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ADJACENT DYADIC SYSTEMS AND THE Lp-BOUNDEDNESS OF
SHIFT OPERATORS IN METRIC SPACES REVISITED
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OLLI TAPIOLA (Helsinki)

Abstract. With the help of recent adjacent dyadic constructions by Hytönen and
the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner
about the Lp-boundedness of shift operators acting on functions f ∈ Lp(X;E) where
1 < p < ∞, X is a metric space and E is a UMD space.

1. Introduction. During the last three decades, the highly influential
T (1) theorem of G. David and J.-L. Journé [7] has been generalized to vari-
ous settings by different authors (e.g. [10, 11]). One of these generalizations
was due to T. Figiel ([9, 8]; a different proof by T. Hytönen and L. Weis
[18]) who proved the theorem for UMD-valued functions f ∈ Lp(Rd;E)
and scalar-valued kernels using a clever observation that any Caldéron–
Zygmund operator on Rd can be decomposed into sums and products of
Haar shifts (or rearrangements), Haar multipliers and paraproducts. Not
long ago, P. F. X. Müller and M. Passenbrunner [25] extended this technique
from the Euclidean setting to metric spaces to prove the T (1) theorem for
UMD-valued functions f ∈ Lp(X;E), where X is a normal space of homo-
geneous type (see [24, Theorems 2 and 3]). One of the key elements of their
(and Figiel’s) proof—the Lp-boundedness of the shift operators—was revis-
ited and simplified by R. Lechner and Passenbrunner in their recent paper
[21] by proving the result in a more general form with different techniques.

Roughly speaking, a shift operator permutes the generating Haar func-
tions in such a way that if hQ 7→ hP , then the dyadic cubes P and Q
are not too far apart and they belong to the same generation of the given
dyadic system. On the real line, this can be expressed in a very simple
form: for every m ∈ Z, the shift operator Tm is the linear extension of the
map hI 7→ hI+m|I|. In [8, Theorem 1], Figiel showed that for UMD-valued
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functions f : [0, 1]→ E and every p ∈ (1,∞) we have the norm estimate

(1.1) ‖Tmf‖p ≤ C log(2 + |m|)α‖f‖p
where α < 1 depends only on E and p, and the constant C depends on
E, p and α (the same result was formulated for functions f : Rd → E in
[9, Lemma 1]). In [25, Sections 4.3–4.5], Müller and Passenbrunner gen-
eralized the definition of shift operators to Christ-type dyadic systems [5]
in quasimetric spaces and proved the corresponding Lp-estimate. Lechner
and Passenbrunner then generalized the definition further and gave an al-
ternative proof for this norm estimate by modifying the underlying dyadic
system.

In this paper, we revisit and improve some results related to the recent
metric adjacent dyadic constructions by Hytönen and the author [17], and
give a proof of (1.1) for UMD-valued functions f : X → E as an applica-
tion. Our central idea is that with the help of adjacent dyadic systems we
can split a given dyadic system D into suitable subcollections Dλ that give
a convenient way to approximate certain indicator functions by their con-
ditional expectations. This approximation technique combined with some
classical results of UMD-valued analysis give a fairly straightforward proof
of the Lp-estimate.

2. Dyadic cubes, conditional expectations and UMD spaces

2.1. Geometrically doubling metric spaces. Let (X, d) be a geo-
metrically doubling metric space, that is, there exists a constant M such
that every ball B(x, r) := {y ∈ X : d(x, y) < r} can be covered by at most
M balls of radius r/2. In this subsection we do not assume any measurability
of (X, d), but we note that if (Y, d′, µ) is a doubling metric measure space,
then (Y, d′) is a geometrically doubling metric space.

We use the following two standard lemmas repeatedly without explicit
mention.

Lemma 2.1 ([12, Lemma 2.3]). The following properties hold for (X, d):

(1) Any ball B(x, r) can be covered by at most bMδ− log2Mc balls B(xi, δr)
for every δ ∈ (0, 1].

(2) Any ball B(x, r) contains at most bMδ− log2Mc centres xi of pairwise
disjoint balls B(xi, δr) for every δ ∈ (0, 1].

Lemma 2.2 ([17, Lemma 2.2]). For any δ > 0 there exists a countable
maximal δ-separated set Aδ ⊆ X:

• d(x, y) ≥ δ for all x, y ∈ Aδ, x 6= y,
• minx∈Aδ d(x, z) < δ for every z ∈ X.
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Since the centre points of dyadic cybes (see Theorem 2.5 below) form
sets that are δk-separated, the following simple lemma is a convenient tool
for splitting dyadic systems into smaller sparse systems. We will use the
lemma later in Section 3.

Lemma 2.3. Let D2 ≥ D1 > 0 and let Z be a D1-separated set of points
in the space X. Then Z is a disjoint union of at most N D2-separated sets
where N depends only on M and D1/D2.

Proof. First, notice that any ball of radius D2 can contain at most
boundedly many, say M1, points of Z by the second part of Lemma 2.1.
By Lemma 2.2, we can choose a maximal D2-separated subset Z1 from Z.
We claim that if we apply the same lemma M1 times to choose maximal
D2-separated subsets Zk ⊆ Z \

⋃k−1
i=1 Zi for every k = 1, . . . ,M1, then

Z \
⋃M1
k=1 Zk = ∅.

For contradiction, suppose that there exists a point x ∈ Z \
⋃M1
k=1 Zk. By

maximality, B(x,D2) ∩ Zk 6= ∅ for every k = 1, . . . ,M1 since otherwise x
would belong to one of the collections Zk. Thus, the ball B(x,D2) contains
M1 + 1 points of Z, a contradiction.

In the construction of metric dyadic cubes we need maximal δk-separated
sets for every k ∈ Z. For this we can use Lemma 2.2 or the following stronger
result:

Theorem 2.4 ([17, Theorem 2.4]). For every δ ∈ (0, 1/2) there exist
maximal nested δk-separated sets Ak := {zkα : α ∈ Nk}, k ∈ Z:

• Ak ⊆ Ak+1 for every k ∈ Z;
• d(zkα, z

k
β) ≥ δk for α 6= β;

• minα d(x, zkα) < δk for every x ∈ X and every k ∈ Z,

whereNk={0, 1, . . . , nk} if the space (X, d) is bounded, andNk=N otherwise.

2.2. Adjacent dyadic systems in metric spaces. The following the-
orem is an improved version of the famous constructions of (quasi)metric
dyadic cubes by M. Christ [5] and E. Sawyer and R. L. Wheeden [27].
This version was proved by Hytönen and A. Kairema [15, Theorem 2.2] and
adapted for different dyadic constructions in [17] (see [17, Theorem 2.9] and
Theorem 2.6 below).

Theorem 2.5. Let (X, d) be a doubling metric space and δ ∈ (0, 1) be
small enough. Then for given nested maximal sets {zkα : α ∈ Ak}, k ∈ Z,
of δk-separated points there exist a countable collection D := {Qkα : k ∈ Z,
α ∈ Ak} of dyadic cubes such that

(i) X =
⋃
αQ

k
α for every k ∈ Z;

(ii) P,Q ∈ D ⇒ P ∩Q ∈ {∅, P,Q};
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(iii) B
(
zkα,

1
5δ
k
)
⊆ Qkα ⊆ B(zkα, 3δ

k);

(iv) Qkα =
⋃
β:Qk+mβ ⊆Qkα

Qk+mβ for every m ∈ N.

For every dyadic system D and cube Q := Qjα ∈ D we use the following
notation:

lev(Q) := j (level/generation of the cube Q),

Dk := {Qkα ∈ D : α ∈ Ak} (cubes of level k),

BQ := B(zjα, 3δ
j) (a ball containing Q),

xQ := zjα (the centre point of Q).

As mentioned earlier, the central idea of our techniques in Section 4 is to
split a given dyadic system into suitable subcollections that help us approx-
imate certain indicators by their conditional expectations. For this we use
adjacent dyadic systems which have turned out to be a convenient tool for
approximating arbitrary balls and other objects by cubes both in Rn and in
more abstract settings (see e.g. [20, 23]). In quasimetric spaces they were first
constructed by Hytönen and Kairema [15, Theorem 4.1] (based on the ideas
of Hytönen and H. Martikainen [16]), but by restricting ourselves to a strictly
metric setting we can use systems with more powerful properties. The fol-
lowing theorem was recently proved by Hytönen and the author for n = 1:

Theorem 2.6. Let (X, d) be a doubling metric space with doubling con-
stant M and let n ∈ N. Then for δ < 1/(n · 168M8) there exist a bounded
number of adjacent dyadic systems D(ω), ω = 1, . . . ,K = K(δ), such that:

(I) each D(ω) is a dyadic system in the sense of Theorem 2.5;
(II) for a fixed p ∈ N and n fixed balls B1, . . . , Bn there exist ω ∈

{1, . . . ,K} and cubes QB1 , . . . , QBn ∈ D(ω) such that for every
i ∈ {1, . . . , n} we have

(i) Bi ⊆ QBi,
(ii) `(QBi) ≤ δ−2r(Bi),
(iii) δ−pBi ⊆ Q(p)

Bi
,

where `(Q) = δk if Q = Qkα, r(B) is the radius of the ball B and

Q
(p)
Bi

is the unique dyadic ancestor of QBi of generation lev(QBi)−p.

Proof. Let Ω := {0, 1, . . . , b1/δc} and let Pω be the natural probability
measure Ω. Also denote

∂εA := {x ∈ A : d(x,Ac) < ε} ∪ {x ∈ Ac : d(x,A) < ε},

Bk(ω) :=
⋃
α

∂δk+1Qkα(ω)

for every k ∈ Z, where Q(ω) is a cube of D(ω).
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In [17, Theorem 5.9] the case n = 1 was proved by showing that if B(x, r)
is a ball such that δk+2 < r ≤ δk+1, then

(2.7) Pω({ω ∈ Ω : x ∈ Bk(ω) ∪ Bk−p(ω)}) ≤ 168M8δ < 1.

Given (2.7), the proof for general n ∈ N is simple. Let B1, . . . , Bn be balls
such that Bi := B(xi, ri), δ

ki+2 < ri ≤ δki+1. Then

Pω({ω ∈ Ω : xi ∈ Bki(ω) ∪ Bki−p(ω) for some i}) ≤ n · 168M8 < 1.

In particular, there exists ω ∈ Ω such that xi /∈ Bki(ω) ∪ Bki−p(ω) for every
i = 1, . . . , n, which is enough to prove the claim.

Remark 2.8. (1) In the previous theorem, the constant K is roughly 1/δ
[17, Section 5.2]. Thus, for a large n both the number of systems D(ω) and
the change of length scale between two consecutive levels of cubes become
large.

(2) We will use the previous theorem only for n = 2, in the following
way. Let Q1, Q2 ∈ Dk and m > 1 be fixed. Then by Theorem 2.6 there exist
an index ω and cubes P1, P2 ∈ D(ω)k−3 such that

Q1 ⊆ BQ1 ⊆ P1, Q2 ⊆ BQ2 ⊆ P2, 2mBQ1 ⊆ P
(pm)
1

for pm ∈ N with 2mδpm ≤ 1.

2.3. Conditional expectations. Conditional expectations are mostly
used in the field of probability theory, but they have turned out to be ex-
tremely useful also in many questions related to more classical analysis (see
e.g. [13]). It is well known among specialists that most of the results involving
conditional expectations remain true in more general measure spaces but,
unfortunately, it is difficult to find a comprehensive presentation of this ex-
tended theory in the literature. We refer to [28] for some basic properties
of conditional expectations in σ-finite measure spaces, and to [29, Chap-
ter 9] for a presentation of the classical probabilistic theory of conditional
expectations.

Let (X,F , µ, d) be a metric measure space such that µ is a doubling
Borel measure, i.e. there exists a constant D := Dµ such that

µ(2B) ≤ Dµ(B) <∞
for every ball B. By construction we know that if D is a dyadic system given
by Theorem 2.5, then D ⊆ BorX. In particular, the σ-algebra generated by
any subcollection of D is a subset of F .

Set G0 := {G ∈ G : µ(G) < ∞} for every σ-algebra G ⊆ F , and let
L1
σ(G ) be the space of functions that are integrable over all G ∈ G0.

Definition 2.9. Let G be a σ-finite sub-σ-algebra of F and let
f : X → E be an F -measurable function where E is a Banach space. Then
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a G -measurable function g is a conditional expectation of f with respect to
G if �

G

f dµ =
�

G

dµ for every G ∈ G0.

It is not difficult to prove that if the conditional expectation exists, it
is unique a.e. Thus, we denote E[f |G ] := g if g is a conditional expectation
of f with respect to G . Concerning existence, we only need the following
elementary case.

Lemma 2.10. Let A := {Ai : i ∈ N} ⊆ F be a countable partition of the
space X such that µ(Ai) < ∞ for every i ∈ N and let A be the σ-algebra
generated by A. Then for every f ∈ L1

σ(F ) we have

E[f |A ] =
∑
A∈A

1A〈f〉A.

Proof. Let G ∈ A0. Then there exist pairwise disjoint sets AG1 , A
G
2 , . . .

in A such that G =
⋃
iA

G
i . Now

�

G

f dµ =
∑
i

�

AGi

( �

AGi

f dµ
)
dµ =

�

G

∑
i

1AGi

( �

AGi

f dµ
)
dµ

=
�

G

(∑
A∈A

1A
�

A

f dµ
)
dµ,

which proves the claim.

2.4. UMD spaces; type and cotype of Banach spaces. Suppose
that (X, d,F , µ) is a metric measure space and let (Fk), k = 0, 1, . . . , N ,
be a sequence of sub-σ-algebras of F such that Fk ⊆ Fk+1 for all k. For
simplicity, let

‖ · ‖p := ‖ · ‖Lp(X;E)

where ‖ · ‖Lp(X;E) is the Lp-Bochner norm.

Definition 2.11. A sequence (dk)
N
k=1 of functions is a martingale dif-

ference sequence if dk is Fk-measurable and E[dk|Fk−1] = 0 for every k.

Definition 2.12. A Banach space (E, ‖ · ‖E) is a UMD (unconditional
martingale difference) space if for every p ∈ (1,∞) there exists a constant
βp such that ∥∥∥ N∑

i=1

εidi

∥∥∥
p
≤ βp

∥∥∥ N∑
i=1

di

∥∥∥
p

for all E-valued Lp-martingale difference sequences (di)
N
i=1 (i.e. (di) is a

martingale difference sequence such that di ∈ Lp(X,Fi;E) for every i) and
all choices of signs (εi)

N
i=1 ∈ {−1,+1}N .
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UMD spaces are crucial in Banach-space-valued harmonic analysis due
to their many good properties; for example, a Banach space E is UMD if
and only if the Hilbert transform is bounded on Lp(R;E) [4, 3]. They give us
a natural setting for analysis that is based on techniques used in probability
spaces in the following way. Let (di) be a martingale difference sequence and
let (εi) be a sequence of random signs, i.e. independent random variables on
some probability space (Ω,P), with distribution P(εi = −1) = P(εi = +1) =
1/2. Then for every η ∈ Ω the sequence (εi(η)di) is a martingale difference
sequence. In particular, the UMD property gives us

(2.13)
∥∥∥ N∑
i=1

di

∥∥∥
p
hE

( �
Ω

∥∥∥ N∑
i=1

εi(η)di

∥∥∥p
p
dP(η)

)1/p
=:
∥∥∥ N∑
i=1

εidi

∥∥∥
Ω,p

for every p ∈ (1,∞).

The following inequality by J. Bourgain is a standard tool in UMD-valued
analysis. Its original scalar-valued version was due to E. Stein.

Theorem 2.14 (see e.g. [6, Proposition 3.8]). Let (fk) be a sequence of
functions in Lp(X,F ;E) and (Fk) a sequence of σ-finite σ-algebras such
that Fk ⊆ Fk+1 ⊆ F for every k ∈ N. Then for any sequence (εk) of
random signs we have∥∥∥∑

k

εkE[fk|Fk]
∥∥∥
Ω,p

.p,βp

∥∥∥∑
k

εkfk

∥∥∥
Ω,p
.

In our proofs we also need the following version of the well-known prin-
ciple of contraction by J.-P. Kahane. It holds in all Banach spaces.

Theorem 2.15 ([19, Section 2.6, Theorem 5]). Suppose that (εi) is a se-
quence of random signs and the series

∑
i εixi converges in E almost surely.

Then for any bounded sequence (ci) of scalars the series
∑

i εicixi converges
in E almost surely and

�

Ω

∥∥∥∑
i

εicixi

∥∥∥p
E
dP ≤

(
sup
i
|ci|
)p �

Ω

∥∥∥∑
i

εixi

∥∥∥p
E
dP.

2.4.1. Type and cotype of Banach spaces

Definition 2.16. Let (E, ‖ · ‖) be a Banach space. We say that E has
type t ∈ [1, 2] if there exists a constant Ct > 0 such that for every finite
sequence (xi) in E and finite sequence (εi) of random signs we have

�

Ω

∥∥∥∑
i

εixi

∥∥∥
E
dP ≤ Ct

(∑
i

‖xi‖t
)1/t

.

In a similar fashion, we say that E has cotype q ∈ [2,∞] if there exists
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a constant Cq > 0 such that(∑
i

‖xi‖q
)1/q

≤ Cq
�

Ω

∥∥∥∑
i

εixi

∥∥∥
E
dP.

The notion of type and cotype of Banach spaces was introduced by
B. Maurey and G. Pisier in the 1970’s and it has become an important part
of analysis on Banach spaces. From this rich theory, we need the following
results:

(i) If Y is a σ-finite measure space and E is a Banach space of type r and
cotype s, then Lp(X;E) has type min{p, r} and cotype max{p, s}.

(ii) If E is a UMD space, then E has a non-trivial type s > 1 and
non-trivial cotype t <∞.

For proofs, see e.g. [22, Chapter 9] for (i), and [2, Theorem 11.1.14], [26,
Proposition 3] for (ii).

2.5. Structural constants. We say that c is a structural constant if it
depends only on the doubling constant D, the UMD constant βp for a fixed
p ∈ (1,∞) and the type and cotype constants Ct and Cq. We do not track
the dependences of our bounds on the structural constants, and thus we use
the notation a . b if a ≤ cb for some structural constant c, and a h b if
a . b . a.

3. Embedding cubes into larger cubes. In this section we prove a
decomposition result for dyadic systems using Theorem 2.6. We formulate
the result in such a way that it is easy to apply it in Section 4, but we note
that it is easy to modify the proof for other similar decompositions.

Let D be a dyadic system with δ < 1/(2 · 168M8) and {D(ω)}ω be
adjacent dyadic systems for the same δ given by Theorem 2.6. Fix m ≥ 1
and an injective function τ : D → D such that τ(Q) ⊆ mBQ for every
Q ∈ D , and τDk ⊆ Dk for every k ∈ Z.

Proposition 3.1. The system D is a disjoint union of a bounded num-
ber of subcollections Dλ ⊆ D , λ = (i, j, ω), with the following property: for
every Q ∈ Dλ there exist cubes PQ, Pτ(Q) ∈ D(ω)k−3 and P ∗Q ∈ D(ω)k−3−T ,

where 2mδT ≤ 1, such that

Q ⊆ PQ, τ(Q) ⊆ Pτ(Q), PQ ∪ Pτ(Q) ∪ 2mBQ ⊆ P ∗Q;(3.2)

if Q1, Q2 ∈ Dλ ∩Dk, then (PQ1 ∪ Pτ(Q1)) ∩ (PQ2 ∪ Pτ(Q2)) = ∅;(3.3)

if Q1, Q2 ∈ Dλ, Q1 ( Q2, then P ∗Q1
⊆ PQ2 .(3.4)

In other words, we split the collection D into sparse subcollections Dλ

such that we can embed every cube Q ∈ Dλ and its image τ(Q) into some
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larger cubes PQ and Pτ(Q) such that PQ and Pτ(Q) belong to the same dyadic
system and they have a mutual dyadic ancestor P ∗Q.

We form the sets Dλ with the help of the next technical lemma.

Lemma 3.5. The collection D is a disjoint union of L = L(X) subcol-
lections Qi such that for every k ∈ Z and Q1, Q2 ∈ Qi ∩Dk we have

3δ−3BR1 ∩ 3δ−3BR2 = ∅
where R1 ∈ {Q1, τ(Q1)} and R2 ∈ {Q2, τ(Q2)}, R1 6= R2, and the number
L is independent of m.

Proof. We only need to use basic properties of geometrically doubling
metric spaces and the observation that if Q,P ∈ Dk and d(x(Q), x(P )) ≥
12δk−3, then 3δ−3BQ ∩ 3δ−3BP = ∅.

Let k ∈ Z be fixed. For any subcollection Q ⊆ Dk and any set A of
centre points of cubes, set

YQ := {x(Q) : Q ∈ Q}, DA := {Q ∈ D : x(Q) ∈ A}.
We split YDk into smaller sets in three steps. To keep our notation simple,
i is an index whose role may change from one occurrence to the next.

(1) By Lemma 2.3, we can split the δk-separated set YDk into a bounded
number of 12δk−3-separated subsets Y 1

i,k.

(2) For every Q ∈ DY 1
i,k

, the ball 3δ−3BQ intersects at most a bounded

number of balls 3δ−3Bτ(P ) where P ∈ DY 1
i,k

. Thus, we can split the

set Y 1
i,k into a bounded number of subsets Y 2

i,k such that we have

3δ−3BQ ∩ 3δ−3Bτ(P ) = ∅ for all Q,P ∈ DY 2
i,k

, Q 6= τ(P ).

(3) For every Q ∈ DY 2
i,k

, the ball 3δ−3Bτ(Q) intersects at most a bounded

number of balls 3δ−3Bτ(P ), P ∈ DY 2
i,k

. In particular, we can split the

set Y 2
i,k into a bounded number of subsets Y 3

i,k such that we have

3δ−3Bτ(Q) ∩ 3δ−3Bτ(P ) = ∅ for any Q,P ∈ DY 3
i,k

, Q 6= P .

Now we set Qi :=
⋃
k∈Z DY 3

i,k
for every i.

Let {Qi}i be the partition of D given by the previous lemma and let
T ∈ N, T ≥ 1, be the smallest number such that

2mδT ≤ 1.

Recall Theorem 2.6 and denote

γ(R) := min{ω : QBR , QBτ(R)
∈ D(ω), δ−TBR ⊆ Q(T )

BR
}

for every cube R ∈ D and

Qi,ω := {R ∈ Qi : γ(R) = ω}
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for i = 1, . . . , L and ω = 1, . . . ,K. Then the collections Qi,ω satisfy proper-
ties (3.2) and (3.3) but they are still not suitable for property (3.4). Thus,
we split the collections Qi,ω into smaller ones whose cubes have large enough
generation gaps: we set

Di,j,ω :=
⋃
k∈Z

(Qi,ω ∩Dj+4kT )

for every j = 0, 1, . . . , 4T −1. Notice that i, j and ω are independent of each
other.

Proof of Proposition 3.1. Clearly we only need to show the claim for the
collections Di,0,ω =: Di.

Notice first that

2m · r(BQ) = 6mδ4kT ≤ δ−T 3δ4kT = δ−T · r(BQ)

for every Q := Q4kT
α ∈ Di. Thus, by Remark 2.8 and the definition of Di,

for every cube Q ∈ Di there exist cubes PQ, Pτ(Q) ∈ D(ω)4kT−3 such that

BQ ⊆ PQ, Bτ(Q) ⊆ Pτ(Q), 2mBQ ⊆ P (T )
Q =: P ∗Q.

Let us show that the cubes PQ, Pτ(Q) and P ∗Q have properties (3.2)–(3.4).

For (3.2), since Q, τ(Q) ⊆ 2mBQ, we know that PQ ∩ P ∗Q 6= ∅ and
Pτ(Q) ∩P ∗Q 6= ∅. Thus, as D(ω) is a dyadic system and lev(P ∗Q) < lev(PQ) =
lev(Pτ(Q)), we have PQ ∪ Pτ(Q) ⊆ P ∗Q.

For (3.3), since x(Q) ∈ PQ for every cube Q ∈ D , we have

PQ ⊆ B(x(PQ), 3δ4kT−3) ⊆ B(x(Q), 6δ4kT−3) = 2δ−3BQ

for every Q ∈ D . Thus, (3.3) follows directly from Lemma 3.5.

For (3.4) suppose that R ( Q := Q4kT
α . Then lev(R) ≥ (4k + 4)T and

thus lev(PR) ≥ (4k + 4)T − 3 and

lev(P ∗R) ≥ (4k + 4)T − 3− T ≥ 4kT = lev(Q) ≥ lev(PQ)

since T ≥ 1. In particular, P ∗R ⊆ PQ since P ∗R, PQ ∈ D(ω) and D(ω) is a
dyadic system.

4. Lp-boundedness of shift operators. In this section, we show that
with the help of Proposition 3.1 we can give a straightforward proof for the
Lp-boundedness of the shift operators in doubling metric measure spaces.
We follow some ideas of [8] and [21] but mostly we rely on our own dyadic
constructions.

Let (X, d, µ) be a metric measure space, where µ is a doubling Borel
measure on X, and let (E, ‖ · ‖) be a UMD space. Since the doubling prop-
erty of µ implies the geometrical doubling property of d, there exists a finite
geometrical doubling constant M . Thus, we may fix a dyadic system D for
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δ < 1/(2 · 168M8) and adjacent dyadic systems {D(ω)}ω given by Theo-
rem 2.5 for the same δ.

4.1. Haar functions. There are various ways to construct Haar func-
tions in metric spaces (see e.g. [1, Section 5]), and thus we do not want to
fix any particular construction. We do, however, refer to the construction in
[14, Section 4] (with the choice b ≡ 1) for a system of Haar functions that
satisfy the properties in the following definition. In [14] the construction is
done in Rn for a non-doubling measure but it is easy to generalize the result
to our setting.

Definition 4.1. A collection of functions hθQ : X → R, where Q :=

Qkα ∈ D and θ = 1, . . . , n(Q) ≤ Θ, is a system of Haar functions if it has
the following properties: for all Q and θ we have

• supphθQ ⊆ Q;

• hθQ is constant on every child cube Qk+1
β ⊆ Q;

•
	
hθQ = 0 =

	
hθQh

θ′
Q if θ 6= θ′;

• ‖hθQ‖2 = 1;

and the space of finite linear combinations of the functions hθQ is dense in

L2(X;E).

The number Θ above depends only on M or, more precisely, on the
maximum number of children Qk+1

β a cube Qkα can have. Henceforth, we fix

some θ = θ(Q) for each Q ∈ D and drop the dependence on θ in notation.
Let hQ =

∑
k vk1Qk be a Haar function, where Qk are the children

of Q. The following properties are straightforward consequences of the above
definition:

‖hQ‖∞ = max |vk| h
1

µ(Q)1/2
, ‖hQ‖1 h µ(Q)1/2.

In particular,

1Qk(x)

µ(Qk)1/2
. |hQ(x)| .

1Q(x)

µ(Q)1/2
for every x ∈ Q and some Qk.(4.2)

The previous properties give us the following lemma:

Lemma 4.3. For every p ∈ (1,∞) and any finite collection of cubes Q
we have ∥∥∥∑

Q

xQhQ

∥∥∥
p
h
∥∥∥∥∑
Q

εQxQ
1Q

µ(Q)1/2

∥∥∥∥
Ω,p

.

Proof. Let
∑

Q xQhQ =
∑

k

∑
α xQkαhQkα and let (εQ) be a sequence of

random signs. Then for all y ∈ X and k ∈ Z there exists at most one Qkα,y
such that hQkα,y(y) 6= 0. For any y ∈ X and k ∈ Z, let σyk ∈ {−1,+1}
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be such that σykhQkα,y(y) = |hQkα,y(y)|. Then, for a fixed y ∈ X, (σykεQkα,y)k
is a sequence of random signs. Since the functions hQ form a martingale

difference sequence and by (4.2) we know that |hQ|µ(Q)1/2 . 1 for every Q,
we have∥∥∥∑

Q

xQhQ

∥∥∥p
p
h

�

X

�

Ω

∥∥∥∑
k

σykεQkα,y(η)xQkα,yhQkα,y(y)
∥∥∥p
E
dP(η) dµ(y)

=
�

X

�

Ω

∥∥∥∥∑
k

εQkα,y(η)xQkα,y

|hQkα,y(y)|µ(Qkα,y)
1/2

µ(Qkα,y)
1/2

∥∥∥∥p
E

dP(η) dµ(y)

.

∥∥∥∥∑
Q

εQxQ
1Q

µ(Q)1/2

∥∥∥∥p
Ω,p

,

by the UMD property of E, Fubini’s theorem and Kahane’s contraction prin-
ciple. Write

∑
Q xQhQ =

∑N
i=1 xihQi where the cubes Qi satisfy lev(Q1) ≤

lev(Q2) ≤ · · · ≤ lev(QN ). Then, by Lemma 2.10, we have E[|hQi | | Fi] =

1Q〈|hQ|〉Q where Fi is the σ-algebra generated by D lev(Qi). Thus, since

1/(µ(Q)1/2〈|hQ|〉Q) h 1, the previous estimates, Stein’s inequality and Ka-
hane’s contraction principle (in this order) give∥∥∥ N∑
i=1

xihQi

∥∥∥p
p
h
∥∥∥ N∑
i=1

εixi|hQi |
∥∥∥p
Ω,p

&
∥∥∥ N∑
i=1

εixiE[|hQi | | Fi]
∥∥∥p
Ω,p

=

∥∥∥∥ N∑
i

εixi
1Qi

µ(Qi)1/2
µ(Qi)

1/2〈|hQi |〉Qi

∥∥∥∥p
Ω,p

&

∥∥∥∥ N∑
i

εixi
1Qi

µ(Qi)1/2

∥∥∥∥p
Ω,p

,

which proves the claim.

4.2. Shift operators. Fix m ≥ 1 and let τ : D → D be an injective
function such that

(1) τDk ⊆ Dk for every k ∈ Z;
(2) for every Q ∈ D we have τ(Q) ⊆ mBQ;
(3) the measures of the cubes Q and τ(Q) are approximately the same:

(4.4) µ(Q) h µ(τ(Q)).

Let {hQ}Q∈D be a system of Haar functions. Then we can define the shift

operator T := Tτ as the linear extension of the operator T̂ :

T̂ hQ = hτ(Q).

It is easy to see that without condition (4.4) an estimate of the type (1.1)
is out of reach for all p ∈ (1,∞). More precisely: by property (4.2) we have
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‖hQ‖p h µ(Q)1/p−1/2 for every cube Q, and thus without condition (4.4) the
estimate cannot hold simultaneously for all p ∈ (1, 2] and all q ∈ (2,∞). We
note that (4.4) is automatically valid in metric measure spaces that satisfy
an Ahlfors-regularity-type condition.

4.3. Lp-boundedness of shift operators. With the help of Propo-
sition 3.1 and Lemma 4.3, we can now prove the following theorem quite
easily.

Theorem 4.5. Let p ∈ (1,∞) and f ∈ Lp(X;E). Then

‖Tf‖p ≤ C(log(2m) + 1)α‖f‖p
where C = C(p,X,E, α), α = 1/min{tE , p} − 1/max{qE , p} < 1, and tE
and qE are the type and cotype of the space E.

Proof. By the properties of the Haar functions and Proposition 3.1, we
may assume that

f =
L∑
i=1

4T−1∑
j=0

K∑
ω=1

∑
Q∈Di,j,ω

xQhQ

where xQ 6= 0 only for finitely many Q. Thus, for simplicity, we denote
f =

∑
i,j,ω

∑n
k=1 xkhQk where lev(Q1) ≤ · · · ≤ lev(Qn).

For every k = 1, . . . , n, let Fk be the σ-algebra generated by

Fk :=
(
D(ω)lev(Qk)−3 \

⋃
l=1,...,n

lev(Ql)=lev(Qk)

{PQl , Pτ(Ql)}
)
∪

⋃
l=1,...,n

lev(Ql)=lev(Qk)

{PQl},

where PQl :=PQl∪Pτ(Ql). Notice that if lev(Qk1)=lev(Qk2), then Fk1 =Fk2 .
By (3.3) we know that Fk is a partition of the space X, and by (3.4) the
sequence (Fk) is nested. Thus, for every k = 1, . . . , n,

(4.6) E[1Qk |Fk]
2.10
= 1PQk 〈1Qk〉PQk

(4.4)
h 1PQk

µ(Qk)

µ(PQk)
h 1PQk .

In particular,∥∥∥∑
k

xkhτ(Qk)

∥∥∥
p

4.3h
∥∥∥∥∑

k

εk
xk

µ(τ(Qk))1/2
1τ(Qk)

∥∥∥∥
Ω,p

2.15
(4.4)

.

∥∥∥∥∑
k

εk
xk

µ(Qk)1/2
1PQk

∥∥∥∥
Ω,p

(4.6)
h
∥∥∥∥∑

k

εk
xk

µ(Qk)1/2
E[1Qk |Fk]

∥∥∥∥
Ω,p

2.14

.

∥∥∥∥∑
k

εk
xQk

µ(Qk)1/2
1Qk

∥∥∥∥
Ω,p

.
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Hence, since by Section 2.4.1 the space Lp(X;E) has a non-trivial type t > 1
and a non-trivial cotype q <∞, we have∥∥∥∑

i,j,ω

∑
k

xkhτ(Qk)

∥∥∥
p
.

(∑
i,j,ω

∥∥∥∥∑
k

εk
xQk

µ(Qk)1/2
1Qk

∥∥∥∥t
Ω,p

)1/t

≤ (4TKL)1/t−1/q
(∑
ω,i,j

∥∥∥∥∑
k

εk
xQk

µ(Qk)1/2
1Qk

∥∥∥∥q
Ω,p

)1/q

. T 1/t−1/q
∥∥∥∥∑
ω,i,j

∑
k

εk
xQk

µ(Qk)1/2
1Qk

∥∥∥∥
Ω,p

4.3

. (log(2m) + 1)1/t−1/q‖f‖p
by Hölder’s inequality.
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