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THE AFFINENESS CRITERION FOR
QUANTUM HOM-YETTER–DRINFEL’D MODULES

BY

SHUANGJIAN GUO (Guiyang) and SHENGXIANG WANG (Chuzhou)

Abstract. Quantum integrals associated to quantum Hom-Yetter–Drinfel’d modules
are defined, and the affineness criterion for quantum Hom-Yetter–Drinfel’d modules is
proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A, β) an
(H,α)-Hom-bicomodule algebra and B = AcoH . Under the assumption that there exists a
total quantum integral γ : H → Hom(H,A) and the canonical map β : A⊗B A→ A⊗H,
a⊗B b 7→ S−1(b[1])α(b[0][−1])⊗ β−1(a)β(b[0][0]), is surjective, we prove that the induction

functor A⊗B − : H̃ (Mk)B → HH Y DA is an equivalence of categories.

1. Introduction. Hom-algebras and Hom-coalgebras were introduced
by Makhlouf and Silvestrov [19] as generalizations of ordinary algebras and
coalgebras in the following sense: the associativity of multiplication is re-
placed by the Hom-associativity, and similarly for Hom-coassociativity. They
also defined the structures of Hom-bialgebras and Hom-Hopf algebras, and
described some of their properties in [21] by extending properties of ordinary
bialgebras and Hopf algebras. Recently, many properties and structures of
Hom-Hopf algebras have been developed: see [3]–[7], [9], [11]–[17], [27]–[31]
and references cited therein.

Caenepeel and Goyvaerts [1] studied Hom-bialgebras and Hom-Hopf
algebras from a categorical view point, and called them monoidal Hom-
bialgebras and monoidal Hom-Hopf algebras respectively; these are slightly
different from the above Hom-bialgebras and Hom-Hopf algebras. They also
introduced the notion of Hom-Hopf modules and proved the fundamental
theorem on Hom-Hopf modules, and also presented the Hom-Hopf algebraic
structures of the enveloping algebras of monoidal Hom-Lie algebras.

The category of Yetter–Drinfel’d modules is an important category of
modules in the theory of Hopf algebras. Under favourable conditions (e.g.,
if H is a Hopf algebra with a bijective antipode), the category of Yetter–
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Drinfel’d modules is indeed a braided monoidal category by the Drinfel’d
double construction. Makhlouf and Panaite [18] defined Yetter–Drinfel’d
modules over Hom-bialgebras, and showed that Yetter–Drinfel’d modules
over a Hom-bialgebra with bijective structure map provide solutions of the
Hom-Yang–Baxter equation.

Apart from Makhlouf and Panaite’s work, Liu and Shen [16] studied
Hom-Yetter–Drinfel’d modules over monoidal Hom-bialgebras, and showed
that the category of Hom-Yetter–Drinfel’d modules is a braided monoidal
category. Also, Chen and Zhang [7] defined the category of Hom-Yetter–
Drinfel’d modules in a slightly different way to [16], and showed that it is a
full monoidal subcategory of the left center of the left Hom-module category.
Later, You and Wang [31] extended the notion of Hom-Yetter–Drinfel’d
modules of generalized Hom-Yetter–Drinfel’d modules.

Total integral is an important notion in representation theories. Chen
and Zhang [4] introduced integrals of monoidal Hom-Hopf algebras and in-
vestigated the existence and uniqueness of integrals for finite-dimensional
monoidal Hom-Hopf algebras. The first named author and Chen [11] in-
troduced the notion of relative Hom-Hopf modules and proved that the
forgetful functor F from the category of relative Hom-Hopf modules to the
category of right (A, β)-Hom-modules has a right adjoint. In [13], the no-
tion of total integral was introduced for any Hom-comodule algebra (A, β)
over a monoidal Hom-Hopf algebra (H,α), which has strong ties both to

H̃ (Mk)H (i.e., the corepresentation of (H,α)) and to the representation of

the pair (H,A) (i.e., the category of relative Hom-Hopf modules H̃ (Mk)HA ),
and the well-known necessary and sufficient criterion for the existence of a
total integral was presented.

Menini and Militaru [22] interpreted the criterion for the existence of a
total integral with the help of forgetful functors F : M(H)CA → MA and
G : M(H)CA → MC . Inspired by their ideas, we introduce the category of
left-right quantum Hom-Yetter–Drinfel’d modules HH Y DA, which can be
viewed as both a category containing the category HHYDH of Hom-Yetter–
Drinfel’d modules and a quantization of the category of relative Hom-Hopf
modules; so it is necessary to study quantum Hom-Yetter–Drinfel’d modules,
and in this paper we investigate the criterion for the existence of a total
integral of such modules.

The paper is organized as follows. In Section 2, we recall some definitions
and properties relating to monoidal Hom-Hopf algebras which are needed
later. In Section 3, we introduce the concept of quantum Hom-Yetter–
Drinfel’d modules in the sense of [12], which can be interpreted as special Doi
Hom-Hopf modules. In Section 4, quantum integrals associated to quantum
Hom-Yetter–Drinfel’d modules are defined. Then we prove the affineness
criterion for quantum Hom-Yetter–Drinfel’d-modules (Theorem 4.9).
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Throughout this paper we freely use the Hopf algebra and coalgebra
terminology introduced in [2], [10], [23], [25] and [26].

2. Preliminaries. In this section we recall some basic definitions and
results. Throughout, all algebraic systems are supposed to be over a com-
mutative ring k. The reader is referred to [1] and [11] as general references
for Hom-structures.

Let C be a category. Then there is a new category H (C) as follows:
Objects are couples (M,µ) with M ∈ C and µ ∈ AutC(M). A morphism
f : (M,µ)→ (N, ν) is a morphism f : M → N in C such that ν ◦ f = f ◦ µ.

Let Mk denote the category of k-modules. Then H (Mk) will be called
the Hom-category associated to Mk. If (M,µ) ∈ Mk, then µ : M → M

is obviously a morphism in H (Mk). It is easy to show that H̃ (Mk) =

(H (Mk),⊗, (I, I), ã, l̃, r̃)) is a monoidal category by [1, Proposition 1.1].

The tensor product of (M,µ) and (N, ν) in H̃ (Mk) is given by the formula

(M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν), and for (M,µ), (N, ν), (P, π) ∈ H̃ (Mk),
the associativity and unit constraints are given by

ãM,N,P ((m⊗ n)⊗ p) = µ(m)⊗ (n⊗ π−1(p)),

l̃M (x⊗m) = r̃M (m⊗ x) = xµ(m).

An algebra in H̃ (Mk) will be called a monoidal Hom-algebra.

Definition 2.1. A monoidal Hom-algebra is an object (A,α) ∈ H̃ (Mk)
together with a k-linear map mA : A⊗A→ A and an element 1A ∈ A such
that

α(ab) = α(a)α(b), α(1A) = 1A,

α(a)(bc) = (ab)α(c), a1A = 1Aa = α(a),

for all a, b, c ∈ A. Here we use the notation mA(a⊗ b) = ab.

Definition 2.2. A monoidal Hom-coalgebra is an object (C, γ)∈H̃ (Mk)
together with k-linear maps ∆ : C → C ⊗C, ∆(c) = c(1) ⊗ c(2) (summation
implicitly understood) and γ : C → C such that

∆(γ(c)) = γ(c(1))⊗ γ(c(2)), ε(γ(c)) = ε(c),

and

γ−1(c(1))⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ γ−1(c(2)),
ε(c(1))c(2) = ε(c(2))c(1) = γ−1(c),

for all c ∈ C.

Definition 2.3. A monoidal Hom-bialgebra H = (H,α,m, η,∆, ε) is a

bialgebra in the category H̃ (Mk). This means that (H,α,m, η) is a mono-
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idal Hom-algebra, (H,∆, α) is a monoidal Hom-coalgebra, and ∆ and ε are
morphisms of monoidal Hom-algebras, that is,

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1H) = 1H ⊗ 1H ,

ε(ab) = ε(a)ε(b), ε(1H) = 1H .

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-

bialgebra (H,α) together with a linear map S : H → H in H̃ (Mk) such
that

S ∗ I = I ∗ S = ηε, Sα = αS.

Definition 2.5. Let (A,α) be a monoidal Hom-algebra. A right

(A,α)-Hom-module is an object (M,µ) ∈ H̃ (Mk) consisting of a k-module
and a linear map µ : M → M together with a morphism ψ : M ⊗ A → M ,

ψ(m · a) = m · a, in H̃ (Mk) such that

(m · a) · α(b) = µ(m) · (ab), m · 1A = µ(m),

for all a ∈ A and m ∈M . The fact that ψ ∈ H̃ (Mk) means

µ(m · a) = µ(m) · α(a).

A morphism f : (M,µ)→ (N, ν) in H̃ (Mk) is said to be right A-linear if it

preserves the A-action, that is, f(m · a) = f(m) · a. We denote by H̃ (Mk)A
the category of right (A,α)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right

(C, γ)-Hom-comodule is an object (M,µ) ∈ H̃ (Mk) together with a k-linear

map ρM : M →M ⊗ C (ρM (m) = m[0] ⊗m[1]) in H̃ (Mk) such that

m[0][0] ⊗ (m[0][1] ⊗ γ−1(m[1])) = µ−1(m[0])⊗∆C(m[1]),

m[0]ε(m[1]) = µ−1(m),

for all m ∈M . The fact that ρM ∈ H̃ (Mk) means

ρM (µ(m)) = µ(m[0])⊗ γ(m[1]).

Morphisms of right (C, γ)-Hom-comodule are defined in the obvious way.

The category of right (C, γ)-Hom-comodules will be denoted by H̃ (Mk)C .

Definition 2.7. Let (H,α) be a monoidal Hom-Hopf algebra. A mono-
idal Hom-algebra (A, β) is called a right (H,α)-Hom-comodule algebra if
(A, β) is a right (H,α) Hom-comodule with a coaction ρrA : A → A ⊗ H,
ρrA(a) = a[0] ⊗ a[1], such that

ρrA(ab) = a[0]b[0] ⊗ a[1]b[1], ρrA(1A) = 1A ⊗ 1H ,

for all a, b ∈ A.
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Definition 2.8. Let (H,α) be a monoidal Hom-Hopf algebra. A mono-
idal Hom-algebra (A, β) is called a left (H,α)-Hom-comodule algebra if
(A, β) is a right (H,α) Hom-comodule with a coaction ρlA : A → H ⊗ A,
ρA(a) = a[−1] ⊗ a[0], such that

ρlA(ab) = a[−1]b[−1] ⊗ a[0]b[0], ρlA(1A) = 1H ⊗ 1A,

for all a, b ∈ A.

Definition 2.9. Let (H,α) be a monoidal Hom-Hopf algebra. A mono-
idal Hom-algebra (A, β) is called a bicomodule algebra if (A, β) is not only
a right (H,α)-Hom-comodule algebra with a coaction ρA, but also a left
(H,α)-Hom-comodule algebra with a coaction ρlA such that

α−1(a[−1])⊗ a[0][0] ⊗ a[0][1] = a[0][−1] ⊗ a[0][0] ⊗ α−1(a[1])
for all a ∈ A.

3. Quantum Hom-Yetter–Drinfel’d modules

Definition 3.1. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode, and (A, β) an (H,α)-Hom-bicomodule algebra. A quantum
Hom-Yetter–Drinfel’d module (M,µ) is a right (A, β)-Hom-module which
is also a left (H,α)-Hom-comodule with the coaction structure ρM :
M → H ⊗M defined by ρM (m) = m[−1] ⊗m[0], and satisfies the following
compatibility condition: for all m ∈M and a ∈ A,

m[−1]a[−1]⊗m[0] · a[0] = a[1](µ
−1(m) · a[0])[−1]⊗µ((µ−1(m) · a[0])[0]).(3.1)

We denote by HH Y DA the category of left-right quantum Hom-Yetter–
Drinfel’d modules, morphisms being right (A, β)-linear left (H,α)-colinear
maps.

Proposition 3.2. Let (M,µ) be a right (A, β)-Hom-module and a left
(H,α)-Hom-comodule. Then the compatibility relation (3.1) is equivalent to

ρ(m · a) = S−1(a[1])(α
−1(m[−1])a[0][−1])⊗m[0] · β(a[0][0])(3.2)

for all a ∈ A and m ∈M .

Proof. (3.1)⇒(3.2): For h ∈ H and m ∈M , we have

S−1(a[1])(α
−1(m[−1])a[0][−1])⊗m[0] · β(a[0][0])

= S−1(a[1])(α
−1(m[−1])a[0][−1])⊗ µ(µ−1(m[0]) · a[0][0])

(3.1)
= S−1(a[1])

(
a[0][1](µ

−2(m) · a[0][0])[−1]
)
⊗ µ

(
µ((µ−2(m) · a[0][0])[0])

)
= (S−1(a[1](2))a[1](1))(µ

−1(m) · a[0])[−1] ⊗ µ
(
µ((µ−2(m) · β−1(a[0]))[0])

)
= (m · a)[−1] ⊗ (m · a)[0].
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(3.2)⇒(3.1): We compute

a[1](µ
−1(m) · a[0])[−1] ⊗ µ((µ−1(m) · a[0])[0])
(3.2)
= a[1]

(
S−1(a[1])(α

−2(m[−1])a[0][0][−1])
)
⊗ µ

(
(µ−2(m[0]) · β(a[0][0][0]))

)
= (α−1(a[1])S

−1(a[1]))
(
α−1(m[−1])α(a[0][0][−1])

)
⊗ µ

(
(µ−1(m[0]) · β(a[0][0][0]))

)
= (a[1](2)S

−1(a[1](1)))
(
α−1(m[−1])a[0][−1]

)
⊗ µ

(
(µ−1(m[0]) · a[0][0])

)
= m[−1]a[−1] ⊗m[0] · a[0].

Example 3.3. (1) Let A = H and ρ = ρl = ∆. Then HH Y DH is the
category of Yetter–Drinfel’d modules introduced in [16].

(2) If ρA : A→ A⊗H is the trivial coaction, that is, ρA(a) = β−1(a)⊗1H ,

then HH Y DA = HH̃ (Mk)A, the category of relative Hom-Hopf modules
introduced in [11].

Proposition 3.4. Under the hypotheses of Definition 3.1:

(1) (A, β) is a left (H⊗Hop, α⊗αop)-Hom-comodule algebra. The coac-
tion A→ (H ⊗Hop)⊗A is given by

a 7→
(
a[0][−1] ⊗ S−1(α−1(a[1]))

)
⊗ β(a[0][0]).

(2) (H,α) is a right (H ⊗ Hop, α ⊗ αop)-Hom-module coalgebra. The
action of Hop ⊗H on H is given by

g / (h⊗ k) = α(k)(α−1(g)h).

(3) The category HH Y DA of left-right quantum Hom-Yetter–Drinfel’d
modules is isomorphic to a category of Doi Hom-Hopf modules, namely
HH̃ (Mk)(H ⊗Hop)A.

Proof. (1) Let us first prove that (A, β) is a left (H ⊗ Hop, α ⊗ αop)-
Hom-comodule. For all h ∈ H,

(∆H⊗Hop ⊗ β−1)ρH(h) = ∆H⊗Hop(a[0][−1] ⊗ S−1(α−1(a[1])))⊗ a[0][0]
= a[0][−1](1) ⊗ S−1(α−1(a[1](2)))⊗ a[0][−1](2) ⊗ S−1(α−1(a[1](1)))⊗ a[0][0]
= α−1(a[0][−1])⊗ S−1(α−2(a[1]))
⊗ α(a[0][0][0][−1])⊗ S−1(a[0][0][1])⊗ β2(a[0][0][0][0])

= α−1(a[0][−1])⊗ S−1(α−2(a[1]))⊗ ρA(β(a[0][0])) = (α−1 ⊗ ρA)ρA(a).

Therefore (A, β) is a right (H⊗Hop, α⊗αop)-Hom-comodule, and it is easy
to check that ρA(ab) = ρA(a)ρA(b) for all a, b ∈ A.
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(2) We will prove that (H,α) is a right (H⊗Hop, α⊗αop)-Hom-comodule.
For all h, l, k,m, c ∈ H, we have

[c / (h⊗ k)] / (α(l)⊗ α(m)) = [α(k)(α−1(c)h)] / (α(l)⊗ α(m))

= α2(m)
[
[k(α−2(c)α−1(h))]α(l)

]
= α2(m)

[
[(α−1(k)α−2(c))h]α(l)

]
= α2(m)[(kα−1(c))(hl)] = [c(mk)](α(h)α(l))

= α(c) / (hl ⊗mk) = α(c) / [(h⊗ k)(l ⊗m)],

and this implies that (H,α) is a right (H ⊗Hop, α⊗ αop)-Hom-comodule.

Since (H,α) is an (H,α)-Hom-bimodule algebra, it follows that (H,α)
is a left (H ⊗Hop, α⊗ αop)-Hom-module coalgebra.

(3) Let (M, ·, µ) be a right (A, β)-module and (M,ρM , µ) be a right

(H,α)-comodule. Then M ∈ HH̃ (Mk)(H ⊗Hop)A if and only if

ρM (m · a) = m[−1] / (a[0][−1] ⊗ S−1(α−1(a[1])))⊗m[0] · β(a[0][0])

= S−1(a[1])(α
−1(m[−1])a[0][−1])⊗m[0] · β(a[0][0])

for all h ∈ H and m ∈M . This shows that HH̃ (Mk)(H ⊗Hop)A is isomor-
phic to HH Y DA.

4. The affineness criterion for quantum Hom-Yetter–Drinfel’d
modules. In the section, we first introduce the notion of quantum inte-
grals associated to quantum Hom-Yetter–Drinfel’d modules. Then we show
our main result, the affineness criterion for quantum Hom-Yetter–Drinfel’d
modules, via the quantum integrals.

Definition 4.1. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode and (A, β) a (H,α)-Hom-bicomodule algebra. A k-linear
map γ : H → Hom(H,A) (i.e., the set of homomorphisms from (H,α) to
(A, β)) satisfying γ(α(g))(α(h)) = β ◦γ(g)(h) is called a quantum integral if

(4.1) α(h(1))⊗ γ(h(2))(α
−1(g)) =

S−1([γ(h)(α(g(1)))][1])
(
α−1(g(2))⊗ [γ(h)(α(g(1)))][0][−1]

)
[γ(α(h))α2(g(1))][0][0]

for all g, h ∈ H. A quantum integral γ : H → Hom(H,A) is called total if

γ(h(1))(h(2)) = ε(h)1A(4.2)

for all h ∈ H.

Remark 4.2. Let γ : H → Hom(H,A) be a quantum integral. Then the
map

φ : (H,α)→ (A, β), φ(h) = γ(h)(1H),
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satisfies the condition

h(1) ⊗ φ(h(2)) = S−1(α−1(φ(h)[1]))φ(h)[0][−1] ⊗ β(φ(h)[0][0])

for all h ∈ H, that is, φ : (H,α)→ (A, β) is left (H,α)-colinear.

It is not hard to check that H ⊗ A is an object in HH Y DA via the
following structures:

(h⊗ b)a = S−1(a[1])(hα
−1(a[0][−1]))⊗ bβ(a[0][0]),(4.3)

ρH⊗A(h⊗ a) = α(h(1))⊗ h(2) ⊗ β−1(b).(4.4)

Proposition 4.3. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode and (A, β) an (H,α)-Hom-bicomodule algebra. Assume
that there exists a total quantum integral γ : H → Hom(H,A). Then
ρ̃ : A → H ⊗ A, ρ̃(a) = S−1(α−1(a[1]))a[0][−1] ⊗ β(a[0][0]), splits in
HH Y DA.

Proof. We consider the map

λ : H ⊗A→ A,

λ(h⊗ a) = β2(a[0][0])γ(α−1(h))
(
S−1(α−1(a[1]))a[0][−1]

)
,

for all a ∈ A and h ∈ H. It is easy to see that λ is a left (H,α)-colinear
retraction of ρ̃. In particular, λ(1H ⊗ 1A) = 1A and

(4.5) h(1) ⊗ λ(h(2) ⊗ 1A)

= S−1
(
α−1(λ(h⊗ a)[1])

)
λ(h⊗ a)[0][−1] ⊗ β(λ(h⊗ a)[0][0]).

Now define

Λ : H⊗A→A, Λ(h⊗ a) = λ
(
S−2(a[1])(α

−2(h)S(a[0][−1]))⊗1A
)
β2(a[0][0]),

for all h ∈ H and a ∈ A. Then Λ is still a retraction of ρ̃. In fact,

(Λ ◦ ρ̃)(a) = Λ(S−1(α−1(a[1]))a[0][−1] ⊗ β(a[0][0]))

= λ(S−2(α(a[0][0][1]))(S
−1(α−3(a[1]))α

−2(a[0][−1])S(α(a[0][0][0][−1])))⊗ 1A)β3(a[0][0][0][0])

= λ(S−2(α(a[0][0][1]))(S
−1(α−2(a[1])){α−2(a[0][−1])S(a[0][0][0][−1])})⊗ 1A)β3(a[0][0][0][0])

= λ(S−2(α2(a[0][0][0][1]))(S
−1(a[0][0][1]){α−3(a[−1])S(α−2(a[0][−1]))})⊗ 1A)β3(a[0][0][0][0])

= λ(S−2(α(a[0][0][1]))(S
−1(α−1(a[0][1])){α−2(a[−1](1))S(α−2(a[−1](2)))})⊗1A)β2(a[0][0][0])

= λ(S−2(a[0][1])S
−1(α−1(a[1]))⊗ 1A)β(a[0][0])

= λ(S−2(a[1](1))S
−1(a[1](2))⊗ 1A)a[0] = λ(1H ⊗ 1A)β−1(a) = a.

It remains to show that Λ is a morphism in HH Y DA. For this purpose,
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we take h ∈ H and a, b ∈ A and calculate

Λ((h⊗ b)a) = Λ
(
S−1(a[1])(hα

−1(a[0][−1]))⊗ bβ(a[0][0])
)

= λ
(
S−2(b[1]α(a[0][0][1]))(S

−1(α−2(a[1]))(α
−2(h)α−3(a[0][−1]))

S(b[0][1]α(a[0][0][0][1])))⊗ 1A
)
β2(b[0])β

3(a[0][0][0][0])

= λ
(
S−2(α(b[1])){S−2(α−2(a[0][1]))(S−1(α−3(a[1])))}(α−1(h)α−1(a[0][−1]))

S(α(b[0][1])α
2(a[0][0][0][1]))⊗ 1A

)
β2(b[0])β

3(a[0][0][0][0])

= λ
(
S−2(b[1])(α

−2(h)S(b[0][−1]))⊗ 1A
)
β2(b[0][0])a = Λ(h⊗ b)a,

ρ̃Λ(h⊗ a) = ρ̃
(
λ(S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A)β2(a[0][0])
)

= S−1(α(a[0][0][1]))S
−1(α−1(λ(S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A)[1])
)

λ
(
S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A
)
[0][−1]α

2(a[0][0][0][−1])

⊗ β
(
λ(S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A)[0][0]
)
β3(a[0][0][0][0])

= S−1(α(a[0][0][1]))α
−1{S−1(α−1(λ(S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A)[1])
)

λ(S−2(a[1])(α
−2(h)S(a[0][−1]))⊗ 1A)[0][−1]

}
α3(a[0][0][0][−1])

⊗ β
(
λ(S−2(a[1])(α

−2(h)S(a[0][−1]))⊗ 1A)[0][0]
)
β3(a[0][0][0][0])

(4.5)
= S−1(α(a[0][0][1]))α

−1(S−2(a[1](1))(α−2(h(1))S(a[0][−1](2)))
)
α3(a[0][0][0][−1])

⊗ β
(
λ(S−2(a[1](2))(α

−2(h(2))S(a[0][−1](1)))⊗ 1A)[0][0]
)
β3(a[0][0][0][0])

= α(h(1))⊗ λ
(
S−2(α−1(a[1]))(α

−2(h(2))S(α−1(a[0][−1])))⊗ 1A
)
β(a[0][0])

= (idH ⊗ Λ)ρH⊗A(h⊗ a).

So Λ is a retraction of ρ̃ in HH Y DA, as required, and this completes the
proof.

Define the coinvariants of (A, β) as

B = AcoH = {a ∈ A | ρ̃(a) = 1H ⊗ β−1(a)}
= {a ∈ A | S−1(α−1(a[1]))a[0][−1] ⊗ β(a[0][0]) = 1H ⊗ β−1(a)}.

Then (B, β) is a Hom-subalgebra of (A, β).

Proposition 4.4. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode and (A, β) an (H,α)-Hom-bicomodule algebra. Assume
that there exists a total quantum integral γ : H → Hom(H,A). Then

(1) B is a direct summand of A as a left B-submodule;
(2) B is a direct summand of A as a right B-submodule.
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Proof. We shall prove that there exists a well-defined left trace given by
the formula

tl : (A, β)→ (B, β),

tl(a) = λ(1H ⊗ a) = β(a[0][0])γ(1H)
(
S−1(α−1(a[1]))a[0][−1]

)
,

for all a ∈ A. By (3.2) we obtain ρ̃(tl(a)) = β−1(tl(a))⊗ 1H , i.e., tl(a) ∈ B.
Now for any b ∈ B and a ∈ A, we have

tl(ba) = β(b[0][0]a[0][0])γ(1H)
(
S−1(α−1(b[1])α

−1(a[1]))b[0][−1]a[0][−1]
)

= (β−1(b)β(a[0][0]))γ(1H)
(
S−1(a[1])α(a[0][−1])

)
= btl(a).

Hence tl is a left (B, β)-module map satisfying

tl(1A) = 1Aγ(1H)(1H) = 1A.

It follows that tl is a left (B, β)-module retraction of the inclusion B ⊂ A,
as desired.

(2) Similarly, one can prove that the map

tr : (A, β)→ (B, β),

tr(a) = Λ(1H ⊗ a) = γ
(
S−2(α−1(a[1]))S(a[0][−1])(1H)

)
β(a[0][0]),

for all a ∈ A, is a right (B, β)-module retraction of the inclusion B ⊂ A.

Definition 4.5. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode and (A, β) an (H,α)-Hom-bicomodule algebra. Assume
that there exists a total quantum integral γ : H → Hom(H,A). The map

tl : (A, β)→ (B, β), tl(a) = β(a[0][0])γ(1H)
(
S−1(α−1(a[1]))a[0][−1]

)
, a∈A,

is called a quantum trace associated to γ.

Next we will construct functors connecting HH Y DA and H̃ (Mk)B.
First, if (M,µ) ∈ HH Y DA, then

M coH = {m ∈M | ρM (m) = 1H ⊗ µ−1(m)}

is the right (B, β)-module of coinvariants of (M,µ). Furthermore,M→M coH

gives us a covariant functor

(−)coH : HH Y DA → H̃ (Mk)B.

Now, for any (N, ν) ∈ H̃ (Mk)B, N ⊗B A is an object in HH Y DA via
the structures

(n⊗B a)a′ = ν(n)⊗B aβ
−1(a′),

ρN⊗BA(n⊗B a) = S−1(α−2(a[1]))α
−1(a[0][−1])⊗ ν−1(n)⊗ α(a[0][0]),
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for all n ∈ N and a, a′ ∈ A. In this way, we have constructed a covariant
functor (called the induction functor)

A⊗B − : H̃ (Mk)B → HH Y DA.

Proposition 4.6. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode and (A, β) an (H,α)-Hom-bicomodule algebra. Then the

induction functor A ⊗B − : H̃ (Mk)B → HH Y DA is a left adjoint of the

coinvariant functor (−)coH : HH Y DA → H̃ (Mk)B.

Proof. Similar to [22]. Details are left to the reader.

We have shown that H ⊗ A ∈ HH Y DA and (A ⊗ H)coH ∼= A via
a⊗1H 7→ a. Then the adjunction map can be viewed as a map in HH Y DA:

ψ : A⊗B A→ A⊗H, ψ(a⊗ b) = S−1(b[1])α(b[0][−1])⊗ β−1(a)β(b[0][0]),

for all a, b ∈ A. Here A⊗B A ∈ HH Y DA with the structures

(a⊗B b) · a′ = β−1(a)⊗B bβ
−1(a′),

ρA⊗BA(a⊗B b) = S−1(b[1])α(b[0][−1])⊗ β−1(a)⊗ β(b[0][0]),

for all a, a′, b ∈ A.

Definition 4.7. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode, (A, β) an (H,α)-Hom-bicomodule algebra and B = AcoH .
A/B is called a quantum Galois extension if the canonical map

ψ : A⊗B A→ A⊗H, ψ(a⊗ b) = S−1(b[1])α(b[0][−1])⊗ β−1(a)β(b[0][0]),

is bijective.

Theorem 4.8. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode, (A, β) an (H,α)-Hom-bicomodule algebra and B = AcoH .
Assume that there exists a total quantum integral γ : H → Hom(H,A). Then

ηN : N → (N ⊗B A)coH , ηN (n) = n⊗B 1A,

is an isomorphism of right (B, β)-modules for all (N, ν) ∈ H̃ (Mk)B.

Proof. Using the left quantum trace tl : (A, β) → (B, β) we construct
an inverse of ηN as follows. Define the map

θN : (N ⊗B A)coH → N, θN (ni ⊗B ai) =
∑

nit
l(ai),

for any ai ⊗B ni ∈ (N ⊗B A)coH . Since tl(1A) = 1A, we get θN ◦ ηN = idN .
Let ni ⊗B ai ∈ (N ⊗B A)coH . Then

1H ⊗ ν−1(ni)⊗B α
−1(ai) = S−1(a[1])α(a[0][−1])⊗ ν−1(ni)⊗B β(a[0][0]).
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It follows that

ν−1(ni)⊗B α
−1(ai)⊗ 1A

= ν−1(ni)⊗B β(a[0][0])⊗ γ(1H)
(
S−1(α−1(a[1]))a[0][−1]

)
.

Furthermore, we have

ν−1(ni)⊗B α
−1(ai)1A = ν−1(ni)⊗B β(a[0][0])γ(1H)

(
S−1(α−1(a[1]))a[0][−1]

)
.

Thus, we get ni ⊗B ai = ni ⊗B t
l(ai) and

(ηN ◦ θN )(ni ⊗B ai) =
∑

nit
l(ai)⊗B 1A =

∑
ni ⊗B t

l(ai) = ni ⊗B ai.

Hence θN is the inverse of ηN , as desired.

We now prove the main result of this section, that is, the affineness
criterion for quantum Hom-Yetter–Drinfel’d modules.

Theorem 4.9. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode, (A, β) an (H,α)-Hom-bicomodule algebra and B = AcoH .
Assume that

(1) there exists a total quantum integral γ : H → Hom(H,A);
(2) the canonical map

β : A⊗BA→ A⊗H, a⊗Bb 7→ S−1(b[1])α(b[0][−1])⊗β−1(a)β(b[0][0]),

is surjective.

Then the induction functor A ⊗B − : H̃ (Mk)B → HH Y DA is an equiva-
lence of categories.

Proof. In Theorem 4.8 we have shown that the adjunction map ηN :

N → (N ⊗B A)coH is an isomorphism for all (N, ν) ∈ H̃ (Mk)B. It remains
to prove that the other adjunction map

βM : M coH ⊗B A→M, βM (m⊗B a) = ma,

is also an isomorphism.
Let (V, ω) be a k-module. Then A ⊗ V ∈ HH Y DA via the structures

induced by A, i.e.,

(a⊗ v)a′ = aβ−1(a′)⊗ ω(v),

ρA⊗V (a⊗ v) = S−1(a[1])α(a[0][−1])⊗ β(a[0][0])⊗ ω−1(v),

for all a, b ∈ A and v ∈ V . In particular, for V = A, A⊗A ∈ HH Y DA via

(a⊗ b) · a′ = aβ−1(a′)⊗ β(b);(4.6)

ρA⊗A(a⊗ b) = S−1(a[1])α(a[0][−1])⊗ β(a[0][0])⊗ β−1(b),(4.7)

for all a, b, a′ ∈ A.
Now we prove that the adjunction map βA⊗V : (A⊗V )coH⊗BA→ A⊗V

is an isomorphism for any k-module V .
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First, V ⊗ B and B ⊗ V are both objects in H̃ (Mk)B via the usual
B-actions:

(v ⊗ a) · b = ω(v)⊗ aβ−1(b), a′ · (b′ ⊗ v′) = β−1(a′)b′ ⊗ ω(v′),

for all a, b, a′, b′ ∈ B and v, v′ ∈ V . The flip map τ : V ⊗ B → B ⊗ V ,

τ(v ⊗ b) = b ⊗ v, is an isomorphism in H̃ (Mk)B. On the other hand,
V ⊗A ∈ HH Y DA via the structures induced by A, i.e.,

(v ⊗ a) · b = ω(v)⊗ aβ−1(b),
ρV⊗A(v ⊗ a) = S−1(a[1])α(a[0][−1])⊗ ω−1(v)⊗ β(a[0][0]).

It is easy to see that the flip map τ : A⊗ V → V ⊗A, τ(a⊗ v) = v ⊗ a,
is an isomorphism in HH Y DA.

Applying Theorem 4.8 for N = V ⊗B ∼= B⊗V , we obtain the following
isomorphisms in MB:

B ⊗ V ∼= V ⊗B ∼= (V ⊗B ⊗B A)coH ∼= (V ⊗A)coH ∼= (A⊗ V )coH .

Hence, (A⊗ V )coH ⊗B A ∼= A⊗ V .
Define

ψ̃ : A⊗B A→ H ⊗A, a⊗B b 7→ S−1(b[1])α(b[0][−1])⊗ β−1(a)β(b[0][0]),

for all a, b ∈ A. As ψ is surjective, ψ̃ is surjective since ψ̃ = ψ ◦ can, where
can : A⊗A→ A⊗B A is the canonical surjection.

Define

ξ : A⊗A→ A⊗H,

ξ(a⊗ b) = (ψ̃ ◦ τ)(a⊗ b) = S−1(a[1])α(a[0][−1])⊗ β−1(b)β(a[0][0]),

for any a, b ∈ A. Then the map ξ is surjective since ψ̃ and τ are surjective.
We will prove that ξ is a morphism in HH Y DA, where A⊗ A and A⊗H
are quantum Hom-Yetter–Drinfel’d modules respectively. Indeed, we have

ξ((a⊗ b)c) = ξ(aβ−1(c)⊗ β(b))

= S−1(a[1]α
−1(c[1]))α(a[0][−1])c[0][−1] ⊗ bβ(a[0][0])c[0][0]

= S−1(c[1]){(S−1(α−1(a[1]))a[0][−1])α−1(c[0][−1])}⊗{β−1(b)β(a[0][0])}β(c[0][0])

= ξ(a⊗ b)c
and

ρH⊗Aξ(a⊗ b) = ρH⊗A
(
S−1(a[1])α(a[0][−1])⊗ β−1(b)β(a[0][0])

)
= S−1(α(a[1](2)))α

2(a[0][−1](1))⊗ {S−1(a[1](1))α(a[0][−1](2))⊗ β−2(b)a[0][0]}
= (idH ⊗ ξ)

(
S−1(a[1])α(a[0][−1])⊗ β(a[0][0])⊗ β−1(b)

)
= (idH ⊗ ξ)ρA⊗A(a⊗ b).
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Hence, ξ is a surjective morphism in HH Y DA. Moreover,H⊗A is projective
as a left (A, β)-module, where H ⊗ A is a left A-module given by (3.4). By
Proposition 3.1, the map

u : H ⊗A→ H ⊗A, h⊗ a 7→ S−1(a[1])(hα
−1(a[0][−1]))⊗ β(a[0][0]),

is an isomorphism of right (A, β)-modules. It follows that there exists
ζ : H ⊗A→ A⊗A such that ξ ◦ ζ = idH⊗A since A ⊗ A → A ⊗ H is
surjective. Hence, ξ splits in the category of right A-modules. In particular,
ξ is a k-split epimorphism in HH Y DA.

Let (M,µ) ∈ HH Y DA. Then A⊗A⊗M ∈ HH Y DA via the structures
arising from A⊗A:

(4.8) (a⊗ b⊗m) · c = aβ−2(c)⊗ β(b)⊗ µ(m),

(4.9) ρA⊗A⊗M (a⊗ b⊗m)

= S−1(a[1])(hα
−1(a[0][−1]))⊗ β(a[0][0])⊗ β−1(b)⊗ µ−1(m),

for all a, b, c ∈ A and m ∈ M . Also, H ⊗ A ⊗M is an object in HH Y DA

via the structures arising from H ⊗A:

(h⊗ a⊗m)b = S−1(α(b[1]))(hb[0][−1])⊗ aβ2(b[0][0])⊗ µ(m),

ρH⊗A⊗M (h⊗ a⊗m) = α(h(1))⊗ h(2) ⊗ β−1(a)⊗ µ−1(m),

for all a, b ∈ A, h ∈ H and m ∈M . Then

ξ ⊗ idM : A⊗A⊗M → H ⊗A⊗M

is a k-split epimorphism in HH Y DA.

Since HH Y DA = HH̃ (Mk)(H ⊗Hop)A, the map

f : H ⊗A⊗M →M,

h⊗ a⊗m
7→ µ(m[0])γ

(
S−2(α−1(a[1]))(α

−2(h)S(a[0][−1]))
)
(α−1(m[−1]))β

2(a[0][0]),

is a k-split epimorphism in HH Y DA. Thus the composition

g = f ◦ (ξ ⊗ idM ) : A⊗A⊗M →M,

a⊗ b⊗m 7→ µ(m[0])γ
(
S−2(α−1(b[1]))S(b[0][−1])

)
(α−1(m[−1]))β(b[0][0])β

−1(a),

is a k-split epimorphism in HH Y DA. Note that the structure of A⊗A⊗M
as an object in HH Y DA is of the form A⊗V for the k-module V = A⊗M .

To conclude, we have constructed a k-split epimorphism in HH Y DA

A⊗A⊗M = (M1, π)
g→ (M,µ)→ 0

such that the adjunction map ψM1 for (M1, π) is bijective. Since g is k-split
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and there exists a total quantum integral γ : H → Hom(H,A), g also splits

in HH̃ (Mk). In particular, the sequence

(M coH
1 , π)

gcoH

−−−→ (M coH , µ)→ 0

is exact. Continuing the resolution with Ker(g) instead of M , we obtain an
exact sequence in HH Y DA

(M2, P )→ (M1, π)→ (M,µ)→ 0

which splits in HH̃ (Mk), and the adjunction maps for (M1, π) and (M2, P )
are bijective. Using the Five Lemma we conclude that the adjunction map
for (M,µ) is bijective.

Finally, we consider a special case. Assume that A = H. Then (A, β) is a
right (H,α)-comodule algebra in a natural way. The coinvariants of (H,α)
are

B = HcoH = {h ∈ H | ρ̃(h) = 1H ⊗ α−1(h)}
= {a ∈ A | S−1(α−1(h(2)))h(1)(1) ⊗ α(h(1)(2)) = 1H ⊗ α−1(h)}.

Then (B,α) is a subalgebra of (H,α). Hence we can obtain the following
result.

Corollary 4.10. Let (H,α) be a monoidal Hom-Hopf algebra with a
bijective antipode S and B = HcoH . Assume that:

(1) there exists a total quantum integral γ : H → Hom(H,H);
(2) the canonical map

ψ : H ⊗B H → H ⊗H,
h⊗B g 7→ S−1(h(2))α(h(1)(1))⊗ α−1(h)β(g(1)(2)),

is surjective. Then the induction functor − ⊗B H : H̃ (Mk)B

→ HH̃ (Mk)H is an equivalence of categories.
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Note added in proof. After the acceptance of the paper, the authors
were informed by Prof. D. Simson that the paper [8] was recently accepted
for publication in Colloquium Mathematicum, where among other things
an affineness criterion for relative Hom-Hopf modules associated with a
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faithully flat Hopf–Galois extension is proved and a Schneider type affineness
theorem is obtained for monoidal Hom-Hopf algebras.
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2010), A. Skowroński and K. Yamagata (eds.), EMS Ser. Congr. Rep., Eur. Math.
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