Maschke’s theorem for relative Hom-Hopf modules via generalized
Hom-integrals. The paper is organized as follows. In Section 1, we recall some
basic concepts in the Hom-category H̃(Mk). In Section 2, we introduce the
concept of generalized Hom-integrals and study their application to ques-
tions of splitting in relative Hom-Hopf modules. In Section 3, we prove a
structure theorem for relative Hom-Hopf modules under the assumption that
the Hom-comodule algebra (A, β) is cleft. In Section 4, we obtain Maschke’s
theorem for relative Hom-Hopf modules, that is, every short exact sequence
of right (H,A)-Hom-Hopf modules

0→ (M,µ)
p−→ (N, ν)

q−→ (L, ι)→ 0

which is split as a sequence of (A, β)-Hom modules, is also split as a se-
quence of (H,A)-Hom-Hopf modules when there is a multiplicative total
Hom-integral φ : (H,α)→ (Z(A), β).

2. Preliminaries. Let Mk = (Mk,⊗, k, a, l, r) be the category of k-
modules. There is a new monoidal category H(Mk). The objects of H(Mk)
are couples (M,µ), where M ∈ Mk and µ ∈ Autk(M). The morphisms of
H(Mk) are morphisms f : (M,µ)→ (N, ν) in Mk such that ν ◦ f = f ◦ µ.
For any objects (M,µ), (N, ν) ∈ H(Mk), the monoidal structure is given by

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν) and (k, id).
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Roughly speaking, all Hom-structures are objects in the monoidal cate-
gory H̃(Mk) = (H(Mk), ⊗, (k, id), ã, l̃, r̃) introduced in [3], where the asso-
ciator ã is given by the fomula

(2.1) ãM,N,L = aM,N,L ◦ ((µ⊗ id)⊗ ς−1) = (µ⊗ (id⊗ ς−1)) ◦ aM,N,L

for any objects (M,µ), (N, ν), (L, ς) ∈ H(Mk), and the unitors l̃ and r̃ are

l̃M = µ ◦ lM = lM ◦ (id⊗ µ), r̃M = µ ◦ rM = rM ◦ (µ⊗ id).

The category H̃(Mk) is called the Hom-category associated to the monoidal
categoryMk, where a k-submodule N ⊆M is called a subobject of (M,µ) if

µ restricts to an automorphism of N , that is, (N,µ|N ) ∈ H̃(Mk). Since the

category Mk has left duality, so does H̃(Mk). Now let M∗ be the left dual
of M ∈Mk, and bM : k →M ⊗M∗, dM : M∗⊗M → k be the coevaluation
and evaluation maps. Then the left dual of (M,µ) ∈ H̃(Mk) is (M∗, (µ∗)−1),
and the coevaluation and evaluation maps are given by the formulas

b̃M = (µ⊗ µ∗)−1 ◦ bM , d̃M = dM ◦ (µ∗ ⊗ µ).

In the following, we recall from [3] some information about Hom-struc-
tures.

Definition 2.1. A Hom-algebra is a vector space A together with an
element 1A ∈ A and linear maps

m : A⊗A→ A, a⊗ b 7→ m(a⊗ b) ≡ ab, α ∈ Aut(A),

such that

2α(a)(bc) = (ab)α(c), a1A = 1Aa = α(a),(2.2)

α(ab) = α(a)α(b), α(1A) = 1A,(2.3)

for all a, b, c ∈ A. In the following, we denote the Hom-algebra as above by
(A,α).

In the language of Hopf algebras, m is called multiplication, α is called
the twisting automorphism and 1A is called the unit. Let (A,α) and (A′, α′)
be two Hom-algebras. A Hom-algebra map f : (A,α) → (A′, α′) is a linear
map such that f ◦ α = α′ ◦ f , f(ab) = f(a)f(b) and f(1A) = 1A′ .

Throughout, we use the terminology of [3] for convenience. The notion
of monoidal Hom-associative algebras is different from that of unital Hom-
associative algebras in [28, 29] in the following sense. The same twisted asso-
ciativity condition holds in both cases. However, the unitality condition for
unital Hom-associative algebras is the usual untwisted one: a1A = 1Aa = a
for any a ∈ A, and the twisting map α need not be monoidal (that is, (2.3)
is not required).

Definition 2.2. A Hom-coalgebra is an object (C, γ) in the category

H̃(Mk) together with linear maps ∆ : C → C ⊗ C, ∆(c) = c1 ⊗ c2, and
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ε : C → k such that

(2.4)
γ−1(c1)⊗∆(c2) = ∆(c1)⊗ γ−1(c2), c1ε(c2) = γ−1(c) = ε(c1)c2,

∆(γ(c)) = γ(c1)⊗ γ(c2), ε(γ(c)) = ε(c),

for all c ∈ C.

Note that the first part of (2.4) is equivalent to

c1 ⊗ c21 ⊗ γ(c22) = γ(c11)⊗ c12 ⊗ c2,

which is often used in the rest of the paper. Let (C, γ) and (C ′, γ′) be two
Hom-coalgebras. A Hom-coalgebra map f : (C, γ)→ (C ′, γ′) is a linear map
such that f ◦ γ = γ′ ◦ f , ∆ ◦ f = (f ⊗ f) ◦∆ and ε ◦ f = ε.

The notion of monoidal Hom-coassociative coalgebra here is somewhat
different from that of counital Hom-coassociative coalgebra in [28, 29]. Their
coassociativity condition is twisted by some endomorphism, not necessarily
by the inverse of the automorphism γ. The counitality condition is the usual
untwisted one and counital Hom-coassociative coalgebras are not necessarily
monoidal.

Definition 2.3. A Hom-bialgebra H = (H,α,m, η,∆, ε) is a bialgebra

in the monoidal category H̃(Mk). This means that (H,α,m, η) is a Hom-
algebra and (H,α,∆, ε) is a Hom-coalgebra such that ∆ and ε are Hom-
algebra maps, that is, for any h, g ∈ H,

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H ,

ε(hg) = ε(h)ε(g), ε(1H) = 1k.

Definition 2.4. A Hom-bialgebra (H,α) is a Hom-Hopf algebra if there

exists a morphism (called the antipode) S : H → H in H̃(Mk) (i.e. S ◦ α =
α ◦ S) such that

S ∗ id = η ◦ ε = id ∗ S.(2.5)

In fact, a Hom-Hopf algebra is a Hopf algebra in the category H̃(Mk).
Further, the antipode of Hom-Hopf algebras has almost all the properties of
antipode of Hopf algebras such as

S(hg) = S(g)S(h), S(1H) = 1H , ∆(S(h)) = S(h2)⊗S(h1), ε◦S = ε.

That is, S is a Hom-anti-(co)algebra homomorphism. Since α is bijective
and commutes with the antipode S, the inverse α−1 also commutes with S,
that is, S ◦ α−1 = α−1 ◦ S. For a finite-dimensional Hom-Hopf algebra
(H,α,m, η,∆, ε, S), the dual (H∗, (α∗)−1) is also a Hom-Hopf algebra with
the following structures: for all g, h ∈ H and φ, ϕ ∈ H∗,
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〈φϕ, h〉 = 〈φ, h1〉〈ϕ, h2〉, 1H∗ = ε,

〈∆(φ), g ⊗ h〉 = 〈φ, gh〉, εH∗ = η,

(α∗)−1(φ) = φ ◦ α−1, S∗(φ) = φ ◦ S−1.

Now we recall actions and coactions over Hom-algebras and Hom-co-
algebras respectively.

Definition 2.5. Let (A,α) be a Hom-algebra. A right (A,α)-Hom-

module consists of (M,µ) in H̃(Mk) together with a morphism ψ : M ⊗ A
→M , ψ(m⊗ a) = m · a, such that

(m · a) · α(b) = µ(m) · (ab), m · 1A = µ(m),

µ(m · a) = µ(m) · α(a),

for all a, b ∈ A and m ∈M .

Similarly, we can define a left (A,α)-Hom-module. The Hom-algebra
(A,α) is both a left (A,α)-Hom-module and a right (A,α)-Hom-module via
multiplication. Let (M,µ), (N, ν) be two left (A,α)-Hom-modules. A map
f : M → N is called a left (A,α)-Hom-module morphism if f(a·m) = a·f(m)
and f ◦ µ = ν ◦ f . The category of left (A,α)-Hom modules is denoted by

H̃(AM). If (M,µ), (N, ν) ∈ H̃(AM), then (M ⊗N,µ⊗ν) ∈ H̃(AM) via the
left H-action

(2.6) h · (m⊗ n) = h1 ·m⊗ h2 · n.
Dually, we can define Hom-comodules.

Definition 2.6. Let C = (C, γ) be a Hom-coalgebra. A right (C, γ)-

Hom-comodule is an object (M,µ) in H̃(Mk) together with a k-linear map
ρM : M →M ⊗ C, ρM (m) = m(0) ⊗m(1), such that

(2.7)
µ−1(m(0))⊗∆C(m(1)) = m(0)(0) ⊗ (m(0)(1) ⊗ γ−1(m(1))),

ρM (µ(m)) = µ(m(0))⊗ γ(m(1)), m(0)ε(m(1)) = µ−1(m),

for all m ∈M.

Note that the first part of (2.7) is equivalent to

(2.8) (id⊗∆) ◦ ρM = ã ◦ (ρM ⊗ id) ◦ ρM .
(C, γ) is a Hom-comodule on itself via comultiplication. Let (M,µ) and

(N, ν) be two right C-Hom-comodules. A map g : M → N is called a
right (C, γ)-Hom-comodule morphism if g ◦ µ = ν ◦ g and g(m(0))⊗m(1) =

g(m)(0) ⊗ g(m)(1). We denote by H̃(MC) the category of right (C, γ)-Hom-

comodules. If (M,µ), (N, ν) ∈ H̃(MC), then (M ⊗N,µ⊗ν) ∈ H̃(MC) with
the Hom-comodule strucutre

(2.9) ρ(m⊗ n) = m(0) ⊗ n(0) ⊗m(1)n(1).
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Definition 2.7. A right (H,α)-Hom-Hopf-module (M,µ) is defined as
being a right (H,α)-Hom-module and a right (H,α)-Hom-comodule as well,
satisfying the following compatibility condition:

ρM (m · h) = m(0) · h1 ⊗m(1)h2(2.10)

for m ∈M and h ∈ H.

A morphism between two right (H,α)-Hom-Hopf-modules is a k-linear

map which is a morphism in the categories H̃(HM) and H̃(MH) at the
same time. We denote the category of right (H,α)-Hom-Hopf modules by

H̃(MH
H).

3. Generalized Hom-integrals. In this section, we introduce the con-
cept of generalized Hom-integrals, and give different conditions for Hom-
comodule algebras to have generalized Hom-integrals.

Definition 3.1. Let (H,α) be a Hom-Hopf algebra, and (A, β) a Hom-
algebra. Then (A, β) is called right (H,α)-Hom-comodule algebra if there is
a right (H,α)-Hom-comodule structure ρA : A→ A⊗H on (A, β) such that
ρA is a morphism of Hom-algebras, that is,

ρA(ab) = ρA(a)ρA(b)(3.1)

for any a, b ∈ A and

ρA(1A) = 1A ⊗ 1H , ρA ◦ β = (β ⊗ α) ◦ ρA.

Let (H,mH , η,∆, ε, S) be a Hopf algebra and (A,mA, ρ) a right H-
comodule algebra. If α : H → H is a Hopf algebra automorphism, then,
by [3, Proposition 1.14], there is a Hom-Hopf algebra Hα = (H,mα =
α ◦mH , η,∆α = ∆ ◦ α−1, ε, S, α).

Let β ∈ Aut(A) be such that ρ ◦ β = (β⊗α) ◦ ρ. Then it is easy to show
by direct computation that Aβ = (A,mβ = β ◦ mA, ρβ = ρ ◦ β−1, β) is a
right (Hα, α)-Hom-comodule algebra. Moreover, the compatibility condition
(3.1) for ρβ and mβ follows from the compatibility ρ(ab) = ρ(a)ρ(b) of the
comodule algebra (A,mA, ρ).

Definition 3.2. Let (A, β, ρA) be a right (H,α)-Hom-comodule al-
gebra. A right (H,A)-Hom-Hopf module (M,µ) is an object in the cate-

gories H̃(MA) and H̃(MH) satisfying the compatibility condition

ρM (m · a) = m(0) · a(0) ⊗m(1)a(1)(3.2)

for all m ∈ M and a ∈ A. Morphisms of right (H,A)-Hom-Hopf modules
are morphisms of right (A, β)-Hom-modules and morphisms of right (H,α)-
Hom-comodules. The category of right (H,A)-Hom-Hopf modules is denoted

by H̃(MH
A ).
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In fact, the right (H,α)-Hom-comodule algebra (A, β) is itself a right
(H,A)-Hom-Hopf module via ρA and the multiplication mA : A ⊗ A → A,
since the compatibility condition of (H,A)-Hom-Hopf modules is just (3.1).

Example 3.3. (1) We can induce a relative Hom-Hopf module from a
relative Hopf module (M,ψ, ρ), which is similar to inducing a Hom-comodule
algebra from a comodule algebra. We just need to twist the action ψ and the
coaction ρ into ψµ = µ ◦ψ and ρµ = ρ ◦µ−1 respectively, where µ : M →M
is an automorphism such that µ ◦ ψ = ψ ◦ (µ⊗ β) and ρ ◦ µ = (µ⊗ α) ◦ ρ.

(2) For a right (H,α)-Hom-comodule algebra (A, β) and a right (A, β)-
Hom-module (M,µ), there is a right (H,A)-Hom-Hopf module (M⊗H,µ⊗α),
where the right (A, β)-Hom-module structure is ψ : (M ⊗H)⊗A→M ⊗H,
(m⊗h)⊗a 7→ (m⊗h)•a = m·a(0)⊗ha(1), and the right (H,α)-Hom-comodule

structure is ρ : M⊗H → (M⊗H)⊗H, m⊗h 7→ (µ−1(m)⊗h1)⊗α(h2). We
only show the compatibility condition: for any m ∈M , h ∈ H and a ∈ A,

(m⊗ h)(0) • a(0) ⊗ (m⊗ h)(1)a(1) = (µ−1(m)⊗ h1) • a(0) ⊗ α(h2)a(1)

= (µ−1(m) · a(0)(0) ⊗ h1a(0)(1))⊗ α(h2)a(1)

(2.7)
=
(
µ−1(m) · β−1(a(0))⊗ h1a(1)1

)
⊗ α(h2)α(a(1)2)

= (µ−1(m · a(0))⊗ h1a(1)1)⊗ α(h2a(1)2)

= ρ(m · a(0) ⊗ ha(1)) = ρ((m⊗ h) • a).

Definition 3.4. Let (A, β, ρA) be a right (H,α)-Hom-comodule algebra.
A morphism φ : (H,α) → (A, β) is called a generalized Hom-integral for
(A, β) if φ is a right (H,α)-Hom-comodule map, that is,

φ ◦ α = β ◦ φ,(3.3)

ρA ◦ φ = (φ⊗ id) ◦∆H .(3.4)

The set of all generalized Hom-integrals for (A, β) is denoted H̃(Com(H,A)).

Theorem 3.5. Let (A, β) be a right (H,α)-Hom-comodule algebra. Then
the following are equivalent:

(1) all right (H,A)-Hom-Hopf modules are injective as (H,α)-Hom-co-
modules,

(2) (A, β) is an injective (H,α)-Hom-comodule,

(3) there is φ ∈ H̃(Com(H,A)) with φ(1H) = 1A,

(4) there is φ ∈ H̃(Com(H,A)) with φ(1H) invertible in A.

Proof. (1)⇒(2) is clear, since (A, β) ∈ H̃(MH
A ). For (2)⇒(3), consider

the diagram of right (H,α)-Hom-comodules
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0 // k
ηH //

ηA
��

H

φ~~

A

If (A, β) is an injective (H,α)-Hom-comodule, then there is an (H,α)-Hom-
comodule map φ such that the diagram commutes.

Next we prove (3)⇒(1). For (M,µ) ∈ H̃(MH
A ), define a map ρM⊗H in

H̃(Mk) as follows:

ρM⊗H : M ⊗H id⊗∆−−−→M ⊗ (H ⊗H)
ã−1

−−→ (M ⊗H)⊗H.(3.5)

So ρM⊗H(m⊗h) = (µ−1(m)⊗h1)⊗α(h2). It is easy to show that ρM⊗H is a
right (H,α)-Hom-comodule structure on (M ⊗H,µ⊗α). Then the diagram

M
ρM //

ρM
��

M ⊗H
ρM⊗H

��

M ⊗H ρM⊗id
// (M ⊗H)⊗H

is commutative, which implies that ρM is an (H,α)-Hom-comodule map. It
is enough to show that ρM : M →M⊗H is split as an (H,α)-Hom-comodule
map. That is, there is an (H,α)-Hom-comodule map λ : M ⊗H →M such
that λ◦ρM = idM , which implies that (M,µ) is injective as an (H,α)-Hom-
comodule.

Construct λ : M ⊗H →M as the composite

M ⊗H ρM⊗id−−−−→ (M ⊗H)⊗H id⊗S⊗id−−−−−→ (M ⊗H)⊗H ã−→

M ⊗ (H ⊗H)
id⊗mH−−−−→M ⊗H id⊗φ−−−→M ⊗A ψM−−→M.

Then, for m ∈M and h ∈ H,

λ(m⊗ h) = µ(m(0)) · φ(S(m(1))α
−1(h)).

For any m ∈M ,

λ ◦ ρM (m) = λ(m(0) ⊗m(1)) = µ(m(0)(0)) · φ(S(m(0)(1))α
−1(m(1)))

= m(0) · φ(S(m(1)1)m(1)2) = m(0) · φ(ε(m(1))1H)

= µ−1(m) · φ(1H) = µ−1(m) · 1A = m,

so λ ◦ ρM = idM . Moreover, λ is an (H,α)-Hom-comodule map since λ is in

H̃(Mk), and

ρM ◦ λ(m⊗ h) = ρM
(
µ(m(0)) · φ(S(m(1))α

−1(h))
)

= µ(m(0))(0) · φ
(
S(m(1))α

−1(h)
)

(0)
⊗ µ(m(0))(1)φ

(
S(m(1))α

−1(h)
)

(1)
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(3.4)
= µ(m(0)(0)) · φ(S(m(1))1α

−1(h1))⊗ α(m(0)(1))
(
S(m(1))2α

−1(h2)
)

= m(0) · φ(S(α(m(1)2))1α
−1(h1))⊗ α(m(1)1)

(
S(α(m(1)2))2α

−1(h2)
)

= m(0) · φ(S(α(m(1)22))α−1(h1))⊗
(
m(1)1S(α(m(1)21))

)
h2

= m(0) · φ(S(m(1)2)α−1(h1))⊗ α(m(1)11S(m(1)12))h2

= m(0) · φ(S(m(1)2)α−1(h1))⊗ ε(m(1)1)α(h2)

= m(0) · φ
(
S(α−1(m(1)))α

−1(h1)
)
⊗ α(h2)

= m(0) · φ(α−1(S(m(1))h1))⊗ α(h2)

= (λ⊗ id)
(
(µ−1(m)⊗ h1)⊗ α(h2)

)
= (λ⊗ id) ◦ ρM⊗H(m⊗ h)

for any m ∈M and h ∈ H.
(3)⇒(4) is trivial. For (4)⇒(3), sinceφ(1H) is invertible, replacingφ by the

map a 7→ φ(1H)−1φ(h) we find that φ(1H) = 1A and φ ∈ H̃(Com(H,A)).

4. The fundamental theorem for relative Hom-Hopf modules.
In this section, we prove the fundamental theorem for relative Hom-Hopf
modules under the assumption that the Hom-comodule algebra (A, β) is
cleft.

Lemma 4.1 ([3, Proposition 2.9]). If (A,mA, ηA, α) is a Hom-algebra,
and (C,∆C , εC , β) is a Hom-coalgebra, then Hom(C,A) has a Hom-algebra
structure under convolution ∗. For any φ, ϕ ∈ Hom(C,A), the convolution
product is defined by

φ ∗ ϕ = mA ◦ (φ⊗ ϕ) ◦∆C .

The unit of Hom(C,A) is ηA ◦ εC , and the twisting automorphism γ is

γ(φ) = α ◦ φ ◦ β−1.

In Lemma 4.1, the elements of Hom(C,A) are not necessarily in the

category H̃(Mk). But if they are, then γ(φ) = φ, and Hom(C,A) becomes
an associative algebra. The set of all invertible (with respect to ∗) elements
of Hom(C,A) is denoted by Reg(C,A).

Definition 4.2. Let (H,α) be a Hom-Hopf-algebra and (A, β) a right
(H,α)-Hom-comodule algebra. Then (A, β) is called cleft if there is φ ∈
H̃(Com(H,A))∩Reg(H,A), or equivalently, φ satisfies (3.3), (3.4) and there
is an element φ−1 ∈ Hom(H,A) such that

φ−1 ∗ φ = φ ∗ φ−1 = ηA ◦ εH .(4.1)

Note that (A, β) satisfies condition (4) of Theorem 3.5 if it is cleft, so
(A, β) is an injective (H,α)-Hom-comodule. In particular, the Hom-Hopf-
algebra (H,α) is cleft.
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For any right (H,α)-Hom-comodule (M,µ, ρ), we define the (H,α)-co-
invariant subspace of (M,µ) to be the set

(M coH , µ|McoH ) = {m ∈M | ρ(m) = µ−1(m)⊗ 1H}.

In the following, we always assume that (A, β) is a right (H,α)-Hom-
comodule algebra, and the coinvariant of (A, β) is denoted by (AcoH , β|AcoH )
= (B, β|B). It is easy to see that (B, β|B) is a Hom-subalgebra of (A, β).

If (M,µ) is a right (H,α)-Hom-module, and (N, ν) a left (H,α)-Hom-
module, the relative tensor product space (M ⊗H N,µ⊗ ν) in the category

H̃(Mk) is defined as

{m⊗ n ∈M ⊗H N | m · h⊗ ν(n) = µ(m)⊗ h · n}.(4.2)

Lemma 4.3. Let (M,µ) be a right (A, β)-Hom-module. Then (M ⊗B A,
µ⊗ β) is a right (H,A)-Hom-Hopf module with the following action ψ and
coaction ρ:

ψ : (M ⊗B A)⊗A→M ⊗B A, (m⊗B a)⊗ a′ 7→ µ(m)⊗B aβ−1(a′),

ρ : M ⊗B A→ (M ⊗B A)⊗H, m⊗B a 7→ (µ−1(m)⊗B a(0))⊗ α(a(1)).

Proof. The proof is straightforward and is left to the reader.

Lemma 4.4. If φ ∈ H̃(Com(H,A)) ∩Reg(H,A), then the following dia-
gram commutes:

H
φ−1

//

∆H

��

A
ρA // A⊗H

H ⊗H τ // H ⊗H

φ−1⊗S

OO

Thus, for any h ∈ H,

ρA ◦ φ−1(h) = φ−1(h2)⊗ S(h1).(4.3)

Proof. We just need to show (ρA◦φ)−1 = ρA◦φ−1 and ((φ⊗id)◦∆H)−1 =
(φ−1⊗S)◦ τ ◦∆H . For any h ∈ H, since ρA is a morphism of Hom-algebras,
we have

((ρA ◦ φ) ∗ (ρA ◦ φ−1))(h) = ρA ◦ φ(h1)ρA ◦ φ−1(h2) = ρA(φ(h1)φ−1(h2))

= ρA(ηA ◦ εH(h)) = ηA⊗HεH(h)

and(
((φ⊗ id) ◦∆H) ∗ ((φ−1 ⊗ S) ◦ τ ◦∆H)

)
(h)

= (φ⊗ id) ◦∆H(h1)(φ−1 ⊗ S) ◦ τ ◦∆H(h2)
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= (φ(h11)⊗ h12)
(
φ−1(h22)⊗ S(h21)

)
= φ(h11)φ−1(h22)⊗ h12S(h21)

= φ(h11)φ−1(α−1(h2))⊗ α(h121)S(α(h122))

= φ(h11)φ−1(α−1(h2))⊗ ε(h12)1H

= φ(α−1(h1))φ−1(α−1(h2))⊗ 1H

= ηA ◦ εH(α−1(h))⊗ 1H = ηA ◦ εH(h)⊗ 1H .

Similarly, (ρA ◦ φ−1) ∗ (ρA ◦ φ) = ηA⊗HεH and

((φ−1 ⊗ S) ◦ τ ◦∆H) ∗ ((φ⊗ id) ◦∆H) = ηA ◦ εH ⊗ 1H .

Thus, ρA ◦ φ−1 = (ρA ◦ φ)−1 (3.4)
= ((φ⊗ id) ◦∆H)−1 = (φ−1 ⊗ S) ◦ τ ◦∆H .

Now we proceed to the structure theorem for relative Hom-Hopf modules.

Theorem 4.5. Let (A, β) be a right (H,α)-Hom-comodule algebra. If
(A, β) is cleft with a generalized Hom-integral φ : (H,α)→ (A, β), then for
every right (H,A)-Hom-Hopf module (M,µ),

M coH ⊗B A ∼= M

as (H,A)-Hom-Hopf modules.

Proof. Let p : (M,µ)→ (M,µ) be the composite

M
ρM−−→M ⊗H id⊗φ−1

−−−−−→M ⊗A ψM−−→M.

Explicitly p(m) = m(0) · φ−1(m(1)). We claim that p(m) ∈M coH . Indeed,

ρM (p(m)) = ρ(m(0) · φ−1(m(1)))

= m(0)(0) · φ−1(m(1))(0) ⊗m(0)(1)φ
−1(m(1))(1)

(4.3)
= m(0)(0) · φ−1(m(1)2)⊗m(0)(1)S(m(1)1)

= µ−1(m(0)) · φ−1(α(m(1)22))⊗m(1)1S(α(m(1)21))

= µ−1(m(0)) · φ−1(m(1)2)⊗ α(m(1)11)S(α(m(1)12))

= µ−1(m(0)) · φ−1(m(1)2)⊗ ε(m(1)1)1H

= µ−1(m(0)) · φ−1(α−1(m(1)))⊗ 1H

= µ−1(m(0) · φ−1(m(1)))⊗ 1H = µ−1(p(m))⊗ 1H .

Thus p(M) ⊆M coH , i.e. p is in fact a map p : (M,µ)→ (M coH , µ|McoH ) in

H̃(Mk).

Define two maps

ε : M coH ⊗B A→M

by ε(m⊗B a) = m · a for m ∈M coH and a ∈ A, and
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ϑ : M
ρM−−→M ⊗H p⊗φ−−→M coH ⊗B A

by ϑ(m) = p(m(0)) ⊗B φ(m(1)) for all m ∈ M . We will show ε ◦ ϑ = idM ,
ϑ ◦ ε = idMcoH⊗BA and ε is a right (H,A)-Hom-Hopf module map.

For m ∈M ,

ε ◦ ϑ(m) = ε(p(m(0))⊗B φ(m(1))) = p(m(0)) · φ(m(1))

= (m(0)(0) · φ−1(m(0)(1))) · φ(m(1))

= µ(m(0)(0)) ·
(
φ−1(m(0)(1))β

−1(φ(m(1)))
)

= m(0) · (φ−1(m(1)1)φ(m(1)2)) = m(0) · ε(m(1))1A

= µ−1(m) · 1A = m.

Moreover, for any m′ ∈M coH and a ∈ A,

ϑ ◦ ε(m′ ⊗B a) = ϑ(m′ · a) = p((m′ · a)(0))⊗B φ((m′ · a)(1))

= p(µ−1(m′) · a(0))⊗B φ(1Ha(1))

= (µ−1(m′)(0) · a(0)(0)) · φ−1
(
µ−1(m′)(1) · a(0)(1)

)
⊗B φ(α(a(1)))

= (µ−2(m′) · a(0)(0)) · φ−1
(
α−1(1H) · a(0)(1)

)
⊗B φ(α(a(1)))

= (µ−2(m′) · a(0)(0)) · φ−1(α(a(0)(1)))⊗B φ(α(a(1)))

= (µ−2(m′) · a(0)(0)) · β(φ−1(a(0)(1)))⊗B φ(α(a(1)))

= µ−1(m′) · (a(0)(0)φ
−1(a(0)(1)))⊗B φ(α(a(1))).

It is easy to show that a(0)(0)(φ
−1(a(0)(1))) ∈ B, which is similar to the proof

of p(m) ∈M coH as above. Hence

ϑ ◦ ε(m′ ⊗B a) = m′ ⊗B
(
a(0)(0)φ

−1(a(0)(1))
)
φ(a(1))

= m′ ⊗B
(
β−1(a(0))φ

−1(a(1)1)
)
φ(α(a(1)2))

= m′ ⊗B a(0)

(
φ−1(a(1)1)φ(a(1)2)

)
= m′ ⊗B a(0)εH(a(1))1A

= m′ ⊗B β−1(a)1A = m′ ⊗B a.

Finally, for any m′ ∈M coH and a, b ∈ A, we have

ε((m′ ⊗B a) · b) = ε
(
µ(m′)⊗B aβ−1(b)

)
= µ(m′) · (aβ−1(b))

= (m′ · a) · b = ε(m′ ⊗B a) · b
and

ρM ◦ ε(m′ ⊗B a) = ρM (m′ · a) = m′(0) · a(0) ⊗m′(1)a(1)

= µ−1(m′) · a(0) ⊗ 1Ha(1) = µ−1(m′) · a(0) ⊗ α(a(1))

= (ε⊗ id)
(
(µ−1(m′)⊗B a(0))⊗ α(a(1))

)
= (ε⊗ id) ◦ ρ(m′ ⊗B a).
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It is obvious that ε ◦ (µ ⊗ β) = µ ◦ ε. So ε is a right (H,A)-Hom-Hopf
module map and M coH ⊗B A ∼= M as (H,A)-Hom-Hopf modules.

As consequences of the above theorem, we have

Remark 4.6. (1) Since (H,α) is a cleft (H,α)-Hom-comodule algebra,
for every right (H,α)-Hom-Hopf module (M,µ), there is a Hom-Hopf mod-
ule isomorphism

M coH ⊗H ∼= M,

which is the fundamental theorem for Hom-Hopf modules given in [3], where
the Hom-Hopf module structures on M coH ⊗H are given by

(m⊗ h) · g = µ(m)⊗ hα−1(g),

ρ(m⊗ h) = (µ−1(m)⊗ h1)⊗ α(h2),

for m ∈M coH and h, g ∈ H.

(2) Let (A, β) be a right (H,α)-Hom-comodule algebra and φ a general-
ized Hom-integral of (A, β). If φ is also a Hom-algebra morphism, then φ is
invertible with φ−1 = φ ◦ S. Thus for every right (H,A)-Hom-Hopf module
(M,µ), we have

M coH ⊗B A ∼= M

as (H,A)-Hom-Hopf modules.

5. Maschke’s theorem for (H,A)-Hom-Hopf modules. In this sec-
tion we prove Maschke’s theorem for (H,A)-Hom-Hopf modules.

Definition 5.1. A generalized Hom-integral φ ∈ H̃(Com(H,A)) is
called a total Hom-integral if it preserves the unit. Equivalently, φ satis-
fies (3.3), (3.4) and φ(1H) = 1A.

In the following, we assume that the given right (H,α)-Hom-comodule
algebra (A, β) always has a total Hom-integral φ.

Lemma 5.2. Let (M,µ), (N, ν) ∈ H̃(MH
A ) and f : (N, ν) → (M,µ) in

H̃(Mk). Set

fφ : N
ρN−−→ N ⊗H f⊗id−−−→M ⊗H λ−→M,

where λ is the map defined in Theorem 3.5. Explicitly,

fφ(n) = µ(f(n(0))(0)) · φ
(
S(f(n(0))(1))α

−1(n(1))
)

for any n ∈ N . Then fφ is a right (H,α)-Hom-comodule map.

Furthermore, if f is a right (A, β)-Hom-module map and φ : (A, β) →
Z(A) is a multiplication map, then fφ is a right (A, β)-Hom-module map.
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Proof. Firstly, λ is a right (H,α)-Hom-comodule map by Theorem 3.5,
that is, ρM ◦ λ = (λ⊗ id) ◦ ρM⊗H , so we have

ρM ◦ fφ = ρM ◦ λ ◦ (f ⊗ id) ◦ ρN = (λ⊗ id) ◦ ρM⊗H ◦ (f ⊗ id) ◦ ρN
(3.5)
= (λ⊗ id) ◦ ã−1 ◦ (id⊗∆) ◦ (f ⊗ id) ◦ ρN
= (λ⊗ id) ◦ ã−1 ◦ (f ⊗ (id⊗ id)) ◦ (id⊗∆) ◦ ρN

(2.8)
= (λ⊗ id) ◦ ã−1 ◦ (f ⊗ (id⊗ id)) ◦ ã ◦ (ρN ⊗ id) ◦ ρN
= (λ⊗ id) ◦ ((f ⊗ id)⊗ id) ◦ ã−1 ◦ ã ◦ (ρN ⊗ id) ◦ ρN
= (λ⊗ id) ◦ ((f ⊗ id)⊗ id) ◦ (ρN ⊗ id) ◦ ρN
= (fφ ⊗ id) ◦ ρN .

Moreover, fφ ∈ H̃(Mk), so fφ is a right (H,α)-Hom-comodule map.
Further, if f is a right (A, β)-Hom-module map and φ : (A, β) → Z(A)

is a multiplication map, then, for any n ∈ N , a ∈ A, we have

fφ(n · a) = λ ◦ (f ⊗ id) ◦ ρN (n · a) = λ(f(n(0) · a(0))⊗ n(1)a(1))

= λ(f(n(0)) · a(0) ⊗ n(1)a(1))

= µ(f(n(0))(0) · a(0)(0)) · φ
(
S(f(n(0))(1)a(0)(1))α

−1(n(1)a(1))
)

= (µ(f(n(0))(0)) · a(0)) · φ
(
S(f(n(0))(1)a(1)1)(α−1(n(1))a(1)2)

)
= (µ(f(n(0))(0)) · a(0)) · φ

(
(S(f(n(0))(1))S(a(1)1))(a(1)2α

−1(n(1)))
)

= (µ(f(n(0))(0)) · a(0)) · φ
(
(α−1(S(f(n(0))(1))S(a(1)1))a(1)2)n(1)

)
= (µ(f(n(0))(0)) · a(0)) · φ

(
(S(f(n(0))(1))α

−1(S(a(1)1)a(1)2))n(1)

)
= (µ(f(n(0))(0)) · a(0)) · φ

(
(S(f(n(0))(1))ε(a(1))1H)n(1)

)
= (µ(f(n(0))(0)) · β−1(a)) · φ

(
α(S(f(n(0))(1)))n(1)

)
= µ2(f(n(0))(0)) ·

(
β−1(a)φ(S(f(n(0))(1))α

−1(n(1)))
)

= µ2(f(n(0))(0)) ·
(
φ(S(f(n(0))(1))α

−1(n(1)))β
−1(a)

)
=
(
µ(f(n(0))(0)) · φ(S(f(n(0))(1))α

−1(n(1)))
)
· a = fφ(n) · a.

Thus, fφ is a right (A, β)-Hom-module map.

Theorem 5.3 (Maschke’s theorem). If Im(φ) ⊆ Z(A) and φ is a mul-
tiplication map, then every short exact sequence of right (H,A)-Hom-Hopf
modules

0→ (M,µ)
p−→ (N, ν)

q−→ (L, ι)→ 0,

which is split as a sequence of (A, β)-Hom-modules, is also split as a sequence
of (H,A)-Hom-Hopf-modules.

Proof. We claim that if p : (M,µ) → (N, ν) is a morphism in H̃(MH
A )

such that there exists a right (A, β)-Hom-module map f : (N, ν) → (M,µ)
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with f ◦ p = idM , then there exists a morphism fφ : (N, ν) → (M,µ) in

H̃(MH
A ) such that fφ ◦ p = idM .

Indeed, by Lemma 5.2, fφ is both a right (H,α)-Hom-module map and
a right (A, β)-Hom-module map. Moreover,

fφ ◦ p = λ ◦ (f ⊗ id) ◦ ρN ◦ p = λ ◦ (f ⊗ id) ◦ (p⊗ id) ◦ ρM
= λ ◦ (f ◦ p⊗ id) ◦ ρM = λ ◦ ρM = idM ,

where the last step follows by the proof of Theorem 3.5.

Remark 5.4. Assume that (H,α) is commutative. Then, since (H,α)
is a cleft (H,α)-Hom-comodule algebra, every short exact sequence of right
(H,α)-Hom-Hopf modules

0→M → N → L→ 0

which splits as a sequence of right (H,α)-Hom-modules, also splits as a
sequence of right (H,α)-Hom-Hopf modules.

Remark 5.5. Let us mention that Maschke’s theorem and related prob-
lems for relative Hom-Hopf modules are also studied by S. Guo and his
research group [18, 19]. In Maschke’s theorem provided in [19] for Doi Hom-
Hopf modules it is assumed that there exists a normalized (A, β)-integral
θ : (H,α) ⊗ (H,α) → (A, β) satisfying three suitable conditions. This is
different from the conditions for the total integral in our Theorem 4.3.
Moreover, we prove Theorem 4.3 by different methods. In fact, there are
some relations between normalized integrals and total integrals. A normal-
ized (A, β)-integral is indeed a total integral, but for the converse additional
conditions (similar to weak commutativity) are needed.

The structural construction of the proof for Maschke’s theorem for rela-
tive Hom-Hopf modules in [18] is of interest. We prove Maschke’s theorem in
the same way, introduced by Doi. However, the morphism fφ in [18, Lemma
5.5] is defined by fφ(n) = µ−1(f(n(0))(0)) · φ(S(f(n(0))(1))α(n(1))), which is
twisted in a different way from ours. Although with different twisting struc-
tures, the final results are the same. This yields some interesting questions
about twisting automorphisms for Hom-structures in the monoidal category
H̃(Mk). Maybe, these Hom-structures are not uniquely determined by the
twisting automorphisms but presented as a family. We guess there may be
some relations among the family of Hom-objects twisted in different ways.
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